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Abstract
The integration of graphics processing units (GPUs) into
real-time systems has recently become an active area of re-
search. However, prior research on this topic has failed to
produce real-time GPU allocation methods that fully exploit
the available parallelism in GPU-enabled systems. In this
paper, a GPU management framework called GPUSync is
described that was designed with the goal of increasing par-
allelism in mind. GPUSync can be applied in multi-GPU
real-time systems, is cognizant of the system bus architec-
ture and affinity among computational tasks and GPUs, and
fully exposes the parallelism offered by modern GPUs, even
when closed-source GPU drivers are used. In empirical
evaluations presented herein involving real-world applica-
tions, GPUSync improved real-time response times by three
times or more, on average, making previously unschedulable
workloads schedulable.

1 Introduction
Graphics processing units (GPUs) are commonly used to-
day to accelerate intensive general-purpose computations, a
practice termed GPGPU. In many domains, the parallel pro-
cessing architecture of GPUs can be exploited to speed up
computations by orders of magnitude in comparison to even
modern multicore processors. The breadth of such domains
is now expanding to include many applications in which
real-time constraints exist. In automotive systems, for ex-
ample, compelling use cases for real-time GPUs include eye
tracking [18], pedestrian detection [25], navigation [13], and
obstacle avoidance [23]. If such features are consolidated
onto a single platform, then multiple GPUs may be required.
Unfortunately, ensuring real-time constraints while making
full use of the available parallelism offered by GPUs is a
challenge, particularly in a system with multiple GPUs. This
paper is directed at addressing this challenge.

In GPU-enabled real-time systems, parallelism must be
dealt with at many levels. For example, data must be trans-
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mitted to a GPU before computation begins; it would be de-
sirable for GPU transmissions and computation to overlap
in time. Additionally, such transmissions result in increased
traffic on shared buses, which are utilized in parallel by dif-
ferent tasks for different purposes. Bus traffic needs to be
carefully managed or all computations in the system may be
slowed [21].

In a multi-GPU platform, opportunities for parallelism
are increased. For example, on such a platform, it may be
desirable to avoid statically assigning computational tasks to
GPUs in order to avoid the utilization loss common to parti-
tioned approaches. However, a GPU-using task may develop
memory-based affinity for a particular GPU as it executes. In
such cases, program state (data) is stored in GPU memory
that is accessed each time the task executes on the particular
GPU. This state must be migrated each time a task uses a
GPU different from the one it used previously. In addition
to directly affecting the tasks involved, migrations increase
bus traffic and thus affect system-wide performance and pre-
dictability.

As explained in greater detail later, prior work on real-
time GPU management has addressed these parallelism-
related issues only partially. Furthermore, issues unique to
multi-GPU systems have received very little attention.
Contributions. In this paper, we present GPUSync, a com-
plete real-time GPU management framework that is cog-
nizant of system architecture and task GPU affinity, and fully
exposes the parallelism offered by modern GPUs. In most
prior work on real-time resource allocation for GPUs, the fo-
cus has been primarily on scheduling (e.g., see [2, 8, 15, 16]
and the references therein). This reflects the viewpoint that
GPUs are schedulable entities, like CPUs. Our viewpoint is
different: we view the management of GPUs as a synchro-
nization problem. This viewpoint reflects the reality that the
scheduler within the operating system (OS) executes only on
CPUs and any GPU is an additional processor that is treated
as an I/O device (even in on-chip architectures).

GPUSync utilizes recently proposed optimal locking
protocols [27] to manage GPU-related resources. This
synchronization-based technique allows it to be “plugged
in” to a variety of real-time schedulers that support the un-
derlying locking protocols. Unlike some prior approaches



by others, GPUSync may be used with closed-source GPU
drivers, which usually offer better performance and are more
feature-rich than open-source alternatives. Our contributions
include:

• A system-architecture-aware real-time multi-GPU
management framework based on real-time locking
protocols.

• Auto-tuning heuristics for maintaining GPU affinity
that also reduce the costs of GPU migrations.

• Real-time support for direct GPU-to-GPU migrations
that isolates bus traffic and improves overall perfor-
mance.

We also discuss an implementation of GPUSync in
UNC’s Linux-based LITMUSRT real-time OS [7], and
present an evaluation of it involving computer vision fea-
ture tracking computations (such as those found in automo-
tive applications). In these evaluations, GPUSync improved
real-time response times by three times or more, on average.

The rest of this paper is organized as follows. In Sec. 2,
we provide necessary background. In Sec. 3, we review rel-
evant prior work. In Sec. 4, we describe GPUSync. In
Sec. 5, we evaluate our implementation of GPUSync in
LITMUSRT. We conclude in Sec. 6. Due to space limita-
tions, we limit attention to GPU technologies from NVIDIA,
whose CUDA [1] platform is widely accepted as the leading
GPGPU solution. However, our techniques may also be used
with GPUs from other manufactures.

2 System Architecture
We begin by describing the underlying hardware architec-
ture of a large GPU-enabled system, which was used in the
experiments in Sec. 5. Much of this paper focuses on effi-
cient GPU memory management, so we pay special attention
to the various interconnects spanning system memory and
GPUs. While we focus on large GPU-enabled systems, ar-
chitectures of smaller systems are generally subsets of larger
systems.

Architectural Description. Fig. 1 depicts the high-level ar-
chitecture of a large-scale GPU-enabled system. There are
four major types of components: system memory, multi-
core processors,1 I/O hubs, and GPUs. These components
are connected through three different bus interconnects: the
memory bus, the high-speed processor interconnect, and the
PCIe bus.

CPUs in a multicore processor are connected to system
memory by an on-chip memory controller that attaches di-
rectly to the memory bus. Though the memory bus may be
made up of several independent channels, we must treat them

1We use the terms “CPU” and “core” interchangeably. We use the term
“multicore processor” to refer an entire multicore chip.

together as a single bus because memory addresses are usu-
ally finely interleaved across them to facilitate parallelism.
We do not believe there is a way to programmatically isolate
traffic to individual channels with such fine interleaving.

The multicore processors are linked through high-speed
interconnects.2 These interconnects are full-duplex, so data
may travel in both directions simultaneously at full speed.
On the multicore processors, these interconnects communi-
cate directly with the memory controller, allowing access to
system memory. The I/O hubs also connect to each other
and the multicore processors using the same high-speed in-
terconnect. Thus, I/O hubs can also access system memory.

The I/O hubs connect to GPUs using a packet-switched,
dual-simplex, PCIe bus.3 Each I/O hub supports two inde-
pendent links. Each link attaches to a PCIe switch that mul-
tiplexes two additional links to increase the number of sup-
ported GPUs. Thus, the PCIe bus is organized hierarchically.
The GPUs attach to the switches.4 Unlike the older PCI bus
where only one device on a bus may transmit data at a time,
PCIe devices can transmit data simultaneously. Devices can
also transmit directly to each other if they share a switch or
I/O hub.

At the highest-level, components are partitioned into non-
uniform memory access (NUMA) nodes. Depicted in Fig. 1,
each NUMA node includes a pool of system memory, a mul-
ticore processor, an I/O hub, and a collection of GPUs.5

Memory and device access across nodes is supported, but
this requires an additional “hop” over the high-speed inter-
connect, increasing latency and reducing effective through-
put since the additional link may carry other traffic. Further,
the memory controller on each processor may allocate less
bandwidth to remote requests [19]. Thus, memory traffic
should be localized within a node whenever possible.

GPU Architecture. As seen in Fig. 1, a GPU has four ma-
jor components: an execution engine, one or more DMA
copy engines, a memory controller, and specialized high-
speed memory. The execution engine is made up of many
parallel processors and performs computations, similar to a
CPU. The copy engines, connected to the PCIe bus, trans-
mit data between system memory and GPU memory. Most
GPUs only have one copy engine, and thus may only send
or receive data at a given instant, despite the fact that PCIe
is dual-simplex. However, higher-end GPUs may include an

2Common interconnect types include QPI and HyperTransport for Intel
and AMD systems, respectively.

3A dual-simplex bus is functionally equivalent to a full-duplex bus. The
two only differ at the physical level.

4Additional switches can be added to the PCIe network to support more
I/O devices. For example, two GPUs may be packaged on a single daugh-
terboard that includes an additional onboard PCIe switch.

5On larger systems, additional nodes may not have an I/O hub. On
smaller systems, nodes may share a single I/O hub. Even smaller systems,
such as a desktops and laptops, may have only a single node and a single
GPU.
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Figure 1: System architecture of a large-scale multi-GPU platform.

additional copy engine, enabling simultaneous bi-directional
transmissions.

The execution engine and copy engines operate
independently—a copy engine may transmit data while the
execution engine performs computation. Also, some modern
GPUs have the capability to transmit directly to each other,
bypassing system memory. We leverage both of these as-
pects in developing GPUSync.

GPGPU Operations and State Migration. GPGPU pro-
grams execute on CPUs and issue commands to GPUs to per-
form operations. These operations primarily involve copying
data between system and GPU memory and invoking GPU
programs, called kernels, which run on a GPU. A GPGPU
program typically performs the following sequence of opera-
tions per GPU access: (i) transmit input data for GPU kernels
from system memory to GPU memory; (ii) execute kernels
to operate on the input data, storing results in GPU memory;
(iii) copy results from GPU memory back to system mem-
ory. A program may repeat this sequence several times be-
fore completing. Each operation, unless explicitly broken up
by the programmer, is performed non-preemptively by the
GPU.

In addition to memory used for input and output, recur-
rent tasks may maintain state in GPU memory. For exam-
ple, motion-tracking algorithms maintain information about
the movement of objects between video frames. A task has
affinity with the GPU that holds its most recent state. State
must migrate with tasks from one GPU to another. The cost
of migration is the time it takes to move state from one GPU
to another. Cost is partly dependent upon the method used
to copy state between GPUs as well as the distance between
GPUs. Distance is the number of links to the nearest com-
mon switch or I/O hub of two GPUs. For example, in Fig. 1,
the distance between GPUs 0 and 2 is two since they share
the I/O hub, but not switches. Migrations using direct GPU-
to-GPU memory copies, especially over short distances, are
fast due to proximity and potentially reduced bus contention
since less distance is traveled. Unfortunately, direct GPU-to-

GPU copies are not possible between I/O hubs (i.e., different
nodes), so cross-node migrations must pass through system
memory.

Architectural Implications. From a real-time perspective,
we wish to constrain system utilization the least while main-
taining predictable real-time performance. System utiliza-
tion can be increased by exploiting parallelism. In the ar-
chitecture above, GPU-related parallelism includes the dual-
simplex PCIe bus and the independent operation of the exe-
cution and copy engines. Efficient GPU management tech-
niques should allow the simultaneous use of these compo-
nents. However, this is difficult due to bus contention issues.

GPGPU programs are data intensive and generate signif-
icant traffic between system and GPU memory. Observe in
Fig. 1 that data copied between system and GPU memory,
within the same NUMA node, traverses three interconnects,
two memory controllers, and one PCIe switch. These ele-
ments are shared by concurrently executing operations. The
speed of a data copy between system and GPU memory is
a function of contention, interconnect bandwidth, and bus
arbitration protocols.

The management of bus contention in real-time systems
has been explored extensively by Pellizzoni in his Ph.D. the-
sis [21]. However, his approach requires custom elements
at every system level: specialized PCI hardware interposed
between devices, OS modifications for memory and PCI bus
scheduling, a custom compiler, and customized source code.
While impressive in its scope, such an approach is currently
infeasible in GPU-enabled real-time systems due to software
complexity: the software stack that manages GPUs is ex-
ceedingly complex and often closed-source. Also, [21] does
not address issues of GPU allocation and affinity. Instead,
we endeavor to design efficient GPU resource management
techniques that: (i) are cognizant of system architecture is-
sues; (ii) aware of task GPU affinity; (iii) fully expose paral-
lelism offered by modern GPUs; (iv) maintain real-time pre-
dictability; and (v) can be easily applied to existing systems
and support a variety of real-time schedulers.



3 Prior GPU Approaches
We now examine prior approaches to GPU resource man-
agement and consider how well each addresses issues re-
lating to system architecture and real-time predictability.
PTasks [22], developed by Rossbach et al., creates a new
OS-level infrastructure of GPU management. PTasks uses
dataflow graphs to reduce the amount of data that is trans-
mitted between system and GPU memory. This allows
PTasks to individually schedule execution and copy en-
gines. PTasks also includes a data-aware GPU scheduler
that attempts to greedily schedule GPU computations on
the “best” available GPU at the time of an issued opera-
tion, where “best” is defined by GPU capabilities (such as
speed) and affinity. However, the heavy use of parameter-
tuned heuristics and migrations through system memory re-
sults in idle GPUs and increased bus contention. Finally,
although PTasks is designed for interactive applications, it
uses heuristics that are not amenable to real-time analysis.

RGEM is a user-space real-time GPU scheduler designed
by Kato et al. [15]. Unlike PTasks, RGEM schedules GPU
operations by static priority, so the system better maintains
real-time predictability. RGEM also addresses schedulabil-
ity problems caused by long non-preemptive copies between
system and GPU memory by breaking large copies into
smaller chunks, reducing the duration of priority inversions
and thus improving schedulability. However, RGEM does
not individually schedule GPU execution and copy engines,
so opportunities for parallelism are lost. Further, RGEM is
designed to support only a single GPU.

In more recent work, Kato et al. also developed Gdev,
which extends many of the ideas developed in RGEM to
the OS kernel space [16]. Unlike RGEM, Gdev separately
schedules the execution and copy engines of a GPU. How-
ever, Gdev remains focused on single-GPU systems and
provides no mechanisms for GPU allocation or migration
support. Also, Gdev requires open-source software drivers,
which can be a serious limitation since these drivers lag
behind vendor-provided ones with respect to performance,
available features, and support for the most recent GPUs.

In our own work, we have developed GPU-enabled real-
time systems by viewing GPUs as shared resources, rather
than directly schedulable processors, which is the perspec-
tive taken in the above work. In our approach, GPU ac-
cess is arbitrated by a real-time locking protocol [12]. This
has allowed us to integrate closed-source GPU drivers while
still addressing low-level issues like real-time interrupt han-
dling [11]. It has also allowed us to explore the properties
of GPU-enabled real-time systems with schedulers such as
clustered earliest-deadline-first (EDF) (work by others has
focused on static priority scheduling). This has enabled sup-
port for soft real-time (SRT) systems that allow greater uti-
lizations than would be possible with static priority sched-
ulers [4]. Finally, our approach enables support for multi-

GPU platforms through the use of k-exclusion locking pro-
tocols [9, 11].6 However, our work thus far is not without
its own limitations. Though we have supported multi-GPU
platforms, no consideration for affinity has yet been made.
Also, our prior work has treated GPU execution and copy
engines as a single unit. We remedy these shortcomings in
this paper.

4 GPUSync

GPUSync’s design reflects several assumptions. First, the
underlying multicore platform may have several GPUs. Sec-
ond, the workload to be supported can be modeled as a tradi-
tional sporadic real-time task system, where real-time com-
putations by a single task are recurrent; we call these re-
current invocations jobs. Third, jobs are scheduled in prior-
ity order and each job has an absolute deadline; our system
supports job-level static priority schedulers, such as EDF.
Fourth, we target SRT systems where the time by which
a scheduling deadline is missed is bounded.7 We sched-
ule CPUs in clusters (one node in Fig. 1 per cluster) since
this method has been shown to offer superior SRT capabil-
ities [4]. Fifth, we assume that each job only needs to be
allocated a GPU once. Finally, we assume that any changes
in per-job execution times of the same task are gradual, facil-
itating execution time predictions based upon historical data.

GPUSync is made up of several components: a self-
tuning execution cost predictor; a GPU allocator, based
upon a real-time k-exclusion locking protocol, augmented
with heuristics; and a set of real-time engine locks, one per
GPU engine, to arbitrate access to the functional units of the
GPU. GPUSync also provides API routines that integrate
with our system to facilitate real-time direct GPU-to-GPU
migrations and memory copies in order to reduce blocking
times and maintain real-time predictability.

The high-level design of GPUSync is illustrated in
Fig. 2. We describe the flow of a request for a GPU and its
resources by a job to demonstrate how GPUSync functions.
A request is issued to the GPU allocator in Step A. Utilizing
the cost predictor (Step B) and internal heuristics, the GPU
allocator determines which GPU should be allocated to the
request, though the GPU may not be immediately available.
The requesting job is allowed access to the assigned GPU
once the GPU becomes available in Step C. In Step D, the
job competes with other jobs allocated the same GPU for

6k-exclusion extends ordinary mutual exclusion (mutex) by allowing up
to k tasks to simultaneously hold a lock.

7We do not feel that current GPU technology is able to support strict hard
real-time constraints (those were deadlines can never be missed under any
circumstances) [10]. For example, synchronization mechanisms internal to
closed-source software can conflict with the request deferral techniques of
priority-ceiling-based locking protocols, such as the Stack Resource Pol-
icy [3], common to hard real-time systems. Note, however, this is only one
of many challenges of integrating GPUs into hard real-time systems.



Figure 2: High-level design of GPUSync.

GPU engines; access is arbitrated by the engine locks. A job
may finally access the engine on its assigned GPU once the
corresponding engine lock has been acquired in Step E.

We now describe these components in more detail, as well
as the APIs that integrate with GPUSync to improve perfor-
mance, predictability, and ease programming.

4.1 Cost Predictor

GPUSync’s GPU allocation heuristics require the ability to
estimate costs due to migrations. The cost predictor is used
to estimate the time a job will execute, including migration
costs, if it is allocated a given GPU. The predictor uses on-
line monitoring of job execution patterns to make estimates
based upon past behavior.

The cost predictor begins measuring the accumulated ex-
ecution time of a task once it has been allocated a GPU.
Execution time is accumulated as the job is scheduled on a
CPU. Execution delays due to preemption and blocking due
to engine lock acquisition (explained later) are not included.
However, CPU suspension durations due to GPU operations
(memory copies, GPU kernels) are included in the accumu-
lated time. When a job releases a GPU, this measurement
gives a total job execution cost for both CPU and GPU oper-
ations and includes any delays due to migrations. This mea-
surement is fed into a feedback control mechanism that is
used to estimate future execution costs.

In order to make the cost predictor sensitive to migration
costs, we actually use several feedback controllers per task.
The predictor records the distance between the newly allo-
cated GPU and the GPU that the task used previously (no
record is made in the initial case) whenever a job is allocated
a GPU. This distance classifies the type of migration that the
job will experience. Each classification is given a unique
feedback controller. Using the cost predictor, the GPU al-
locator’s heuristics can estimate execution costs based upon
migration distance and use this information to maintain GPU
affinity and reduce bus contention.

4.2 GPU Allocation and Engine Access

As previously discussed, locking protocols can be employed
to arbitrate access to GPUs. We develop a lock-based ap-
proach to GPU arbitration that allows the underlying archi-
tecture of the system to be more effectively utilized.

When a single k-exclusion lock is used to arbitrate ac-
cess to g GPUs (k = g), a job implicitly has exclusive ac-
cess to a GPU’s execution and copy engines when it is al-
located that GPU. In a finer-grained approach, if separate
k-exclusion locks are used to allocate engines, then a job
could be assigned engines within mismatched GPUs. This
is a nonsensical assignment since the sequence of GPU op-
erations described in Sec. 2 must be carried out on the same
GPU. Consequently, a more sophisticated locking scheme is
necessary to first perform GPU allocation in one phase, fol-
lowed by real-time arbitrated engine access in another. This
is exactly what we do: GPU allocation is performed using a
k-exclusion locking protocol and engine access is arbitrated
by mutual exclusion locks. GPU allocation is actually done
on a per-node basis, i.e., tasks executing on a given CPU can
only access GPUs that share the same I/O hub. Thus, we re-
quire a k-exclusion locking protocol for globally scheduled
systems, where k is set to the number of GPUs in one of our
clusters. The overall locking strategy we employ is derived
from the real-time nested locking protocol (RNLP), which
has been shown to be optimal for supporting nested resource
requests in globally scheduled real-time systems [27].
GPU Allocator. We explain how GPU allocation is done by
considering a single cluster (or effectively, a globally sched-
uled system) with g GPUs. GPU allocation is token-based.
We associate ρ GPU tokens with each GPU. A job must ac-
quire a GPU token before it can compete for access to GPU
engines. All GPU tokens are pooled and managed by a single
k-exclusion lock, k = ρ × g. The number of jobs that may
compete for GPU engines for any single access on a partic-
ular GPU is a function of ρ. We set ρ equal to the number of
engines per GPU.8

We use a modified version of the Replica-Request Priority
Donation Locking Protocol (R2DGLP), a recently proposed
real-time k-exclusion locking protocol that is asymptotically
optimal for globally scheduled systems, to perform token al-
location [28]. The R2DGLP supports job-level static priority
schedulers, so GPUSync may be “plugged in” to any sched-
uler that supports the R2DGLP. Out modified R2DGLP re-
spects the priority inheritance rules of the original protocol,
preserves real-time blocking correctness, and continues to
support nested requests. Due to space constraints, we cannot
fully describe the R2DGLP and only give a brief overview
here, in addition to our heuristic modifications.

8Greater values of ρ can increase parallelism on a single GPU, but this
negatively affects real-time schedulability and lead to idle GPUs system-
wide. Please see the appendix of the online version of this paper, located at
www.cs.unc.edu/˜anderson/papers.html, for analysis.



Figure 3: R2DGLP token queues populated with requests.
Queue length is measured in units of time.

Access to each token in the R2DGLP is arbitrated by a
per-token FIFO-ordered queue. When jobs issue token re-
quests, they are enqueued in a token queue and suspend from
execution until they are granted a token. The job at the head
of each token queue holds the corresponding token. This is
depicted in Fig. 3 where the token queues have been popu-
lated with requests. Observe that ρ tokens map to one GPU.
The standard R2DGLP specifies that a request is enqueued
on the queue with the least number of requests. However, we
modify the R2DGLP to enqueue requests on the queue that
gives the earliest estimated completion time of the request.
This requires that queue length be measured in terms of time,
not number of requests. Each enqueued request is weighted
by the estimated time it will take for that request to complete
on the GPU the queue is associated with. Thus, one token
queue may hold more pending requests than another, but be
shorter with respect to the estimated time it will take to ex-
ecute pending requests. This is illustrated in Fig. 3, where
the first token queue for GPU0 contains two requests, but is
shorter than the first token queue of GPUg , which contains
only one request.

The R2DGLP uses the cost predictor to estimate the ex-
ecution costs that will be incurred if a job with a GPU re-
quest is allocated to a particular GPU. When a job requests
a GPU token, the job is not enqueued on the shortest queue,
but rather on the queue that will allow the job to complete
the soonest (which is a function of both queue lengths and
expected migration costs).

An example of the heuristic is illustrated in Fig. 4. A task
T2 has affinity with GPU0 and requests access to a GPU. The
cost predictor estimates a cost for T2 on GPU0 and GPU1;
due to affinity, the cost is less on GPU0. The R2DGLP ex-
amines the current state of the token queues. The shortest
queue for GPU1 (the third queue for GPU1) has an estimated
length of t1. The shortest queue for GPU0 (the first queue
for GPU0) has an estimated length of t2 (greater than t1).
However, if T2 is enqueued on the queue of GPU1, then the
estimated completion time for T2 is t4, which is greater than
t3, the estimated completion time on GPU0. T2 is therefore
enqueued on the token queue for GPU0.

Figure 4: Request enqueues on the queue with the earliest
estimated completion time.

This heuristic may cause a job to wait for an available
GPU token even when one is available for another GPU for
which migration costs are greater. However, this only occurs
when the costs of executing on the free GPU is anticipated
to lead to degraded performance.9

To ensure optimal blocking behaviors, the issuance of to-
ken requests may be deferred under the R2DGLP to limit the
total number of requests in the token queues. The rules gov-
erning these deferred requests are out of the scope of this pa-
per. However, we note that we further modify the R2DGLP
with additional heuristics that promote affinity.

To summarize, through the use of heuristics, the R2DGLP
efficiently allocates GPUs to jobs while maintaining real-
time blocking correctness and real-time predictability.
Engine Locks. A mutex is associated with each GPU copy
and execute engine, as depicted in Fig. 2. For GPUs with
two copy engines, one copy engine is designated as inbound
and the other as outbound. A job acquires the inbound copy
engine lock if data is to be transmitted to the GPU. The out-
bound copy engine lock is acquired if data is to be transmit-
ted from the GPU. We differentiate inbound and outbound
copy engines because we see little value in allowing two
jobs to transmit data in the same direction on the same de-
vice since their effective bandwidth is halved due to PCIe
bus arbitration protocols.10 It is better to instead promote
simultaneous full-speed transmissions on the dual-simplex
PCIe bus. However, for a machine like our evaluation plat-
form, which has one copy engine per GPU, we are not able
to take advantage of this parallelism; for such a machine, the
inbound and outbound locks are one in the same.

Each engine mutex prioritizes requests in FIFO order.

9This is unlike PTasks, which uses hard-coded parameters to make mi-
gration decisions without examining current system state.

10The PCIe specification supports real-time arbitration through static pri-
orities [20]. However, these features are not implemented by even main-
stream platforms [14].



Blocked jobs suspend while waiting for an engine. A job
that holds an engine lock may inherit the priority of any job
it blocks. Priority inheritance relations from the R2DGLP
may propagate to an engine holder to ensure timely real-
time scheduling. A job releases an engine lock once all of
its engine-related operations complete. In order to reduce
worst-case blocking, a job is allowed to hold at most one
engine lock at a time, except during direct GPU-to-GPU mi-
grations, which requires holding a copy engine lock for each
GPU.

The use of engine locks enables the parallelism offered by
GPUs to be utilized while simultaneously obviating the need
for the GPU driver to make resource arbitration decisions,
enhancing real-time predictability.

4.3 GPU-to-GPU Migrations

As stated earlier, we only allow a job to hold two engine
locks when it must perform a direct GPU-to-GPU migration.
When migrating from GPUa to GPUb, a job must hold the
outbound copy engine lock of GPUa and the inbound copy
engine lock of GPUb. We explore two methods of acquir-
ing these locks: nested resource requests [28] and dynamic
group locks (DGLs) [26]. Using nested resource requests, a
job requests and acquires one copy engine lock before issu-
ing a request for the other. Thus, a job may suspend twice,
being blocked on each request, before acquiring both locks.
These requests must also be issued according to a specified
partial order to avoid deadlock. Under DGLs, a job atomi-
cally requests both copy engine locks and does not resume
execution until it has acquired them. This method may re-
duce the number of context switches since fewer suspensions
are possible. Also, requiring a specified partial ordering of
requests is not necessary since requests for both locks are
issued atomically.

A job may issue memory copies to carry out migration
once both engine locks are held. This isolates migration
traffic to the PCIe bus; the data does not traverse the high-
speed processor interconnect or system memory buses—
computations utilizing these interconnects are not disturbed.

4.4 Memory Copy Routines

Recall from Sec. 2 that GPU copy engines perform opera-
tions non-preemptively, and large memory transactions can
cause tasks to experience long periods of blocking. Prior
work has shown that response times can be improved if these
large copy operations are broken up, or chunked, into smaller
ones [15, 16]. We adopt this method with the introduction of
copy engine locks.

Chunking is implemented through user-space memory
copy APIs. The caller specifies the appropriate data point-
ers, the amount of data to be copied, the chunk size to use,
and type of copy to be performed (system-to-GPU, GPU-to-

Figure 5: Graphical depiction of feature tracker output.

system, or GPU-to-GPU). Our APIs perform copies incre-
mentally in appropriately sized chunks. The necessary copy
engine locks (determined from the source and destination of
the copy) are acquired automatically before each chunk is
transmitted. For GPU-to-GPU copies, locks are acquired ei-
ther using nested requests or DGLs, depending upon system
configuration. Copy engine locks are released after the chun-
ked copy has completed. Thus, a job will repetitively ac-
quire and release copy engine locks when performing copies
greater than the specified chunk size.

In theory, GPUSync facilities efficient and predictable
utilization of system resources. However, an evaluation is
necessary to see if there are real benefits to the approach.
This is examined next.

5 Evaluation
In this section, we evaluate our implementation of
GPUSync in LITMUSRT, currently based upon Linux
3.0.0. Motivated by the automotive applications given in
Sec. 1, we evaluate our system with the real-world com-
puter vision application of feature tracking. Feature tracking
can provide input to higher-level applications such as object
tracking.

Feature Tracking. We adapted a freely available CUDA-
based implementation of a Kanade-Lucas-Tomasi (KLT)
feature tracker [24]. Fig. 5 gives a graphical representa-
tion of a tracker’s output: salient features (points) in video
are identified and their motion (lines) is tracked between
frames. This implementation incorporates inertial sensor
data [17] to enhance results; this is particularly attractive in
systems where video cameras are mounted on moving vehi-
cles. We made infrastructural enhancements to the original
implementation to support multi-GPU platforms (i.e., mi-
grations) and integrate with LITMUSRT and GPUSync.11

The tracker represents a scheduling challenge since it utilizes

11Source code available at www.litmus-rt.org.



both CPUs and GPUs to carry out its computations. Though
the KLT tracker represents only one GPGPU application, its
image processing operations are emblematic of many others.

Evaluation Platform. Our test platform is a NUMA system
like that depicted in Fig. 1. It has two Xeon X5060 proces-
sors with six 2.67GHz cores each and is equipped with eight
NVIDIA GTX-470 GPUs. We used clustered EDF schedul-
ing for reasons discussed earlier in Sec. 4. We used CUDA
4.0 for our GPGPU runtime environment.12

Experimental Setup. We performed feature tracking on
20 independent video streams simultaneously. Eight video
streams were processed at 20 frames-per-second and 12
streams were processed at a slower rate of ten frames-per-
second (in a vehicle setting, different video streams may ex-
ecute at different rates, depending upon importance). Each
video stream was handled by one task, with each frame be-
ing processed by one job. Jobs were scheduled with implicit
deadlines commensurate with stream frame rate. Tasks were
evenly partitioned between the two NUMA nodes of the sys-
tem (ten streams apiece).

Lacking a real vehicle testbed, we processed pre-recorded
video streams that were 320x240 in resolution. Frames
were preloaded into memory before processing commenced
in order to avoid disk latencies (there would not be such
latencies with real video cameras). All data was page-
locked in system memory to facilitate fast and determinis-
tic memory operations (including system memory-based mi-
grations). Memory copies for input and output data between
system and GPU memory was roughly 1MB per frame, com-
bined. However, task state data was about 6.5MB in size.

The video streams were processed under various system
configurations determined by a combination of the following
parameters: with and without GPU affinity allocation heuris-
tics; nested engine lock requests or DGLs; ρ ∈ {1, 2} (our
GPUs have only one copy engine); migrations via system
memory or through GPU-to-GPU copies; and chunk sizes of
2MB, 4MB, and with chunking disabled. Each meaningful
combination of parameters resulted in a test scenario (e.g.,
using engine locks when ρ = 1 is a meaningless test).

In addition to these GPUSync tests, we tested scenar-
ios that relied upon the throughput-oriented, closed-source,
GPU driver to arbitrate GPU access. A simple load-balancer
was used to perform GPU allocation. Thus, jobs were allo-
cated GPUs without blocking and then competed for engine
access within the driver with no real-time guarantees. Chunk
sizes and migration methods were tested under these scenar-
ios.

Each task processed eight minutes worth of video. Mea-

12Unfortunately, the current version of LITMUSRT cannot guarantee
real-time delivery of messages from the OS to the CUDA runtime in user
space with CUDA 4.1, the most recent version of CUDA, due to subtle
changes in its implementation. We are currently extending LITMUSRT to
accommodate these changes.

Figure 6: Average response time as percent of period under
each configuration.

surements of job response times were made within a five
minute window starting after 30 seconds of execution (this
delay allows the cost predictor to “warm up”). We measured
each job’s response time starting from the latter of its release
time and its predecessor job’s completion. (If a job’s prede-
cessor is tardy, then its own release is not altered; however,
jobs of the same task must execute in sequence.) Response
times, as a percent of period, were averaged for each sce-
nario.

Results. A large number of different scenarios were tested.
We denote scenarios in the following manner: the letter A (a)
denotes affinity was enabled (disabled); E (e) denotes that
engine locks were (not) used; D (d) denotes that DGLs were
(not) used; G (g) denotes that migrations were performed via
GPU-to-GPU (system) memory copies. Finally, each sce-
nario designation is followed by a chunk size (X denotes that
chunking was disabled). Thus, AEDg,2MB denotes the sce-
nario where affinity heuristics and engine locks with DGLs
were used, with migrations passing through system memory,
and all memory copies were broken into 2MB chunks.

Fig. 6 depicts the average job response time, as a percent
of period, under each GPUSync scenario, sorted from short-
est to greatest. The best performing scenario utilizing the
throughput-oriented driver (GPU-to-GPU migrations with
2MB chunking) is also included and labeled as TG,2MB.
Any scenario with an average left of the vertical line at 100%
on the x-axis is said to be SRT schedule.



Figure 7: Effect of affinity heuristics under each scenario.

Observation 1. The use of affinity heuristics, engine locks,
direct GPU-to-GPU migrations, and chunking improved av-
erage response times by three times or more.

The scenario AEdG,2MB gave the best average response
time of 76.11%. In contrast, aedg,XMB, which is roughly
equivalent to our prior approaches, had an average response
time of 232.15%.

Observation 2. The simultaneous use of execution and copy
engines dramatically improved performance. A scenario
was schedulable iff engine locks were used.

There is a clear break in the response times in Fig. 6.
The worst performing schedulable scenario was aEdG,XMB
with an average response time of 88.09%. The next best
scenario was AedG,4MB with an average response time of
163.94%. All scenarios before aEdG,XMB used engine
locks. All scenarios after AedG,4MB did not.

Observation 3. Real-time performance of GPUSync is
competitive with the throughput-oriented driver.

The best performing throughput-oriented scenario,
TG,2MB, had an average response time of 73.98% in com-
parison to 76.11% for AEdG,2MB—a difference of about
2%. GPUSync is competitive with the driver while also pro-
viding guarantees on real-time performance. We believe the
driver performed well because tasks largely shared periods,
and thus deadlines, so the risk for priority inversions was low
(there was little need for a priority inheritance mechanism).

We note that prior real-time approaches have also been
compared against the throughput-oriented driver [15, 16].
Through these comparisons, we presume that we are com-
petitive with these real-time approaches as well, though di-
rect comparisons are necessary to draw concrete conclu-
sions.

Observation 4. Affinity heuristics usually improved re-
sponse times, usually between 1 and 10%.

The average response time for scenario AEdG,2MB was
76.11%, but was only 81.40% with affinity heuristics dis-
abled (aEdG,2MB); this is an improvement ratio (without-
affinity divided by with-affinity) of about 1.06. Improvement

Figure 8: Effect of chunking under each scenario.

ratios due to affinity are more clearly shown in Fig. 7 where
any ratio above 1.0 indicates improved performance. Ob-
serve, however, that affinity heuristics failed to improve per-
formance in a few cases. We speculate that these instances
could be due to poor performance by the cost predictor. In
our implementation, the cost predictor uses the same feed-
back control parameters under every scenario. It is possible
that performance could be improved with scenario-tailored
parameters; further investigation is merited.

Observation 5. Chunking usually improved performance.
The average response times for scenarios AEdG,2MB,

AEdG,4MB, and AEdG,XMB were 76.11%, 78.24%, and
80.84%, respectively, as seen in Fig. 6. Chunking usually
improved performance under each scenario. This is observ-
able in Fig. 8, which depicts the ratio of response time im-
provement under each chunked scenario in comparison to
its “unchunked” counterpart. Ratios above 1.0 indicate im-
proved average response times. As with affinity, chunking
appears to hurt performance in a few scenarios. We can-
not directly explain why this is, but we note that these are
the same scenarios where affinity heuristics also hurt perfor-
mance. Further investigation is necessary.
Observation 6. The use of DGLs led to minor degradations
in performance.

Under AEDG,2MB, the average response time was
78.08% in comparison to 76.11% for AEdG,2MB—a differ-
ence of about 2%. Similar trends can be observed between
other scenario pairs. Under DGLs, it is possible for a task
to be blocked by several jobs in one queue, while it is also
at the head of another queue. In such a situation, one copy
engine goes idle, even if there are other requests to be satis-
fied. Under nested resource requests however, such requests
would be satisfied. While DGLs have resulted in increased
average response times, their worst-case blocking bounds are
improved over that of nested resource requests, unless the
nested requests are implemented as described in [27]. So
while nested locking may be favorable for workloads with



looser SRT constraints, our results demonstrate that DGLs,
which have improved blocking bounds, can be applied to
real-time applications with only a minor reduction in re-
sponse times.

6 Conclusion
In this paper, we presented GPUSync, a lock-based GPU
management framework for real-time multi-GPU systems.
Unlike prior research, GPUSync is cognizant of the sys-
tem bus architecture and affinity among computational
tasks and GPUs, and fully exposes the parallelism offered
by modern GPUs. While others have approached GPU
management from a scheduling perspective, GPUSync’s
synchronization-based techniques allows it to be “plugged
in” to a variety of real-time schedulers. We reported on our
efforts of implementing GPUSync in LITMUSRT, and have
given evidence, through application-based empirical evalua-
tions, that our approach can significantly improve the effi-
ciency of real-time multi-GPU systems. Average response
time improvements by a factor of three or more were ob-
served in our evaluations, allowing previously unschedulable
workloads to be schedulable.

There are many opportunities for further research. More
work can be done to develop more advanced GPU assign-
ment heuristics. For example, it should be straightforward
to extend support to systems with GPUs of differing perfor-
mance characteristics, i.e., heterogeneous GPUs. This ex-
tension would also add support for integrated GPU graphics
hardware (GPUs embedded on-chip with multicore proces-
sors that only use system memory) into GPUSync. Also,
our heuristics currently assume that tasks exhibit relatively
consistent execution behaviors. Our feedback control sys-
tems, as currently designed, would be unable to provide good
estimations for tasks with erratic execution behaviors. How-
ever, it may be possible to improve estimates with additional
information from the user program. Finally, it would be in-
teresting to quantify the benefits of increases parallelism of-
fered by GPUs that support GPUs that support simultaneous
bi-directional memory copies.
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A Blocking Analysis
In this appendix, we investigate the blocking complexity of
GPUSync, and explore the effect of different values of ρ on the
blocking behavior. The blocking analysis is broken down into two
phases, blocking associated with waiting for a GPU token, and
blocking waiting for individual engines. The total blocking for each
GPU request is then equal to the sum of the blocking in each of
these phases. In all subsequent analysis, we assume suspension-
oblivious analysis, in which suspensions are analytically consid-
ered computation time [5, 6]. Note that our analysis of the block-
ing complexity of GPUSync parallels the blocking analysis of
R2DGLP.

In the following analysis, we letm be the number of processors,
and n be the number of GPU-using tasks, denoted T1, . . . , Tn. As-
sume, without loss of generality, that each GPU-using task engages
in GPUSync at most once per job. Within this operation, Ti may
issue ei execution-engine requests. Associated with each job of a
task Ti is at most di bytes of data (state, input, and output) that
must be transferred to or from the GPU as part of the GPU request,
and the di bytes are broken up into chunks of size c (as described in
Sec. 4). Let LCmax be the maximum amount of time it takes to trans-
fer C bytes to or from a GPU and LEmax be the maximum amount
of time any job executes on a GPU execution engine. Finally, the
amount of time a task executes on the CPU to manage this workflow
is given by LPmax.

Engine-lock Blocking. Recall from the design of GPUSync that
there are at most ρ tokens associated with each GPU. Thus, when
direct GPU-to-GPU migrations are not used, there can be at most ρ
tasks contending for any engine at a time. Using this property, we
can analyze blocking associated with waiting on each individual
engine. We thus have the following lemma.

Lemma 1. A task holding GPU token a can be blocked by at most
NE = ρ − 1 other requests for the execution engine of GPUa per
execution-engine request.

Similarly, if tasks never requires more than one copy engine at
a time (i.e., they migrate through system memory), they will never
be blocked by requests for other copy engines. We therefore have
the following lemma.

Lemma 2. If tasks require at most one copy engine at a time, a task
holding GPU token a can be blocked by at mostNC

sys = ρ−1 other
requests for a copy engine of GPUa per copy engine request.

However, if GPU-to-GPU copies are satisfied through DGLs,13

it is possible for tasks to be blocked by requests for other copy
engines.

Lemma 3. If tasks may require multiple copy engines concur-
rently, and such requests are satisfied via DGLs, a job holding GPU
token a can be blocked by at most NC

dgl = ρg − 1 copy engine
requests per copy engine request.

Proof. By construction, there can be at most ρg − 1 other jobs
holding tokens (possibly for other GPUs) at any time. Because each
copy-engine lock is FIFO ordered, a request can only be blocked
by a subset of the ρg − 1 other requests with tokens at the time of
request.

Under DGLs, because jobs are enqueued waiting for multiple
copy engines, transitive blocking is possible, and thus tasks can be
blocked waiting for requests for engines they do not require. For
example, if T1 requires the copy engines of GPUa and GPUb, and
T2 requires the copy engines of GPUb and GPUc, then T1 is tran-
sitively blocked by any request T2 is blocked on while waiting for
a copy engine of GPUc.14 It is therefore possible, for a task to be
blocked by at most ρg− 1 requests. When nested requests are used
instead of DGLs to support GPU-to-GPU copies, it is possible that

13Nested requests as defined by [27] have the same blocking bound as
DGLs.

14Note that deadlock is avoided since DGL requests are enqueued atom-
ically on the constituent FIFO queues.



Ti’s request is blocked by requests that were issued after Ti’s out-
ermost request. This property leads to more pessimistic analysis.

Lemma 4. If tasks may require multiple copy engines concur-
rently, and such requests are satisfied via nested requests, a job
holding GPU token a can be blocked by at most NC

nest = (ρg −
1)(ρg − 2)/2 requests per outermost copy engine request.

Proof. Consider the pathological worst case scenario in which a
request is enqueued behind ρg− 1 other requests for a copy engine
of GPUa. Because there can be at most ρg total requests for any
same copy engine, if the ith request in the queue for a copy engine
of GPUa issues a nested request, there may be at most i − 1 other
requests enqueued ahead of it (directly or transitively) after it issues
its nested request. Thus the total number of blocking requests is
NC

nest =
∑ρg
i=1(i− 1) = (ρg − 1)(ρg − 2)/2.

Theorem 1. The total duration of blocking while waiting for en-
gines is given by ddi/ceNCLCmax +NEeiL

E
max, where NC is the

number of blocking copy-engine requests given the system config-
uration.

Proof. Ti must transmit ddi/ce chunks of size c to send di bytes
and for each chunk, Ti may be blocked by NC other copy-engine
requests, each of which also takes at most LCmax time to transmit.
By definition, Ti uses the execution engine ei, and thus the total
blocking for the execution engine is NEeiL

E
max. The total engine

blocking is bounded as claimed.

Token Blocking. To bound the duration of token blocking, we first
must quantify the duration of time that a job may hold a token.

Lemma 5. The maximum token hold time, THT ci , of a task Ti
with chunk size c is given by ddi/ce(NC + 1)LCmax + (NE +
1)LEmax + LPmax.

Proof. The maximum hold time of a GPU token is the total duration
of blocking while waiting for GPU engines, in addition to the dura-
tion of execution on each engine. The total duration of blocking is
given by Theorem 1, and the total duration of execution on each of
the engines is given by ddi/ceLCmax + LEmax. Finally, the task may
also hold the token for at most LPmax time while executing on the
CPU. The bound is then as claimed.

Theorem 2. The maximum duration of blocking while waiting for
a token using chunk size c is given by (2dm

ρg
e− 1)THT cmax where

THT cmax = maxTHT ci .

Proof. Follows from the blocking bound for the R2DGLP, which is
used to arbitrate access to the GPU tokens, and the fact that a critical
section with respect to the R2DGLP is the token hold time.

Theorem 3. The total blocking for a GPU request under
GPUSync is given by (2dm

ρg
e− 1)THT cmax + ddi/ceNCLCmax +

NELEmax.

Proof. Follows from Theorems 1 and 2.

Discussion. Note that, asymptotically speaking, whenNc = ρ−1,
GPUSync is O(m/g), while when Nc = ρg − 1, GPUSync is
O(m). However, GPU-to-GPU migrations should not be immedi-
ately discounted due to increased asymptotic blocking, because, as
we have demonstrated, average-case response times are improved.
Furthermore, finer-grained analysis of this case may be possible to

reflect the improved performance of GPU-to-GPU migrations. Be-
sides beneficial system-wide side-effects due to reduced contention
for main memory, GPU-to-GPU memory copies can usually be per-
formed at a higher transfer rate since there is typically much less
bus contention. However, quantifying such effects analytically be-
gins to require in-depth timing analysis, which is outside of the
scope of this paper.

When considering the blocking behavior with respect to con-
stant factors, the choice of ρ can have an effect on blocking bounds.
If ρ is large, priority donation will never be used, and the resulting
protocol is O(n/g).15 While this may be favorable if a small num-
ber of tasks access GPUs, if a large number of tasks access GPUs
this may be a poor choice. In such a case, choosing ρ to minimize
dm
ρg
eNc is the best choice, with respect to blocking analysis.

15Such a bound is also applicable under suspension-aware analysis, and
furthermore is optimal in such case.


