
CLODs: Dual Hierarchies for Multiresolution

Collision Detection

Miguel A. Otaduy and Ming C. Lin

Department of Computer Science
University of North Carolina at Chapel Hill

Abstract

We present a novel framework for multiresolution collision detection using “contact levels

of detail” (CLOD). Given a polyhedral model, our algorithm automatically builds a “dual

hierarchy”. A dual hierarchy is both a multiresolution representation of the original model

and its bounding volume hierarchy for accelerating collision queries. We have proposed various

error metrics, including object-space errors, velocity dependent gap, screen-space errors and

their combinations. At runtime, our algorithm uses these error metrics to select the appropriate

levels of detail independently at each potential contact location. Compared to the existing exact

collision detection algorithms, we observe significant performance improvement using CLODs

on some benchmarks, with little degradation in the visual rendering of simulations.

1 Introduction

Collision detection is an important problem in physically-based modeling, computer animation,

virtual environments, electronic prototyping, robotics and many other engineering applications.

Collision detection is often one of the computational bottlenecks in achieving interactive simulation

for complex environments. The running time of any collision query algorithm depends on both

the input size (the combinatorial complexity of the models) and the output size (the number of

contact points). Despite the huge body of literature, the existing techniques cannot offer the

desired performance for many real-time applications, such as haptic rendering of large structures,

real-time interaction with massive CAD models, and interactive dynamic simulations of complex

objects.

1 INTRODUCTION 2

In this paper, we investigate the use of simplification techniques for collision detection. Model

simplification has been an active research area for the past decade. Many efficient and effective

simplification algorithms have been proposed to accelerate the visual rendering of highly complex

models in real time. Applications of mesh simplification algorithms to the problem of collision de-

tection can potentially accelerate collision queries. However, only relatively simple algorithms have

been proposed for convex polytopes. A simple approach would be to generate a series of simplified

representations, also known as levels-of-detail (LOD), and use them directly for collision detection.

But, collision queries require auxiliary data structures, such as bounding volume hierarchies (BVH)

or spatial partitioning, to achieve good runtime performance. These data structures often take a

substantial amount of memory, while the LODs themselves can require a large amount of storage

as well. To represent the auxiliary data structures for each static LOD can quickly increase the

memory requirement to the point where the memory access time may dominate the overall run-

time performance. On the other hand, constructing BVHs for on-the-fly simplification can be time

consuming.

Main Contribution: We present a general framework for constructing “contact levels-of-detail”

(CLOD) for accelerating collision queries. The resulting set of simplified representations is a dual

hierarchy. It serves both as a BVH for accelerating collision queries and a multiresolution repre-

sentation of the original model for computing contact information. We have also proposed several

error metrics, including object-space errors, velocity dependent gap, screen-space errors and their

combinations. At runtime, the algorithm uses these error metrics to select adaptive CLOD at each

potential contact location independently. In addition, the framework offers the capability to per-

form time-critical collision queries for real-time applications. We have tested our approach on a

diverse set of benchmarks with challenging contact scenarios. We observed noticeable performance

improvement with little degradation in the visual rendering of simulation results on some of the

benchmarks.

Organization: Section 2 briefly surveys previous work. We present the framework on contact

levels-of-detail for collision queries in section 3. Section 4 and 5 describes a specific implementation

of hierarchy construction using convex hulls and its use for runtime contact queries respectively.

2 RELATED WORK 3

We discuss the implementation issues and demonstrate the effectiveness of our approach in section

6.

2 Related Work

This research is built upon a large collection of knowledge in mesh simplification and collision

detection. We briefly survey related work in this section.

2.1 Model Simplification

Many techniques for mesh decimation and model simplification have been proposed for the last

few years. We refer readers to an excellent book on this subject[Luebke et al. 2002]. There has

been some growing interest in perception-based simplification for interactive rendering[Luebke and

Hallen 2001]. However, these techniques are based on different criteria than those for collision

detection. Although we precompute the level of detail (LOD) hierarchy off line, the way we select

the appropriate LOD on the fly is “contact dependent” at each potential contact location across

the object surfaces. It shares a more common theme with view-dependent simplification[Luebke

et al. 2002], which uses higher resolution representations on the silhouette of the object and much

coarser approximations on the rest of the object that is not as noticeable to the viewpoint.

El-Sana and Varshney proposed to construct a continuous, multiresolution hierarchy of the model

during preprocessing[El-Sana and Varshney 2000]. At run time, a high-detail representation is used

for regions around the probe point and a coarser representation farther away using a bell-shaped

filter. The proposed approach only applies to haptic rendering using a point probe exploring a 3D

model. It uses the commercial haptic rendering toolkit, GHOST, to perform point-object collision

query, which has a much lower computational complexity. This approach does not extend naturally

to collision queries between two interacting 3D objects, since multiple disjoint contacts can occur

simultaneously at widely varying locations without much spatial coherence. The latter problem is

the focus of our paper.

2 RELATED WORK 4

2.2 Collision Detection

Data structures based on hierarchical representations have been extensively used in the design of ef-

ficient algorithms for collision detection between geometric models (see survey[Klosowski et al. 1998;

Lin and Gottschalk 1998]). Examples of typical bounding volumes include spheres and axis-aligned

bounding boxes, due to their simplicity in performing overlap tests between two such volumes. Other

hierarchies include octrees, k-d trees, K-DOPs, OBBTrees, trees based on S-bounds, R-trees and

their variants, etc.[Klosowski et al. 1998; Lin and Gottschalk 1998]. Other spatial representations

are BSP’s and their extensions to multi-space partitions, space-time bounds or four-dimensional

tests (see a brief survey[Redon et al. 2002]), and many more.

The concept of time-critical collision detection was first introduced by Hubbard using sphere-

trees[Hubbard 1994]. Collision queries are performed as far down the sphere-trees as time allows,

without traversing the entire hierarchy. The contact information was derived from two colliding

bounding spheres and could deviate arbitrarily from the actual contact normals and contact loca-

tions. This idea can be applied to any type of bounding volume hierarchies (BVH). An error metric

is often desirable for interactive applications to formally and rigorously quantify the amount of error

introduced. However, no tight error bounds have been provided using such approaches. This can be

problematic, especially when contact normals and contact points are required to compute a plausible

collision response. Other techniques that exploit hierarchical representations and motion coherence

for fast distance computation between only convex polytopes have also been proposed[Ehmann and

Lin 2000; Guibas et al. 1999].

O’Sullivan, et al. investigated LOD techniques for collision simulations and studied various factors

affecting collision perception, including separation, eccentricity, causality, distractors, and accuracy

of simulation results[O’Sullivan and Dingliana 2001]. Their work is based on the model of human

visual perception and validated by psychophysical experiments. The feasibility of using these factors

for scheduling interruptible collision detection among large numbers of visually homogeneous objects

is also demonstrated. Instead of addressing the scheduling of multiple collision events among many

objects, we focus primarily on the problem of contact queries between two highly complex objects.

3 FRAMEWORK FOR CONTACT LEVELS OF DETAIL 5

Recently techniques based on GPU acceleration have also been proposed for collision queries[Hoff

et al. 2001; Lombardo et al. 1999]. However, these approaches are not necessarily faster for rigid

bodies where precomputation can be effectively carried out off-line, since the readback from frame-

buffer and depth buffer cannot be done fast enough.

3 Framework for Contact Levels of Detail

In this section, we present our approach for constructing hierarchies of CLODs. First we analyze

the advantage of using CLODs in hierarchical collision detection, then we address the problems of

building such CLODs and the process for creating them, and finally we explain how CLODs are

used in runtime collision queries.

3.1 Hierarchical Collision Detection

Bounding volume hierarchies (BVHs) are commonly used for collision detection between general

geometric objects. To perform intersection tests, two models are queried by recursively traversing

their BVHs in tandem. Each recursive step tests whether a pair of bounding volumes a and b,

one from each hierarchy, overlap. If a and b do not overlap, the recursion branch is terminated.

Otherwise, if they do overlap, the algorithm is applied recursively to their children. If a and b are

both leaf nodes, the primitives within them are tested directly.

The test between the two BVHs can be described by the bounding volume test tree (BVTT)[Larsen

et al. 2000], a tree structure that holds in each node the result of the query between two BVs.

When temporal coherence is present, collision tests can be accelerated by generalized front tracking

(GFT)[Ehmann and Lin 2001]. GFT caches the front of the BVTT, where the result of the queries

switches from ”true” to ”false”, for collision query in the next time step. The overall cost of a

collision test is proportional to the number of nodes in the front of the BVTT.

When large areas of the two objects are in a close proximity, a larger portion of the BVTT front is

close to the leaves, and it consists of a larger number of nodes. The size of the front also depends on

the resolution at which the objects are modeled; higher resolution implies a BVTT with a greater

depth. We can draw the conclusion that the cost of a collision query depends on two key factors:

3 FRAMEWORK FOR CONTACT LEVELS OF DETAIL 6

• The size of the contact area

• The resolution of the models

Figure 1: a) Large contact area in high resolution; b) Large contact area in low resolution; c) Small

contact area in high resolution

The contact between two real objects typically occurs along a certain contact area. With polyg-

onalized models, this may result in multiple contact points. The finer the resolution of the objects,

the larger the number of contact points, as seen in Fig. 1. However, employing a larger resolution

may have little effect on the forces computed between the objects, because these forces are com-

puted as a sum of contact forces arising from a net of contact points. We can argue that intuitively

a larger contact area allows the objects to be described at a coarser resolution. In this paper we

exploit this hypothesis to create multiresolution representations of the objects, and use them at

each contact location independently for selecting the appropriate resolution of each approximation.

Using CLODs we can achieve nearly constant cost for collision queries by exploiting, among other

factors, the relation between contact area and the resolution of local contact features.

3.2 Construction of Dual Hierarchies

In order to perform efficient multiresolution collision detection, we need to achieve two main objec-

tives:

1. Create accurate multiresolution representations.

2. Embed the multiresolution representations in effective bounding volume hierarchies.

We create multiresolution representations by performing mesh decimation on the given polyhedral

models. The difficulty arises when trying to embed these representations in BVHs. If we consider

3 FRAMEWORK FOR CONTACT LEVELS OF DETAIL 7

Figure 2: Constructing Dual Hierarchies: (a) Initial surface; (b) Clusters of triangles; (c) BVs for

each cluster (in this case, AABBs); (d) Mesh simplification; (e) BV of the union of clusters after

some conditions are met.

each LOD of the object as one whole model, each LOD would require a distinct BVH for collision

detection. This would result in a very inefficient collision query, because the front of the BVTT

would have to be updated for the BVH of each LOD. Instead, we introduce a procedure to create

one unique dual hierarchy that serves as both a multiresolution representation and a BVH.

The root of the hierarchy will be the BV of the coarsest LOD. Descending to the next level of

the hierarchy will yield the children BVs, whose union encloses the next LOD. At the end of the

hierarchy, the leaf BVs will enclose the original surface.

The process of creating the CLODs, depicted in Fig. 2, starts by grouping the triangles of the

original surface into clusters. The size and properties of these clusters depend on the type of BV

that is used for the BVH, and will be such that the collision query performance between two BVs is

optimized. The next step is to compute the BV of each cluster. After this initialization, we start a

mesh decimation process with a bottom-up construction of the BVH. This is achieved by merging

clusters and computing the BV of their union.

The atomic simplification operations need to satisfy the following:

• Constraints imposed by the BVH: The BVs have to remain valid after each simplification

operation. This may impose topological and/or geometric constraints.

• Design requirements to achieve better efficiency: The union of clusters is possible

when certain conditions are met. The BVH will be more effective in collision pruning, if these

conditions are taken into account when designing the atomic simplification operations.

4 DUAL HIERARCHIES OF CONVEX HULLS 8

In Sec. 4, we present a specific implementation of CLODs that uses convex hulls as the BVs.

3.3 Runtime Queries with CLOD

Using CLODs, multiresolution collision detection can be implemented by slightly modifying the

typical collision detection procedures using BVHs. For each node x of the BVTT, we perform a

collision query. If the query returns ”false”, we do not need to descend to the children. If the

query result is ”true”, then we perform a test for selective refinement. This test can embed various

perceptual error metrics, and it determines if the resolution of x is fine enough to describe the

contact information at each query location. If the refinement test returns ”true”, then we can

directly compute contact information for x, otherwise we descend to its children in the BVTT.

Descending to the children involves descending to the children BVs, as well as refining the surface

representation. This approach handles the selective refinement at each query location independently

in a very efficient way.

CLODs can also be used to perform time-critical collision detection[Hubbard 1994]. We need to

store the nodes of the BVTT front, and assign priorities to each node based on the refinement test.

In Sec. 5 we describe how we implement the collision queries using CLODs based on convex hulls,

as well as various error metrics that we have designed.

4 Dual Hierarchies of Convex Hulls

In this section we describe a particular implementation of CLODs using BVHs of convex hulls. We

first address the reasons for choosing convex hulls as the BVs, and then describe the details of

constructing dual hierarchies.

4.1 Selection of the BVs

Overlap tests between convex hulls can be executed rapidly in expected constant time with motion

coherence[Guibas et al. 1999]. Furthermore, convex hulls provide at least equally good, if not

superior, fitting to the underlying geometry as OBBs[Gottschalk et al. 1996] or k-dops[Klosowski

et al. 1998].

4 DUAL HIERARCHIES OF CONVEX HULLS 9

Most importantly the fitting property is related to the performance of the query to obtain contact

information of a certain CLOD. As explained in Sec. 3.3, when the refinement test determines that

a CLOD does not need to be refined, we must get contact information at that level. That implies

getting contact information from the triangles of that specific CLOD. If the BVs at that level are

one of AABB, OBB or k-dops, the efficiency of getting contact information using triangles is related

to the number of triangles in each cluster. However, with convex hulls, if we ensure that the clusters

are themselves convex surface patches, the contact information at the triangle level is obtained for

free when performing the query between BVs[Ehmann and Lin 2001].

The initial clusters will be defined as the surface patches of a convex surface decomposition[Ehmann

and Lin 2001]. The definition of convex surface patches imposes two types of convexity constraints

on the process of creating dual hierarchies:

• Local constraints: the interior edges of convex patches have to remain convex after simpli-

fication operations are applied.

• Global constraints: the enclosing convex hulls cannot intersect with the surface of the

object.

However, it is important to note that convex hulls pose some limitations on the types of mod-

els that can be handled. In our implementation, the convex hulls are formed by convex surface

decomposition, which requires the input models to be described as 2-manifold oriented surfaces.

4.2 Construction of the Dual Hierarchy

As already mentioned, the process is initialized by performing a convex surface decomposition of

the object and computing the convex hulls of the patches. This is followed by a simplification loop

represented schematically in Fig. 3.

We apply atomic simplification operations taking into account convexity constraints. After each

operation, we test if the union of every pair of neighboring convex patches is a valid convex patch. If

so, we merge the patches, construct the convex hull of the union, and set parent children relationships

between the BVs. We have chosen to generate a new LOD every time that the number of convex

patches is halved.

4 DUAL HIERARCHIES OF CONVEX HULLS 10

Due to the convexity constraints, we might reach a point where no more simplification operations

are possible. We complete the construction of the hierarchy by unconstrained pairwise merging of

patches[Ehmann and Lin 2001]. The levels of the hierarchy created in this manner cannot be used

as CLODs in collision queries, but are necessary to complete the BVH.

Figure 3: Generation of CLODs

There are various aspects of the simplification process central to our framework of CLODs that

need to be defined:

• The type of simplification operation

• The assignment of priorities for simplification

• The local retriangulation after the simplification

We select edge collapse as the atomic simplification operation. There are many options for

prioritizing edges and selecting the position of the resulting vertices: minimization of energy func-

tions[Hoppe 1996], optimization approaches[Lindstrom and Turk 1998], quadric error metrics for

4 DUAL HIERARCHIES OF CONVEX HULLS 11

measuring surface deviation[Garland and Heckbert 1997], and more. However, none of these ap-

proaches meets the convexity constraints or takes into account the factors that maximize the effi-

ciency of CLODs. Our local simplification operations are inspired by multiresolution analysis and

signal processing of meshes.

4.2.1 Multiresolution Analysis of Meshes

An LOD M j of a mesh M at resolution rj is defined as an approximation of M that stores all the

surface detail at resolutions lower than rj. Following this definition, we have decided to prioritize

the edges to be collapsed based on their resolution. We use the same definition of edge resolution

as in[Otaduy and Lin 2003], which is inspired by the definition of resolution for functions in the

1D setting. By the same definition of LODs, the collapse of an edge at resolution rj involves

removing the geometric detail at resolutions higher than rj. We implement this by placing the

vertices resulting from edge collapse operations using Guskov’s minimization of second order divided

differences[Guskov et al. 1999].

We have compared this approach to other techniques for placing the vertices resulting from

edge collapses, and it has proved to accelerate the process of merging convex patches. This is

probably because unconstrained filtering tends to remove concavities at high resolution, while other

techniques fail to remove these concavities in favor of preserving other properties. Note that a more

efficient merging of convex patches has beneficial consequences in the performance of CLODs at

runtime.

4.2.2 Filtered Edge Collapse

We define a local simplification operation filtered edge collapse subject to convexity constraints[Ehmann

and Lin 2001; Otaduy and Lin 2003]. This operation is composed of the following steps:

1. A topological edge collapse.

2. An initialization process that sets the position of the resulting vertex using quadric error

metrics.

3. Unconstrained filtering of the position of the vertex.

5 RUNTIME QUERIES 12

4. Solving an optimization problem to minimize the distance of the vertex to its unconstrained

position while taking into account the local convexity constraints.

5. A bisection search to find a location where the global convexity constraints are also met.

The local convexity constraints for each edge are linear in the position of the vertex v, and can

be expressed in terms of the neighboring vertices (see Fig. 4) as:

((v − a) × (b − a)) · (c − a) ≤ 0 (1)

Figure 4: Assignment of vertices for local convexity constraints: a) incident edges; b) opposite edges

In Fig. 5 we show an example of a dual hierarchy of CLODs. The process is applied to the model

of a wrinkled torus. Fig. 5-b shows a detailed view of the convex decomposition of the original

surface. In the next CLODs, the filtering smoothens the concave areas, and the convex patches

grow forming triangle strips on the hyperbolic regions. Likewise, the simplification operations

coarsen the triangulation. Also notice that initially the simplification operations are concentrated

in the region where the wrinkles merge and is also the area with the finest detail.

5 Runtime Queries

In this section we discuss our implementation of collision queries using CLODs of convex hulls,

present various error metrics for selecting the appropriate CLODs, and demonstrate the application

to rigid body simulation.

5.1 Collision Queries between CLODs of Convex Hulls

A typical collision query between two BVs a and b determines if a and b are closer than a distance

δ. The collision detection algorithms based on BVHs must ensure that if a leaf node x of the BVTT

5 RUNTIME QUERIES 13

Figure 5: From left to right and top to bottom, original mesh and detail view of CLOD0, CLOD1,

CLOD2, CLOD4 and CLOD6.

returns ”true” to the collision query, then all its ancestors must return ”true” too. This is usually

achieved by containing the surface of each object inside the union of the BVs at every level of

its BVH. In our implementation of CLODs this containtment property does not hold, but we can

ensure the correctness of the collision detection by modifying the collision distance δab between two

convex hulls a and b:

δab = δ + h(ai, a) + h(bj, b) (2)

where h(ai, a) and h(bj, b) are maximum directed Hausdorff distances from the descendant BVs of

a and b to a and b respectively.

5 RUNTIME QUERIES 14

5.2 Error Metrics

We have designed a functional φ to evaluate the resulting error, when we stop a collision query at

a node ab of the BVTT.

φa =
sa

r2
a

(3)

where sa is the surface deviation of the convex hull a with respect to the original surface and ra is

its resolution. This functional can be regarded as a measure of the volume of the fictitious features

that are filtered out when using a as the CLOD.

As introduced in Sec. 3.1, larger contact areas allow the models to be described at coarser resolu-

tion. We take into account this observation by averaging the functional φ over an estimated contact

area D. Thus, we compute a weighted surface deviation s∗ as:

s∗ab =
max(φa, φb)

D
(4)

s∗ can been considered as the surface deviation errors weighted by a constant that depends on both

the contact area and the resolutions of local surface features. Contact area is too expensive to

be computed in run time. Instead, we compute support areas of the vertices of the models as a

preprocessing, and we use those to estimate the contact area.

The node of the BVTT ab is refined if s∗ab is larger than a threshold value, s0. This threshold can

be determined based upon different perceptual metrics.

Size Dependant Metric

s0 will be determined as a fixed percentage of the radii of the objects involved in the contact

queries.

Velocity Dependant Metric

Set s0 as a value proportional to the relative velocity of the colliding objects at the contact

location. This is based on the fact that the gap between the objects is less noticeable as the objects

move faster.

View Dependant Metric

5 RUNTIME QUERIES 15

Determine s0 based on screen-space errors. Given N pixels of error, a distance l from the camera

to the contact location, a distance n to the near plane of the view frustum, a size f of the frustum

in world coordinates, and a size i of the image plane in pixels:

s0 =
N · l · f

n · i
(5)

Selective refinement using CLODs can be implemented combining any of these error metrics. It

can also support other types of perceptual error metrics[O’Sullivan and Dingliana 2001].

Constant Frame-rate: Another important feature is the fact that CLODs can be used for

time-critical collision detection. The factor s∗

s0

, computed at every potential contact location, can

be used to prioritize the refinement. To achieve a guaranteed framerate for real-time applications,

the algorithm will perform as many collision queries as possible, within a fixed time interval. The

query event queue will be prioritized based on s∗

s0

.

5.3 Application to Rigid Body Simulation

In rigid body simulations, many of the factors involved in the selection of CLODs, such as the

velocity of the objects, the contact area and the distance to the camera, will vary dynamically. This

results in transitions between the refinement tests and thus switching between selected CLODs.

Rigid body simulations often require the execution of time-stepping algorithms to search for the

time instants prior to collision events. Special treatment is necessary so that switching CLODs do

not generate inconsistencies or deadlock situations in the time-stepping algorithms. (The analogy

in visual rendering is the “popping” effects often seen during LOD switching.)

Given a node xi of the BVTT, with collision query ”false” at times ti and ti+1 of the simulation,

and a node xj, child of xi, with collision query ”true” at both time instants, if the refinement test

of xi switches from ”false” to ”true” at t ∈ [ti, ti+1], the time stepping method will encounter an

inconsistency. It will try to search for an inexistent collision event in the interval [ti, ti+1]. We solve

this problem by estimating a collision time tc interpolating the separation distance of the node xi

at ti and the penetration depth of the node xj at ti+1. We apply the contact response and restart

the numerical integration from tc with xi as the active CLOD.

6 IMPLEMENTATION AND PERFORMANCE 16

6 Implementation and Performance

In this section we describe the implementation issues and the benchmarks used to analyze the

performance and effectiveness of CLODs.

6.1 Benchmark Models

Fig. 6 shows the set of benchmark models. They are:

• A wrinkled torus falling along a spiral peg

• A spoon sliding inside a cup

• A soup of numbers settling in a bowl

In Table 1 we present the statistics of the dual hierarchies created to represent the benchmark

models. Note that in all cases the models are simplified to a coarsest CLOD with a complexity in

the order of 1000 triangles and 100 convex pieces. This limitation is imposed by the topology of the

objects and the localized influence of the simplification operations. The statistics of the numbers

represent an average of all the models from number 0 to number 9.

Models Cup Spoon Spiral Torus Bowl Numbers

Trisorig 64000 86016 32160 32000 12288 1080

BVsorig 15490 16125 6448 5919 4336 161

Trissimp 1532 1074 716 644 634 306

BVssimp 241 61 100 92 63 37

CLODs 7 9 7 7 8 3

LODs 14 14 13 13 13 9

Table 1: Models and Associated Hierarchies. The number of triangles (Trisorig) and convex

patches (BVsorig) of the initial mesh of the models; the number of triangles (Trissimp) and con-

vex patches (BVssimp) of the coarsest valid CLOD; and CLODs and total number of LODs in the

hierarchies.

6 IMPLEMENTATION AND PERFORMANCE 17

6.2 Runtime Performance

The rigid body simulations captured in the snapshots in Fig. 6 were computed using impulsive

methods[Mirtich and Canny 1995]. These simulations were performed on a Pentium-4 2.4Ghz

processor PC with 2.0GB of memory, a NVidia GeForce-FX graphics card and Windows2000 OS.

The timing profile of Fig. 7 shows query times and the number of nodes in the BVTT front for

a simulation of the spoon sliding inside the cup. We have compared results obtained with a exact

collision detection algorithm[Ehmann and Lin 2001] against the results of our CLOD technique

using the size dependant error metric. In particular, we have used values of s0 of 3.5%, 0.35%, and

0.035% of the radius of the cup. As the timings show, CLODs with s0 = 3.5% perform at least as

good as the exact algorithm for most of the simulation duration. During several time intervals, we

observe a performance gain of almost one order of magnitude. In the other two benchmarks, we

have not observed so remarkable performance gains using CLODs.

We have also evaluated CLODs with velocity and view dependant error metrics. In Fig. 8 coarse

CLODs are selected when the spoon hits the bottom of the cup, and fine resolution CLODs are

selected when the spoon slides along the side of the cup. In the first case the polygon count of the

representations is roughly 10 times larger than in the second case.

6.3 Limitations and Analysis

We have chosen a diverse set of benchmarks with varying model complexity and observed the

performance of CLODs on different simulation scenarios. As a result of the modification to the

collision tolerance introduced in Sec. 5.1, the multiresolution collision detection algorithm using

CLODs cannot prune as efficiently as the exact algorithm[Ehmann and Lin 2001], when the objects

are separated by a distance notably larger than δ. However, when they come close to contact, the

temporal coherence in the front of the BVTT is much higher with CLODs than with the exact

algorithm. This can be verified in Fig. 7, where the number of nodes does not vary much with

CLODs. This also explains the spikes present in the timings for the exact algorithm. These spikes

take place at the instants when the objects are about to interpenetrate. Even if the number of nodes

in the front of the BVTT is smaller for the exact algorithm than for CLODs with s0 = 0.035%, the

7 SUMMARY AND FUTURE WORK 18

coherence is lower, because suddenly many nodes in the BVTT come closer than δ, thus yielding

longer query times.

We believe that the insignificant performance gain in the simulation of the torus falling along

the spiral is due to the similar reasons. Because of the high traveling speed and the impacts of

the falling torus, the simulated objects are rarely in close proximity. As for the simulation of the

numbers settling in a bowl, the polygonal complexity of the models of the numbers is not high

enough to benefit from CLODs.

To summarize, we can conclude that CLODs perform remarkably better than exact collision

detection algorithms (up to one order of magnitude) for situations of sliding or resting contacts

between complex models. These are in fact some of the most challenging contact scenarios, because

large areas of the objects are in parallel close proximity[Gottschalk et al. 1996].

7 Summary and Future Work

We have introduced a novel framework for multiresolution collision queries using “contact levels

of detail” (CLOD). CLOD is a dual hierarchy that serves as both a multiresolution representation

of the model and its bounding volume hierarchy for collision queries. At run time, the algorithm

dynamically selects adaptive CLOD at each potential contact independently using various error met-

rics. This approach considerably speeds up the overall performance of collision queries in complex

environments with challenging contact scenarios.

This research may be extended in several directions:

• A further investigation of the problem of switching CLODs and its implications on the contact

response models of various simulation methods;

• Optimization of the simplification process to obtain more effective hierarchies, perhaps incor-

porating an operation with a more global support than the current ones;

• The application of the general framework of CLODs to other types of BVHs.

REFERENCES 19

References

Ehmann, S., and Lin, M. C. 2000. Accelerated proximity queries between convex polyhedra

using multi-level voronoi marching. Proc. of IEEE/RSJ International Conference on Intelligent

Robots and Systems .

Ehmann, S., and Lin, M. C. 2001. Accurate and fast proximity queries between polyhedra using

convex surface decomposition. Computer Graphics Forum (Proc. of Eurographics’2001) 20, 3.

El-Sana, J., and Varshney, A. 2000. Continuously-adaptive haptic rendering. Virtual Envi-

ronments 2000 , pp. 135–144.

Garland, M., and Heckbert, P. S. 1997. Surface simplification using quadric error metrics.

In Proc. of ACM SIGGRAPH, 209–216.

Gottschalk, S., Lin, M., and Manocha, D. 1996. OBB-Tree: A hierarchical structure for

rapid interference detection. Proc. of ACM Siggraph’96 , 171–180.

Guibas, L., Hsu, D., and Zhang, L. 1999. H-Walk: Hierarchical distance computation for

moving convex bodies. Proc. of ACM Symposium on Computational Geometry .

Guskov, I., Sweldens, W., and Schroder, P. 1999. Multiresolution signal processing for

meshes. Proc. of ACM SIGGRAPH , pp. 325 – 334.

Hoff, K., Zaferakis, A., Lin, M., and Manocha, D. 2001. Fast and simple geometric

proximity queries using graphics hardware. Proc. of ACM Symposium on Interactive 3D Graphics .

Hoppe, H. 1996. Progressive meshes. In SIGGRAPH 96 Conference Proceedings, Addison Wesley,

H. Rushmeier, Ed., Annual Conference Series, ACM SIGGRAPH, 99–108. held in New Orleans,

Louisiana, 04-09 August 1996.

Hubbard, P. 1994. Collision Detection for Interactive Graphics Applications. PhD thesis, Brown

University.

REFERENCES 20

Klosowski, J., Held, M., Mitchell, J., Sowizral, H., and Zikan, K. 1998. Efficient

collision detection using bounding volume hierarchies of k-dops. IEEE Trans. on Visualization

and Computer Graphics 4, 1, 21–37.

Larsen, E., Gottschalk, S., Lin, M., and Manocha, D. 2000. Distance queries with

rectangular swept sphere volumes. Proc. of IEEE Int. Conference on Robotics and Automation.

Lin, M., and Gottschalk, S. 1998. Collision detection between geometric models: A survey.

Proc. of IMA Conference on Mathematics of Surfaces .

Lindstrom, P., and Turk, G. 1998. Fast and memory efficient polygonal simplification. Proc.

of IEEE Visualization, 279–286.

Lombardo, J. C., Cani, M.-P., and Neyret, F. 1999. Real-time collision detection for virtual

surgery. Proc. of Computer Animation.

Luebke, D., and Hallen, B. 2001. Perceptually driven simplification for interactive rendering.

Rendering Techniques; Springer-Verlag .

Luebke, D., Reddy, M., Cohen, J., Varshney, A., Watson, B., and Huebner, R. 2002.

Level of Detail for 3D Graphics. Morgan-Kaufmann.

Mirtich, B., and Canny, J. 1995. Impulse-based simulation of rigid bodies. In Proc. of ACM

Interactive 3D Graphics.

O’Sullivan, C., and Dingliana, C. 2001. Collisions and perception. ACM Trans. on Graphics

20, 3, pp. 151–168.

Otaduy, M. A., and Lin, M. C. 2003. Sensation preserving simplification for haptic rendering.

Proc. of ACM SIGGRAPH . (To appear).

Redon, S., Kheddar, A., and Coquillart, S. 2002. Fast continuous collision detection

between rigid bodies. Proc. of Eurographics (Computer Graphics Forum).

REFERENCES 21

Figure 6: Snapshots of our benchmark simulations. From top to bottom: torus falling along a spiral

peg, a spoon in a cup, and a soup of numbers in a bowl.

REFERENCES 22

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50
exact
0.035%
0.35%
3.5%

0 5 10 15 20 25 30 35 40
0

1000

2000

3000

4000

5000

QUERY TIME (ms)

BVTT FRONT (num. nodes)

Figure 7: Comparison of query time and size of the BVTT front for exact full res. collision detection

and CLODs

Figure 8: Velocity dependant adaptive selection of CLODs in the contact between a cup and a

spoon. In blue and green, the vicinity of the contact locations shown at the resolution of the

adaptively selected CLODs.

