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Abstract: We present a six-degree-of-freedom haptic rendering
algorithm using localized contact computations. It takes advan-
tage of high motion coherence due to fast force update and spa-
tial locality near the contact regions. We first decompose the sur-
face of each polyhedron into convex pieces and construct bound-
ing volume hierarchies for fast proximity queries. Once the ob-
jects are intersecting, the penetration depth (PD) is estimated in
the contact neighborhood between each pair of decomposed con-
vex pieces, using a new incremental method based on local opti-
mization. Given the computed PD values, multiple contacts near
a local region are clustered together to further speed up contact
force determination. We have implemented these algorithms and
applied them to complex contact scenarios consisting of multiple
contacts.
Keywords: 6-DOF haptic rendering, penetration depth, proximity
query, clustering.

1 Introduction

Intelligent systems and simulated environments require intu-
itive interfaces for man-machine interaction. These may include
visual, auditory, and haptic interfaces. However, compared to the
presentation of visual and auditory information, techniques for
haptic display have not been as well developed. Haptic display
is often rendered through what is essentially a small robot arm,
used in reverse. Such devices are now commercially available for
a variety of configurations (2D, 3D, specialized for laparoscopy or
general-purpose) [7].

Some of the commercially available and commonly used hap-
tic devices include the �-degree-of-freedom (3-DOF) PHAMToM
arm [28], SARCOS Dexterous Arm [34] etc. Using these de-
vices for interacting with virtual objects involves computing point-
object contacts. They typically provide only force feedback and do
not offer sufficient dexterity and control for applications like vir-
tual prototyping (e.g. assembly planning and maintainability stud-
ies), medical simulation and teleoperation, which need to simulate
arbitrary object-object interactions. A �-DOF force-feedback de-
vice, such as the 6-DOF PHANTOM�� arm, can provide torque
feedback in addition to force display within a large translational
and rotational range of motion. However, the application of these
high-DOF devices has been limited. This is mainly due to the
complexity of accurate calculation of all contacts and restoring
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forces that must be computed in the desired force updates (typi-
cally at few hundred Hz or higher). Current haptic rendering al-
gorithms developed for 3-DOF haptic devices primarily deal with
single point contact with the virtual models [15, 22, 35, 37] and
are not directly applicable for accurately computing object-object
contacts.

There is a vast literature on rigid and deformable body dynam-
ics for computing forces upon impact. However, the real-time per-
formance constraint of haptic rendering limits the complexity of
the algorithms that can be used. In practice, penalty methods are
often chosen to compute contact forces due to their simplicity and
low computational cost. When using a penalty based method, we
need to first define a penetration potential energy that measures
the amount of intersection between two models. One of the ac-
curate measurements of the amount of intersection is the penetra-
tion depth, commonly defined as the minimum (translational) dis-
tance required to separate two intersecting (rigid) objects. How-
ever, no general and efficient algorithms are known for computing
penetration depth between polyhedral objects. The only known
algorithms based on computing the Minkowski difference of the
polyhedra can have ����� worst case complexity, where � is the
number of features [9]. Some of the proposed solutions for 6-
DOF haptic rendering use either voxel sampling [30] or predic-
tion methods [16] to compute the response force, which can result
in force discontinuities or unstable behavior. Besides haptic ren-
dering, the penetration depth computation problem also arises in
dynamic simulation and robot motion planning.

1.1 Main Results

In this paper we present a novel 6-DOF haptic display algo-
rithm using localized contact computations that includes:

� A novel, fast incremental method for estimating penetra-
tion depth (PD) between convex polyhedra using an itera-
tive local optimization method. The algorithm finds a “lo-
cally optimal solution” by walking on the surface of the
Minkowski difference, implicitly computed by constructing
a local Gauss map, between two polytopes.

� An estimation algorithm that progressively refines the PD
values for general polyhedra based on PD computation be-
tween convex polytopes. We decompose each non-convex
polyhedron into a collection of convex pieces and compute
localized PD between overlapping convex polytopes.

� A localized force model by clustering nearby surface con-
tacts to reduce the computational costs in force display and
improve the overall stability of force updates. This force
model is built upon prediction methods and PD estimation,



and can easily include force shading and various friction
models.

These approaches take advantage of motion coherence due to
the high force updates of the haptic display and spatial locality
around the neighborhood of the contact regions, to dramatically
speed up PD calculations and contact force computations between
general polytopes. We have successfully demonstrated our 6-DOF
haptic rendering algorithm on several benchmarks and complex
contact scenarios. Our algorithm has been able to sustain the de-
sired force update rates on moderately complex scenarios with
multiple contacts.

1.2 Organization

The rest of the paper is organized in the following manner.
We briefly survey the state of the art in section 2. Section 3 de-
scribes a novel penetration depth algorithm. Section 4 presents
our force computation model based on this penetration depth es-
timation method. Section 5 describes the system implementation
and demonstrates the effectiveness of our algorithm.

2 Previous Work

In this section, we briefly review previous work related to con-
tact queries, distance computation and penetration depth estima-
tion as well as force computation.

2.1 Collision and Distance Computations

The problems of collision detection and distance computations
are well studied in computational geometry, robotics, simulated
environments and haptics. Most of the prior work can be catego-
rized based on the types of models: convex polytopes and general
polygonal models.

For convex polytopes, various techniques have been developed
based on linear programming [36], incremental computation of
Minkowski difference [8, 13], feature tracking based on Voronoi
regions [26, 31] and multi-resolution methods [11, 17]. Some of
these algorithms are based on incremental computations and ex-
ploit frame-to-frame coherence [8, 26, 31].

For general polygonal models, bounding volume hierarchies
(BVHs) have been widely used for collision detection and sepa-
ration distance queries. Different hierarchies differ based on the
underlying bounding volume or traversal schemes. These include
the AABB trees [5], OBB trees [14], sphere trees [21], k-dops [24],
Swept Sphere Volumes [25], and convex hull-based trees [10].

2.2 Penetration Depth Computation

A few efficient algorithms to compute the penetration depth
(PD) between convex polytopes have been proposed. Dobkin et al.
computed the directional PD using Dobkin and Kirkpatrick poly-
hedral hierarchy [9]. For any direction �, it finds the directional PD
for two convex polyhedra with � and � vertices in����� � �����
time. Agarwal et al. used a randomized approach to compute the
PD. Its running time is bounded by���
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for any positive constant � [3]. However, we are not aware of any
implementations of these algorithms and not much is known about
their behavior in practice.

Given the complexity of PD computation, a number of ap-
proximation approaches have been proposed to estimate them ef-
ficiently. Cameron had proposed an extension to GJK algorithm
to compute upper and lower bounds for PD for convex polytopes

[8]. This has been further extended by Bergen, who improves
the PD estimate by expanding a polyhedral approximation of the
Minkowski difference of two polytopes [6].

Other approximation approaches are based on discretized dis-
tance fields. These include an approach based on graphics rasteri-
zation hardware and multi-pass rendering approaches [20] as well
as the use of fast marching level-set algorithms [12].

2.3 Contact Force Computation

Different techniques have been proposed for rigid body dy-
namics and contact force computation. Usually the choice of the
method used depends on the application requirements. Constraint-
based dynamics computes contact response based on the formula-
tion of a linear complementarity problem (LCP) [4]. Although this
approach computes more accurate responses, it is not suitable for
complex haptic scenarios. LCP methods are based on finding exact
contacts between the rigid bodies. Collisions and resting contacts
are handled differently. When the relative velocity at the contact
is higher than a given threshold, the contact is considered as a col-
lision, and an impulse is applied to the colliding objects. This
produces an instantaneous change in the velocity. On the other
hand, contacts with low relative velocity are solved according to
the LCP approach. Finding exact collisions might not be feasi-
ble in real-time applications, and a large number of simultaneous
collisions can be rather difficult to handle.

Some of the commonly used algorithms for fast computation
of contact forces are based on penalty-based methods [29, 32].
Penalty forces are usually computed as elastic forces which de-
pend on the interpenetration between objects. The main problem
with penalty methods is that they can cause instabilities or un-
wanted vibration. This can happen if the stiffness of the contacts
is too high, or if the force update rate is not high enough. Braking
forces [30], which have a viscous nature, can also be considered
as an example in this category.

In the typical 3-DOF haptic display, the simulation is based on
the interaction of a point (i.e. the tip of the probe) with the virtual
objects in the scene. Forces can be computed using constraint-
based techniques such as the god-object [38] and virtual proxy
[35], as well as intermediate representations like the intermediate
plane [1, 27].

For 6-DOF haptic rendering, both volumetric approaches [30]
and prediction methods for polygonal models [16] have been pro-
posed. The forces acting on the haptic probe can also be directly
displayed to the user, or through an intermediate representation
such as the virtual coupling [2]. Our algorithm uses the same col-
lision detection algorithm as described in [16]. However, the hap-
tic rendering presented in [16] does not compute a good estimate
of penetration depth for its penalty-based contact force model and
instability can often arise within the concavity regions.

3 Penetration Depth Estimation

In this section, we present a new algorithm to estimate pene-
tration depth (PD) between polyhedral models. It is central to the
penalty-based force computation algorithm described in section 4
for calculating restoring forces.

Given the overall complexity of exact penetration depth and
real-time constraints of haptic rendering, we develop a fast estima-
tion algorithm that takes into account high coherence between suc-
cessive frames and is relatively simple to implement. We decom-
pose the boundary of each polyhedron into convex surface patches
that are used to form convex solid pieces. We then compute the
pairwise PD for each pair of overlapping convex pieces using an
incremental method.



3.1 Preliminaries

In this section, we outline our notation and briefly define some
of the terms used to design our PD estimation algorithm. We use
a regular upper-case letter to denote a general feature (e.g. V,
E, F for vertices, edges and faces, respectively) and use a italic
lower-case letter to denote an instantiated particular feature (e.g.
��� ��� 	�). We also use a bold-faced letter to denote a vertex hub
pair as will be explained later.

The Minkowski sum, 
 � �, is defined as a set of pairwise
sums of vectors from 
 and �. In other words, 
 � � 	 �� �

�� � 
� 
 � ��. Similarly, the Configuration Space Obstacle
(CSO) [8] or Minkowski difference, 
 � �� is defined as �� �

�� � 
� 
 � ��.

The Gauss map (or normal diagram) is a mapping from object
space to the surface of a unit sphere in 3D. In this mapping, a face
and an edge are mapped to a point and a great arc on the sphere,
respectively, and a vertex is mapped to a convex region. Thus, this
mapping represents the mapping of features from the object space
to the normal space.

It is well known that once the Gauss map of two objects 

and � and their overlay is computed, one can reconstruct 
� �
from the overlay. Moreover, only the vertex/face (VF), face/vertex
(FV), and edge/edge (EE) pairs from each object contribute the
overlay [18]. Therefore, when computing 
� ��, one needs to
determine only VF, FV, and EE antipodal1 pairs.

3.2 Intersection (Collision) Detection

The algorithm initially checks whether two objects are overlap-
ping or disjoint. If objects are disjoint, we determine the closest
features between them along with their associated distance mea-
sures. The features may correspond to a vertex (V), edge (E) or a
face (F). Otherwise, we identify the intersection regions and esti-
mate the penetration depth (PD) and associated PD features2.

We use a convex surface decomposition based on a variant of
breadth-first-search and bounding volume hierarchies (BVH) to
handle both disjoint and intersected cases uniformly. We decom-
pose the surface of each non-convex polyhedron into a collection
of convex patches. Convex pieces are then formed by taking the
convex hull of each surface patch. We build a BVH for each object
out of convex pieces. In our BVH scheme, the root bounding vol-
ume (BV) corresponds to the convex hull of an object. For more
detailed discussion on the hierarchy and convex surface decompo-
sition, please refer to [10].

At run time, the intersection test is recursively applied to nodes
in one BVH against nodes in another BVH. We use an efficient,
incremental algorithm for convex polytopes [26] based on Voronoi
Marching to perform a collision query on each pair of convex
pieces. It computes the separation distance between the given pair.
This top-down traversal is applied recursively to both hierarchies
until there is no intersection between the leaf nodes or until there
is no leaf node within some tolerance value.

3.3 PD Estimation between Convex Polytopes

The PD between two objects is defined as the minimum trans-
lational distance to separate them. We first present an incremental
PD estimation algorithm for convex polytopes and then extend it
to general polyhedral models.

1Since we negate one of the polytopes, ��, we need to reflect the
Gauss map of � with respect to the origin.

2By the PD features, we mean a pair of features on both objects whose
supporting planes realize the PD.

It is well known that the PD between objects 
 and � is the
same as the minimum distance from the origin of the Configuration
Space Obstacles (CSO), or the Minkowski difference 
 � ��,
to its surface [8]. Our algorithm incrementally finds the “locally
optimal” PD by locally constructing the surface of the CSO and
walking on it (or the neighboring features). The local surface of
the CSO is implicitly computed by constructing a local Gauss map.
The “locally optimal” PD is defined using the features on the CSO.
Let 	 be a feature on the CSO which realizes the locally optimal
PD. Then, the distance from the origin to 	 is always smaller than
the distance from the origin to any neighboring feature to 	 .

3.3.1 Local Optimization

Our algorithm incrementally computes the PD based on local op-
timization. Starting from some feature(s) on the surface of the
CSO, the algorithm finds the direction in which it can minimize
the PD value, and proceeds to that direction by locally extending
the surface of the CSO. Thus, the major computation step in the
algorithm involves locally constructing the surface of the CSO and
finding a good starting point for the walk on the CSO.

At each iteration of the algorithm, a vertex pair is chosen from
each polytope. We refer to it as a vertex hub pair, and it serves
as a hub of the expansion of the local CSO. The vertex hub pair
is chosen in such a way that there exists a plane supporting each
polytope and touching each vertex. Therefore, the regions corre-
sponding to each vertex in the Gauss maps overlap. This inter-
section corresponds to the VF or EE antipodal pairs in the object
space, from which one can reconstruct the local surface of the CSO
around the vertex hub pair. Based on it we decide which antipodal
pair provides the shortest distance from the origin of the CSO to
the reconstructed local surface. If this pair decreases the estimated
PD value, we update the current vertex hub pair. We iterate this
procedure until we can not decrease the current PD estimate any
more.

3.3.2 Initialization Step

The algorithm starts with an initial guess on the vertex hub pair
(VV) on each polytope (a region/region pair on the Gauss map).
The initial guess is crucial for the performance of our incremental
algorithm. A good initial guess can lead to “almost constant” run-
ning time, whereas a bad one can lead to����� running time in the
worst case, where � is the number of features in each polyhedron.
There are many plausible strategies to pick a good initial guess.
One simple approach involves taking the line joining the centroids
of the objects, and find an extremal vertex pair along that direc-
tion. For instance, in Fig. 1-(a), �� and �� are the centroids of each
object. The extremal vertex pair along the directions of ����� and
�� � �� is chosen from each object, and is assigned as an initial
vertex hub pair. This technique is known to suggest a good initial
guess for the Voronoi Marching [11], and also works well for PD
estimation.

Other approaches to computing the initial vertex hub pair are
based on the underlying contact determination algorithm. When-
ever the objects penetrate, most contact determination algorithms
report a witness feature pair [8, 11]. From this feature pair, one
might be able to get closer to the actual PD feature pair, and
thereby computing an optimal PD. One possible way is to con-
sider the plane normal to the penetration feature as penetration
direction and improve the estimate by local walking. For instance,
in Fig. 1-(b), a face 	 is identified as a penetration witness, and its
associated plane normal � is used for the extremal vertex query.

Given the high update rate of haptic display, there exists high
coherence between successive frames. As a result, one can use the
PD features or the pair of closest features from the previous frame
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as the initial guess for the current frame. In Fig. 1-(c), for exam-
ple, the previous PD features provide a direction for the extremal
vertex query.

3.3.3 Iterative Optimization Step

After the algorithm obtains an initial guess on a VV pair, it iter-
atively seeks a local improvement by jumping from one VV pair
to an adjacent VV pair. This is accomplished by looking around
the neighborhood of the current VV pair and jumping to the pair
which provides a greatest improvement in the PD value. In more
detail, let’s call the current vertex hub pair ����

�. The next vertex
hub pair ����

� is computed as follows (as shown in Fig. 2):

1. Construct a local Gauss map each for �� and ���. See Fig. 2-
(a) and 2-(b).

2. Project the Gauss maps onto � 	 
 plane, and call them �
and �� respectively. � and �� are convex polygons in 2D.
See Fig. 2-(b).

3. Compute the intersection between � and ��, and label each
vertex comprising the intersection ��. These ��’s correspond
to the VF or EE antipodal pairs in object space. In Fig. 2-(b),
	�, ��, 	�, and �� are ��’s. ��	� and 	��� are VF and FV
antipodal pairs and �� and �� are EE antipodal pairs.

4. In object space, compute �� that provides the best local im-
provement in PD, and set an adjacent vertex pair to �� to
���

�

�. In Fig. 2-(b), 	� is chosen and the corresponding PD
is computed as in Fig. 2-(c). In Fig. 2-(d), �� is adjacent
to 	�, thus ����

� is chosen as a vertex hub pair for the next
iteration.

This iteration is repeated until either there is no further improve-
ment in the PD value or the iteration has reached some maximum
number of iterations. At step 4 of the iteration, however, there are
multiple choices for the vertex hub pair. If �� corresponds to VF,
then we must choose one of two vertices adjacent to ��, assum-
ing that the model is triangulated. The same reasoning also works
when �� corresponds to EE. Therefore we need one more itera-
tion in order to actually decide which vertex hub pair should be
checked. This extra iteration is reused at next iteration by caching
the result and using it again. For example, in Fig. 2-(c), �� is 	�,
and there are two choices for the direction to proceed. However,
one more iteration suggests ����

� as a next vertex hub pair.

3.4 Extension to Non-Convex Polyhedra

We do not attempt to compute one global PD between non-
convex polyhedra, instead we compute a set of PD’s for each pair
of intersecting polytopes. Therefore, our force computation model
computes the restoring force based on all contacts between all
pairs of convex pieces. There are two reasons for taking this ap-
proach:

� The only known algorithm for global PD computation takes
����� time in the worst case (based on the worst case com-
plexity of the Minkowski sum or the CSO), where � is the
number of features for each polyhedron. No implementa-
tions are known of this algorithm.

� The computation of multiple overlapping regions and PD’s
result in more stable force computation and transition (to be
explained in section 4).

For instance, Fig. 3-(a) shows an example of a convex decomposed
torus model. In Fig. 3-(b), a non-convex object � is decomposed
into two convex pieces �� and ��, and another non-convex object
� is decomposed into �� and ��. For each intersecting convex
pieces, �� and ��, and �� and ��, we compute a set of PD’s, ��



and ��, both of which are used in our force computation algo-
rithm. A single global estimation for PD in such cases can lead to
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Figure 3. Extension to Non-Convex Objects

a jerky transition of features when objects move from one overlap-
ping convex pair to the other.

In the meantime, our convex surface decomposition algorithm
introduces some non-original or “virtual” features. Therefore the
result of the PD computation can contain features that should not
be considered for force computation. Simply ignoring these virtual
features can also cause transition problem sometimes. One possi-
ble way to address the problems is to find the next best (or closest)
original features on each convex polytope (i.e. the features that
belong to the original non-convex polyhedra). In our algorithm,
we first find the adjacent features to be the virtual PD features, and
then apply one iteration of the PD computation to them to compute
the locally optimal values.

4 Force Computation Model

In this section we describe how the restoring forces are com-
puted, given the localized PDs and the corresponding features. We
first define “contacts” between two surfaces, in the context of our
force computation model. Since the performance of force com-
putation depends on the number of pairwise contacts, we present
an approach to improve the running time and the stability of force
computation by clustering contacts. Finally, we describe our force
computation model and additional techniques to provide higher
quality haptic feedback.

4.1 Contact Formulation

Exact contact between two non-convex surfaces is described
by a set of 1D or 2D geometric features. However, computation
of exact contact for haptic simulation can be too expensive for
even simple contact scenarios. Therefore, we define a “contact”
between two objects as a pair of features, one from each object,
that are within proximity of a certain user-defined tolerance. For
disjoint cases when two objects are nearly in contact yet separated,
we could describe the contact regions as the volume within a pre-
defined distance tolerance. On the other hand, for penetrating con-
tacts, we would consider the actual penetration volume. In both
cases, all features within the volumes of pre-defined distance tol-
erance are considered contacts. This approach can easily lead to
expensive force computation, and it cannot be performed at the
desired force update rates.

Instead, we sample the contact regions, and compute forces at
these points, which are added to yield the global forces to be ap-
plied to the objects. These samples are obtained as pairs of “con-
tact” (as defined above) points on the convex pieces of contacting
objects. The convex pieces are the result of the convex surface de-
composition of the objects and the basic bounding volumes of the
BVHs used for intersection detection, as described in section 3.
We compute contact points between convex pieces that are either
within the distance tolerance or have interpenetrated each other.

In practice, for the disjoint case the sampled contact points are
the closest points between convex pieces, and we obtain them us-
ing a collision detection library SWIFT++ [10]. When two objects
are inter-penetrating, the sampled contact points are defined by
the separating planes between convex pieces, as described in sec-
tion 3. These contact points form a superset of the local minima
of the distance function between both objects around the contact
area, so they turn out to be a good approximation for describing
the entire contact region.

For every contact ��, the contact determination module returns:
the contact point on Object1, ��, the contact point on Object2,
��, a contact normal � pointing from Object2 to Object1. It also
determines a distance value, �, based on the geometric features
involved in the contact. The distance will be positive for disjoint
objects and negative for penetrating objects.

4.2 Clustering Contacts

The surface convex decomposition preprocessing may result in
very small convex patches around concavities. This might lead to
large number of contacts in certain configurations. The stiffness of
different contacts is added up to formulate a single stiffness value,
which may cause instability in force feedback.

To avoid instability problems due to large stiffness resulting
from such a situation, we group the contacts depending on the Eu-
clidean distance between them. We represent each contact with a
single point �� by taking the average of the contact points in the
two objects:

��� 	 ���� � ������ (1)
Contacts that are closer than a threshold Æ from each other are
grouped and averaged to a single contact. Hence, given a contact
cluster � and a contact �� :

�� � � �	 
�� � � such that ���� � ���� � Æ (2)

In order to cluster the contacts together, we use octrees and in-
sert them in the appropriate cube-shaped cells. The main diagonal
of the cells is set by the distance threshold, Æ. This reduces the
amount of computation for the clustering operation.

Every cluster is represented by one contact. We need to com-
pute the position of the contact, the distance value, and a direction
for the force corresponding to that particular contact. The posi-
tion and the direction are computed in terms of a weighted av-
erage, where the weights are the distance values for each pair of
contacts. Therefore, contacts with a deeper penetration contribute
more to the representative contact.

� 	

�
��� ��� � ��

�
�

��� ��� � ���
(3)

�� 	

�
��� ��� � ����
��� ���

(4)

where � is the distance tolerance for defining when two disjoint
objects are “in contact”.

For computing the distance value, �, of the representative con-
tact, we simply select the largest of all contacts in the cluster. That
is

� 	 ���
���� ��� (5)



4.3 Computation of the Force

We compute an elastic force for each representative contact.
The forces on Object1 and Object2 are computed as:

��� 	 ��� ��� � �� (6)

��� 	 ���� (7)

Next, torque is computed as a cross product of the vector from
the center of mass of each object � to the contact point �� and the
forces ��:

��� 	 ���� ���
 ��� (8)

��� 	 ���� ���
 ��� (9)

The forces and torque are summed up for each object to com-
pute the net force and torque. If the force and torque to be applied
to the probe, and therefore to the user, exceed the maximum val-
ues of the haptic device, they are clamped to the maximum values,
preserving the direction.

4.4 Additional Features

Our force computation model allows for implementing several
additional features that can either yield more realistic forces or re-
duce instability problems. We can add per-contact friction forces,
as well as corner rounding or force shading techniques.

4.4.1 Force Shading

We have implemented a force shading algorithm to reduce the dis-
continuities that happen when the contacts occur across some edge
of the models [33]. We use the Gouraud shading algorithm for
computing the normal direction at the contact points, based on per-
vertex normals. Without this feature, vertices and edges appear as
unstable points in the force computation, because the direction of
the force changes abruptly when a contact transition is made from
one feature to another.

4.4.2 Friction

Our force model also allows easy inclusion of friction models,
such as the type stick-slip presented in [19]. In order to achieve
this, we track the contacts in the time domain, and define an adhe-
sion point that allows for the computation of the friction forces.

5 Implementation and Results

We have implemented the algorithms described in this paper
and integrated them with haptic hardware. In this section, we
demonstrate the results of our 6-DOF haptic display framework.

5.1 Experiment Description

We performed our experiments on a Windows 2000 PC with
dual 1 GHz Pentium III CPUs and 500 MB memory with a 6DOF
PHANToM Premium 1.5 haptic device.

Table 1 highlights some of the models that we have used to test
the performance of our prototype implementation. Figure 4 illus-
trates a typical situation in our haptic simulation framework. In
this figure, a non-convex object, a spoon, is touching the surface
of another non-convex object, a cup. In this particular configura-
tion, the contacts returned by the collision detection module are
clustered in four groups. As a result, we have one contact (P) due

Model Convex Pieces Triangles
torus 67 2000
cup 190 500
spoon 78 336
armadillo 9098 31240
intestine 9913 24846

Table 1. Complexity of some of the models
used in our benchmarking.

to the penetration and three other contacts that are within the tol-
erance threshold (D). The arrows in the figure denote the direction
of the resulting restoring forces, and their sizes denote the amount
of the forces.

(a) (b)

Figure 4. A Contact Scenario for Cup and
Spoon Models. Figure in the right shows
the forces computed at clustered contacts,
for both disjoint (D, green arrows) and pene-
trating (P, red arrow) situations.

5.2 Results

Figure 5 illustrates a typical timing profile of a cup interact-
ing with a spoon scenario as shown in Figure 4. The lower chart
shows the number of contacts reported by the contact query, while
the upper chart, from top to bottom respectively, shows the time
consumed by the contact query (the sum of tolerance-based colli-
sion detection and PD computation) and the time needed for force
computation. The charts are divided into several intervals, depend-
ing on whether objects are disjoint (D) or interpenetrating (P). The
charts show that even in a complex interaction scenario as the cup
and the spoon having up to 30 contacts at a given time, the haptic
simulation was able to proceed at a frequency of 500 Hz. Note
that the presence of noise in the upper chart is due to the schedul-
ing problem of the underlying operating system.

Figures 6-(a), -(b), and -(c) track the computed results on a
contact point, the corresponding contact normal, and the distance
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Figure 5. Computation Profile. Recorded
while the cup model touches the spoon
model. Upper chart: the computation time
for the contact query and the force computa-
tion. Lower chart: the number of contacts.
Vertical lines indicate the intervals of disjoint
(D) and interpenetrating (P) contact

value respectively between two convex objects. The data has been
recorded by traversing a sphere with a pen-like object. Since both
of them are convex, there is only one contact, and this allows a bet-
ter study of the behavior of our algorithm. In the figures, the thin
solid curve represents a disjoint situation, whereas the thick solid
curve indicates that the objects are interpenetrating. In 6-(c), the
negative distance values also mean that the objects are interpene-
trating. One can notice the smooth transition of the contact infor-
mation between disjoint and interpenetrating situations, as well as
the smooth evolution during long penetrating paths. This enables
our haptic rendering framework to display both smooth force and
torque to an end user.

5.3 Analysis

The time spent by the haptic simulation depends on the com-
plexity of the models as well as on the contact scenario. In general,
the time for the contact determination increases roughly propor-
tionally to the number of contacts. The main reason is that as the
number of contacts increases, the algorithm needs to traverse more
nodes in the BVH. When objects interpenetrate, the PD computa-
tion adds a small increase to the contact query time, as can be
noticed from Figure 5.

More specifically, the PD computation time was linear in terms
of the number of intersected pairs of convex pieces, since the com-
putation is almost constant regardless of the triangle counts of each
convex object. Due to the lack of space, we refer readers to see
[23] for extensive experimental results on our PD computation and
its implementation, DEEP3. Roughly, the PD computation time
takes about 0.1 msec using a single 1 GHz Pentium III CPU and
Linux operating system, regardless of the complexity of objects.

3Dual-space Expansion for Estimating Penetration depth

The complexity of force computation is sub-linear in the num-
ber of contacts returned by the contact query. This is due to the
fact that the clustering operation significantly reduces the number
of pairwise contact force computations.

The haptic simulation runs at higher frequency (greater than
KHz) for less challenging scenarios (with few contacts), and slows
down slightly with highly complex models such as an armadillo
model or an intestine model (see Table 1). We are currently work-
ing on an optimized implementation of our contact query method
to handle highly complex models more efficiently.

Compared to previous approaches on 6-DOF haptic rendering,
our algorithm offers improvement in several aspects. It is able
to handle penetration computations more reliably and accurately
as compared to earlier approaches. In [16] penetration depth is
roughly estimated along the direction of motion using the previ-
ous closest feature pairs, whereas ours computes a locally optimal
penetration value, which often turns out to be the exact penetration
depth in most scenarios. This ensures more stable and realistic
force computation. In addition, our method avoids artifacts such
as force discontinuity arising from sampling problems inherent to
volumetric approaches.

6 Conclusion

We presented a 6-DOF haptic display algorithm with localized
contact query and force computation methods for polyhedral mod-
els. In order to achieve the desired force update rates for haptic
simulation, we employ incremental algorithms for contact queries
by exploiting spatial and temporal coherence, and cluster contacts
in a localized neighborhood to improve stability of force compu-
tation. Our algorithmic framework has been tested on models of
varying complexity and worked well on different challenging sce-
narios.

There are several possible future research directions. We
are currently investigating other approaches (e.g. multiresolution
techniques, coherence-based methods, etc) to design more robust
and general algorithms to handle non-convex objects. We are also
considering other algorithms to achieve faster PD computation.
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