
Adaptive Grouping and Subdivision for Simulating Hair Dynamics

Kelly Ward Ming C. Lin
Department of Computer Science

University of North Carolina at Chapel Hill
{wardk,lin}@cs.unc.edu

http://gamma.cs.unc.edu/HAIR

Abstract

We present a novel approach for adaptively grouping and
subdividing hair using discrete level-of-detail (LOD) repre-
sentations. The set of discrete LODs include hair strands,
clusters and strips. Their dynamic behavior is controlled
by a base skeleton. The base skeletons are subdivided and
grouped to form clustering hierarchies using a quad-tree
data structure during the precomputation. At run time,
our algorithm traverses the hierarchy to create continuous
LODs on the fly and chooses both the appropriate discrete
and continuous hair LOD representations based on the mo-
tion, the visibility, and the viewing distance of the hair from
the viewer. Our collision detection for hair represented by
the proposed LODs relies on a family of “swept sphere vol-
umes” for fast and accurate intersection computations. We
also use an implicit integration method to achieve simula-
tion stability while allowing us to take large time steps. To-
gether, these approaches for hair simulation and collision
detection offer the flexibility to balance between the over-
all performance and visual quality of the animated hair.
Furthermore, our approach is capable of modeling various
styles, lengths, and motion of hair.

1 Introduction

Modeling and animating human characters present some
of the most difficult problems in computer graphics. Simu-
lating natural hair movement is crucial to generating realis-
tic appearances of animated characters. Real-time applica-
tions, such as virtual environments and game development,
pose additional computational challenges for modeling the
dynamics and mutual interactions of human hair at inter-
active rates. Such challenges primarily stem from the high
number of hair strands required to model a human character
and the resulting complexity of mutual interactions among
many nonrigid hair strands. In addition to modeling vir-
tual humans, the techniques used to simulate complex in-
teractions among many deformable strands can also be ap-

Figure 1. Dynamic Simulation of Long Hair Using
Adaptive Grouping and Subdivision of Hair Strands,
Hair Clusters, and Hair Strips.

plied to modeling the motion of long animal hair and manes,
brushes, bristles, strings, and other synthetic fibers.

Main Contribution: Herein we present a novel approach to
adaptively subdivide and group hair modeled using discrete
and continuous level-of-detail (LOD) representations. The
set of discrete LOD representations include hair strands,
clusters, and strips represented by subdivision curves, sub-
division swept volumes, and subdivision patches, respec-
tively [24]. Each representation has a base skeleton used
to simulate the hair dynamics, which aids in switching
between different LOD representations during the simula-
tion [24]. To accelerate the simulation performance even
more while achieving higher visual quality, we precompute
a clustering hierarchy using the quad-tree data structure,
which generates continuous LODs on the fly, based on the
root location of each skeleton. At runtime, our algorithm
selects both the appropriate continuous and discrete LOD
representations based on the viewing distance, the motion
and the visibility of the hair. Complementing the continu-
ous LOD representations generated by the dynamic group-
ing and subdivision of hair, we use a collision detection al-



gorithm based on a family of swept sphere volumes and
an implicit integration method to achieve greater stability
while allowing the simulation to take larger time steps. The
resulting method has the following characteristics:

• It can smoothly and dynamically switch between any
hair LOD representations, as opposed to transitioning
between discrete hair representations [24].

• It can incorporate any switching criteria (e.g. the view-
ing distance, the visibility, the motion of hair) to auto-
matically group and subdivide hair representations and
seamlessly control continuous LOD generation.

• It can balance between the visual quality and the per-
formance of the overall dynamic simulation.

• It can be applied to simulate mutual hair interactions
for various hairstyles of different thickness, weight,
and strength.

We demonstrate our algorithm on several simulation sce-
narios, including hair braiding, hair shaking abruptly, hair
brushing against a complex wrinkled torus, and hair blow-
ing in the wind. We observed noticeable performance im-
provement with higher visual quality, as compared to earlier
techniques, such as [24].
Organization: The rest of the paper is organized as fol-
lows. Sec. 2 sets forth a synopsis of related work. Sec. 3 de-
scribes the three discrete representations of hair upon which
this work is based. We present our method on constructing
clustering hierarchies for hair strands, hair clusters, and hair
patches in Sec. 4. The collision detection method and the
dynamics model for simulating hair movement and interac-
tions are described in Sec. 5. The criteria for performing
automatic subdivision and grouping of hair representations
on the fly are outlined in Sec. 6. Sec. 7 describes the results
of our prototype implementation and compares its perfor-
mance against earlier techniques.

2 Related Work

In this section, we briefly survey prior research in hair
modeling and simulation levels of detail.

2.1 Hair Modeling

Modeling hair has been an active area of research in
computer graphics and numerous approaches have been
proposed to address the problem it presents [7, 11, 19,
26]. Some fundamental techniques have been presented to
model the motion of individual hair strands in [1, 6, 14] in
which each hair strand was represented as a series of con-
nected line segments and the shape of the hair was deter-
mined by specifying the desired angles between segments.
To reduce the overall computation time, strands of hair that

are near each other or move in a similar fashion are bun-
dled together as a group or as a wisp [14]. Using a sim-
ilar philosophy, individual strands of hair are grouped to-
gether as wisps for animating long hair, each modeled us-
ing a spring-mass skeleton and a deformable envelope [23].
A similar approach has been used for interactive hairstyling
[5, 25]. Another approach, as evidenced in [4], has been to
use adaptive guide hairs to add more detail to overly inter-
polated regions.

None of these techniques however, can perform hair ani-
mation or rendering in real-time. Recently, a thin shell vol-
ume [9] and 2D strips [12, 13] have been used to approxi-
mate groups of hair. Such techniques enable real-time hair
simulation. However, the resulting simulation lacks a realis-
tic voluminous appearance of the hair. Techniques for real-
time rendering of fur and hair that exploit graphics hardware
were presented in [16, 17, 20]. The foregoing techniques,
however, do not work well or are not applicable for render-
ing long, wavy or curly hair.

2.2 Simulation Levels of Detail

Model simplification has been an active research area
and many algorithms have been proposed to accelerate
graphical rendering of complex environments. Similar ap-
proaches have also been suggested to accelerate dynamic
simulations for complex systems. A survey on geometric
and simulation levels of detail can be found in [18] and [24],
respectively. Our work bears some resemblance to the ap-
proach proposed by [21] for simplifying dynamics of par-
ticle systems using clustering. However, our approach for
generating continuous LODs of hair modeled using a com-
bination of hair strands, clusters and strips is quite different
and the switching between different LODs is far more com-
plex. Recently, the work of [3] has used the notion of con-
tinuous LODs for hair simulation in order to achieve faster
simulation results. While our work employs similar tech-
niques as [3], we use different splitting and grouping meth-
ods and couple the continuous LODs with discrete LODs to
acheive faster rendering and simulation results.

3 Preliminaries

Our approach is built upon the use of three discrete LOD
representations for hair that utilize the subdivision frame-
work and a base skeleton [24]. The three LOD represen-
tations are texture-mapped individual strands, clusters and
strips. They are represented by subdivision curves, subdi-
vision swept volume and subdivision patches, respectively.
They are tessellated on the fly to further generate adaptive,
continuous LODs for rendering only. Fig. 2 shows the ren-
dered images of each LOD representation.

We model each skeleton as a series of rigid line seg-
ments connected by node points. Fig. 3 shows the lay-
out of a skeleton. A skeleton contains n node points,



Figure 2. Three Discrete LODs for Hair. (a) Hair
Strip (b) Hair Cluster (c) Hair Strand.

Figure 3. (a) The base skeleton model; (b) The parame-
ters that define the style of hair.

(p0, p1, . . . , pn−1) and n − 1 rigid line segments between
the points (s1, s2, . . . , sn−1). Springs are used to control
the angles between each line segment. The resting style of
a skeleton is specified by assigning the desired rest angle
positions to θ0 and φ0. In this paper, we have extended
the foregoing approach [24] by adaptively subdividing and
grouping hair strands, clusters and strips, to generate contin-
uous LODs for simulating complex hair motion and mutual
interactions.

4 Construction of Hair Hierarchy

Our LOD algorithm uses the continual subdivision of
strand groups, clusters, and strips in order to attain varying
detail based on the current simulation state. The subdivision
is performed as a pre-process and the information is stored
for retrieval during runtime. As the subdivision of a hair
group is performed, more skeletons are added to the system,
creating a more detailed simulation. Our strand group hier-
archy is built in a top-down manner creating smaller groups
of strands until we reach the limit of a single strand in a

group. Likewise, the hierarchies of clusters are built from
top to bottom, as are the strip hierarchies.

We couple the strand group hierarchies with the cluster
and strip hierarchies to attain both discrete and continuous
LOD representations. This hair representation hierarchy is
illustrated in Fig. 4. Assumed to be given at the initial
setup, the root strip in the strip hierarchy is the coarsest
representation for an assemblage of hair. In order to gain
more detail we traverse down the strip tree until we reach
its leaves. For more detail, a finest LOD strip representation
transforms into the coarsest LOD cluster representation, or
the root cluster in the cluster hierarchy. Similarly, to attain
even more detail we traverse down the cluster hierarchy un-
til we reach the leaves of the cluster tree. At this point, the
cluster representations are replaced by the top-level strand
groups of the strand group hierarchies. To attain the finest
detailed simulation possible, we traverse to the leaves of the
strand group trees, which contain individual strands.

The next sections explain our subdivision process and
hierarchy building mechanisms starting with the creation of
strip and cluster hierarchies.

Figure 4. Hair Hierarchy. One hair hierarchy consists
of a single strip hierarchy, multiple cluster hierarchies and
multiple strand group hierarchies. The coarsest hair repre-
sentations are located in the strip hierarchy at the top of the
overall hair hierarchy. Note: The number of hierarchies, or
children per node, within a hair hierarchy fluctuates.

4.1 Strip and Cluster Subdivision

Before we can build a hierarchy of strips or clusters, we
must first create the initial top-level strip. A top-level strip
is created by choosing a location on the scalp for the origin
of the skeleton (the first node point of the skeleton). Next,
a user-defined width is specified controlling the thickness
of the strip. Hairstyle specific information is then declared,
defining the length of the hair, the number of control points
of the skeleton, and the desired curls or waves down the
length of the skeleton.

Because the strip is a two-dimensional surface, we re-
strict its subdivision such that it may only be split into two
equal parts. Strip subdivision is simply the degenerate case
to cluster or strand group subdivision, using a degenerate
quad-tree, or a binary tree, instead of the quad-tree data
structure that is used for cluster and strand group hierar-



Figure 5. Strand group subdivision. The subdivision process of a strand group into multiple strand groups. (a) The cross-
section of a single strand group. (b) Strand group is divided into 4 equal quadrants and the strands are separated by the quadrant
in which they lie (designated by different shades). (c) Circular cross-section is fit around each quadrant, or child, of original strand
grouping. (d) Four new strand groups are created which are children of the original strand group. (e) Continual subdivision process
is repeated on each child. Tinted squares show empty quadrants that contain no strands, these quadrants are set to null.

chies. The subdivision ends once the width of the current
strip is below a user-defined threshold.

For cluster subdivision, we start with a circular cross-
section that defines the cluster. This circular cross-section
is then split into four equal parts. The four sub-clusters have
the same radius value but represent four different quadrants
of the original cluster. The subdivision of a cluster always
results in four children, so its information is held in a quad-
tree. Clusters stop subdividing once their radius is below a
user-defined threshold value. At this point, further detail is
created in the strand group hierarchies.

4.2 Strand Group Subdivision

A strand group is defined by a single skeleton, a radius
to define the circular cross-section of the group, and the in-
dividual strands of hair for rendering purposes. A strand
group cross-section is illustrated in Fig. 5a. The individual
hair strands are randomly placed within the group and fol-
low the dynamics of the skeleton. The circular shape of the
strand groups is used for its simplicity in collision detection,
explained in Sec. 5.

We use a quad-tree data structure to contain the hierar-
chy information. It follows therefore, that each strand group
is split into four equal sections, as shown in Fig. 5b. The
subdivision of a strand group into four sections creates the
tightest fitting circular cross-section possible for each sub-
group, as in Fig. 5c and Fig. 5d.

Once we have divided the strand group, we then calcu-
late the number of strands in each quadrant. If a quadrant
has no strands within its boundaries then the child associ-
ated with that quadrant is set to null (see Fig. 5e). A strand
group will have between zero and four children. A strand
group that contains only one strand will have zero children
and becomes a leaf in the tree.

The final strand hierarchy is depicted in Fig. 6. Each
node in the hierarchy contains a strand group, which in-

Figure 6. Strand group hierarchy. Subdivision
process creates a quad-tree containing strand group infor-
mation. Strand group hierarchy can extend to individual
strands.

cludes its skeleton and the hair geometry used for the fi-
nal rendering stage. In addition, each strand group, as well
as each cluster and strip, holds its n − 1 bounding volumes
used for collision detection, where n is the number of nodes
in the skeleton. The creation of these bounding volumes is
described in Sec. 5.

Each skeleton contains the same number of control
points as its parent hair group, which aids in dynamically
switching between different levels, described in Sec. 6.

5 Collision Detection and Response

Collision detection and response is usually the most time
consuming process for the overall simulation. We have sep-
arated our collision algorithm into two parts: object-hair
collision detection, which occurs when hair interacts with
an outside object like the head, and hair-hair collision de-
tection, which involves hair mutual interactions.



5.1 Swept Sphere Volumes

Many techniques have been introduced for collision de-
tection. Common practices have used bounding volumes
(BVs) as a method to encapsulate a complex object within
a simpler approximation of said object.

We have chosen the family of “swept sphere volumes”
(SSVs) [15] to surround the hair. SSVs comprise a family
of bounding volumes defined by a core skeleton grown out-
ward by some offset. The set of core skeletons may include
a point, line, or ngon. Fig. 7 shows examples of some SSVs.
To calculate an SSV, let C denote the core skeleton and S

be a sphere of radius r, the resulting SSV is defined as:

B = C ⊕ S = {c + r| c ∈ C, r ∈ S}

Figure 7. A Family of Swept Sphere Volumes.
(a) Point swept sphere (PSS); (b) Line swept sphere (LSS);
(c) Rectangle swept sphere (RSS). The core skeleton is
shown as a bold line or point.

To detect an intersection between a pair of arbitrary
SSVs we simply perform a distance test between their cor-
responding core skeletons and then subtract the appropriate
offsets, i.e. the radius of each SSV.

5.2 Swept Sphere Volumes for Hair

We utilize the family of SSVs to encapsulate the hair be-
cause the shape of the SSVs closely matches the geometry
of our hair representations. The SSVs that correspond to
our three geometric representations for hair are line swept
spheres (LSSs) for the strands and cluster levels, and rectan-
gular swept spheres (RSSs) for the strip level. These SSVs
can be used in combination to detect collisions between dif-
ferent representations of hair.

A skeleton containing n control points will contain n− 1
SSVs. These SSVs correspond to the n − 1 rigid line seg-
ments contained in the skeleton, see Fig. 3. The rigid line
segment is used as the core skeleton of the LSS and the ra-
dius of the SSV is determined from the thickness of the hair
representation.

5.3 Hair-Hair Interactions

Because hair is in constant contact with surrounding hair,
interactions among hair are important to capture. The typi-
cal human head has thousands of hairs. Consequently, test-

ing the n−1 sections of each hair group against the remain-
ing sections of hair would be too overwhelming for the sim-
ulation. Instead, we spatially decompose the area around
the hair into three-dimensional grids and insert each SSV of
the hair into the grids. Only SSVs that fall into the same
grid are tested against each other. The average length of the
rigid line segments of the skeletons is used as the height,
width, and depth of each grid cell.

For each pair of SSVs that falls into the same grid cell,
we determine the distance between their corresponding core
skeletons, s1 and s2. This distance, d, is subtracted from the
sum of the radii of the two SSVs, r1 and r2, to determine if
there is an intersection. Let

overlap = d − (r1 + r2)

If overlap is positive then the sections of hair do not overlap
and no response is calculated.

If there is an intersection, then we compute the cross
product between the core skeletons, s1 and s2, to determine
the orientation of the skeletons in relation to each other. If
s1 and s2 are near parallel, we set their corresponding ve-
locities to the average of their initial velocities.

Intersecting hair sections that are not of similar orien-
tation are pushed apart based on their amount of overlap.
The direction to move each hair section is determined by
calculating a vector from the closest point on s1 to the clos-
est point on s2. Each section is moved by half the overlap
value and in opposite directions along the vector from s1 to
s2. Fig. 8 shows the effects of hair-hair interactions.

5.4 Hair-Object Interactions

Hair can interact with any object in the scene, such as
the head or body of the character, where the object is a solid
body that allows no penetration. Our hair-object collision
detection algorithm begins by encapsulating the object with
a bounding volume hierarchy (BVH) of SSVs that is pre-
computed offline. A collision is detected between a section
of hair and the object by recursively traversing the BVH
testing the hair’s SSV against the bounding volumes in the
hierarchy. If the hair is colliding with the object, the BVH
will return the triangles in direct contact with the hair.

If a section of hair is colliding with the object, we ad-
just the position of the hair section so that it is outside of
the object. We determine the amount by which to push the
hair section by calculating the amount of penetration of the
hair section into the object. We then push the skeleton in
the direction normal to the object in the amount of the pen-
etration. The section of hair is now no longer colliding with
the object. In addition, the velocity of the section of hair
interacting with the object is set to zero so that the hair is
restricted to only move tangential to and away from, the ob-
ject.

In the next time step, we know that the hair is still in



Figure 8. Effects of Hair-Hair Collision Detection. Side-by-side comparison with (RIGHT) and without (LEFT) hair-hair
collision detection in a sequence of simulation snapshots.

close proximity to the object. If there is no intersection be-
tween the object and the hair we determine whether the hair
is still within a certain distance threshold. If it is within this
threshold, then the hair is still restricted so that its velocity
in the direction of the object is zero. If it is not within this
threshold, then the hair can move about freely.

When hair interacts with an object, a frictional force
must be applied. We calculate a friction force by project-
ing the acceleration of the hair onto the plane tangential to
the object at the point of contact. The result is the acceler-
ation component that is tangent to the object. We apply the
friction force in the opposite direction to oppose the mo-
tion of the hair. The magnitude of this force is based on the
acceleration of the hair and the frictional coefficient, µf ,
which is dependent upon the surface of the object, where
0 < µf < 1.

5.5 Overall Collision Checking Algorithm

During a single time step, a section of hair can have
many interactions, some with other hairs and some with
outside objects. The order in which we process these in-
teractions is important as certain interactions must allow
no penetration. Therefore, we process the hair-hair inter-
actions first. The avoidance of hair-hair intersections is a
soft constraint. Where possible, hair-hair intersections will
be avoided, especially in the case of intersecting hair sec-
tions of different orientations. In contrast, the avoidance of
hair-object intersections is a hard constraint. At the end of
the time step, there will be no intersections between the hair
and an outside object.

5.6 Implicit Integration for Dynamic Simulation

After our system computes appropriate collision re-
sponses, the dynamic simulation proceeds. We follow the
basic dynamics model for simulating hair that was first pro-

posed by [1, 14]. We extend this method by using an im-
plicit integration technique, in order to achieve greater sta-
bility while allowing us to take larger time steps throughout
the simulation. This approach is similar to cloth simulations
that use implicit integration for great stability [2].

In this approach, each control point of a hair skeleton is
governed by the set of ordinary differential equations:

Ii

d2θi

dt2
+ γi

dθi

dt
= Mθi,

Ii

d2φi

dt2
+ γi

dφi

dt
= Mφi.

where Ii is the moment of inertia for the ith control point
of the skeleton, γi is the damping coefficient, and Mθ and
Mφ are the θ and φ torque components, respectively. Mθ

and Mφ are computed from the spring forces controlling
the style of the hair and external forces such as wind. The
resultant Mθ and Mφ become:

Mθ = Mθspring
+ Mθexternal

,

Mφ = Mφspring
+ Mφexternal

.

The torques due to the spring forces are calculated by:

Mθ = −kθ(θi − θi0),

Mφ = −kφ(φi − φi0),

where kθ and kφ are the spring constants for θ and φ, re-
spectively. Furthermore, θ0 and φ0 are the specified rest an-
gles and θ and φ are the current angle values. Although ex-
plicit methods such as Euler or fourth-order Runge-Kutter
can be used for this integration, we choose implicit integra-
tion for greater stability of simulations. Appendix A shows
the derivation of our implicit integration equations using po-
lar coordinates. Because we are working with polar coordi-
nates, we will use angular positions, θ and φ, and angular
velocities, ωθ and ωφ.



The change in angular velocity for the θ-component of a
skeleton node point, 4ωθ, becomes

4ωθ =
−hkθ(θ − θ0) − h2kθωθ0

1 + h2kθ

where h is the time step, and ωθ0 = ωθ(t0) is the angular
velocity at time t0. Here, 4ωθ = ωθ(t0+h)−ωθ(t0). Once
we have calculated4ωθ, we calculate the change in angular
position 4θ from 4θ = h(ω0 + 4ω). The same process
can be applied to the φ-component of the angular position
and angular velocity for each control point of a skeleton.

Implicit integration allows us to use stiffer springs when
warranted, for example, when simulating the bristles of a
brush which have different spring constants than the hair on
a human head. Using stiff springs with explicit integration
on the other hand, requires much smaller time steps to en-
sure a stable simulation.

6 Runtime Selection

Our hair hierarchies allow us to choose appropriate dis-
crete and continuous LOD representations for the hair dy-
namically during the simulation. We simply traverse the hi-
erarchy selecting the desired hair assemblage. As we move
to a different level in the hair hierarchy we are either di-
viding a hair group into multiple groups or combining sev-
eral groups into one larger group of hair. The base skeleton
makes these transitions smooth and straightforward. Be-
cause each hair representation uses the same dynamic skele-
ton, we generalize the transitioning algorithm so that it can
be applied at any location in the hierarchy.

6.1 Criteria for Grouping and Subdividing

The current assemblage of hair is determined by the
viewing distance from the viewer to the hair, the motion
of the hair, and the visibility of the hair. We use a technique
similar to that described by [24]. This method first tests the
hair’s visibility by determining if it is outside of the field of
view of the camera or if it is occluded by the body. If a sec-
tion of hair is not visible, it is simulated using the coarsest
representation, the root strip of the hierarchy, and it is not
rendered.

The next criterion for choosing the hair’s representation
is the viewing distance. As the distance from the viewer to
the hair increases we move up the hair hierarchy, simulat-
ing and rendering the hair with less detail. Meanwhile, as
the velocity of the hair increases, we move down the hier-
archy, simulating and rendering the hair with finer detail.
Each level in the hierarchy has predetermined intervals for
its appropriate viewing distances and velocities. These pre-
determined values are set by defining the intervals for the
coarsest LOD in the hierarchy and for the finest LOD in the
hierarchy. The remaining values for the rest of the levels are

linearly interpolated from the start and end values to create
a smooth progression of distance and velocity thresholds.

If a section of hair is not occluded, then its distance and
velocity are compared against the current level’s thresholds.
The current level is chosen based on whichever test requires
more detail. In a given time step, a section of hair only
moves one level in the hierarchy in order to avoid visual
distractions, unless a transition is triggered by occlusion.

A transition caused by an occlusion permits the hair rep-
resentation to transform into the coarsest strip representa-
tion regardless of its current location in the hair hierarchy.
When the hair is no longer occluded, it transforms into the
LOD that is appropriate given the hair’s current velocity and
distance values.

6.2 Adaptive Subdivision

Using our precomputed hierarchy, we divide a group of
hair into multiple groups by moving a level down the hier-
archy. This becomes a simple process through the use of
the base skeleton. As explained in Sec. 4, each hair group’s
skeleton has the same number of control points as its par-
ent skeleton. Furthermore, all of the style properties are the
same from parent to child. Accordingly, when a transition to
a hair group’s children occurs, the child skeletons inherit the
dynamic state of their parent skeleton. Each control point in
a child skeleton corresponds to a control point in its parent
skeleton. When the child groups are created from the par-
ent group, the offset of each child from the parent is stored.
When we switch to the children, these offsets are used to
position the children accordingly.

Fig. 9 shows two skeletons dynamically subdivide into
multiple skeletons as a gust of wind blows through the hair.

6.3 Adaptive Merging

Merging multiple child skeletons back into their parent
skeleton is, again, rather straightforward. Our method aver-
ages the dynamic states of the children, including position
and velocity values, and assigns this average to the parent
skeleton.

In order to alleviate visual artifacts that can appear by
merging children into a parent skeleton, a transition may
only occur if all of the children are ready to transition back
into the parent; that is, the criteria explained in Sec. 6.1 for
switching levels are satisfied for all of the children. Fur-
thermore, in order to avoid a sudden jump in the position of
the hair, we impose a positional constraint on the children.
After we have averaged the control point positions of the
child skeletons, we determine the distance of the child con-
trol points from their corresponding parent control point. If
this distance is greater than a certain threshold, the transi-
tion will not occur. If the distance is less than the threshold
but not in exact position, a spring force is used to subtly pull
the children into place so a smooth transition may occur.



Figure 10. Dynamic Simulation of Hair Using LODs. A sequence of snapshots (from left to right).

Figure 9. TOP: Two skeletons (LEFT) are dynamically
subdivided into multiple (RIGHT). BOTTOM: The ren-
dered images without (LEFT) and with (RIGHT) adaptive
subdivision.

7 Results and Comparisons

We have implemented our LOD hair simulation algo-
rithm in C++. We modified and extended the publicly avail-
able proximity query package (PQP) [15], to perform colli-
sion detections. The simulation results are displayed using
OpenGL.

7.1 Rendering

Our rendering system follows that described in [24] for
LOD hair representations. This approach uses the shad-
ing model suggested by [8] and opacity shadow maps in-
troduced by [10]. The use of motion blurring and image
blending helped to alleviate the visual artifacts associated
with LOD transitions.

7.2 Performance Comparisons

We have tested our implementation on various scenarios.
Please visit our project website:

http://gamma.cs.unc.edu/HAIR

for MPEGs of these simulation runs and for snapshots taken
from hair simulations using our LOD representations.

We also compared the performance for the overall dy-
namic simulation (not including collision detection) and
collision detection using different representations on vari-
ous simulation scenarios. Table 1 gives a detailed compar-
ison of the average running times using a combination of
discrete and continuous LOD representations (indicated as
LODs) against (i) the use of the finest hair representations,
or the lowest possible level in the hair hierarchies (indicated
as Fine Strands in the table), and (ii) the coarsest strand rep-
resentations, or highest level within the strand hierarchies
(indicated as Coarse Strands in the table). This simulation
entails wind blowing through the hair as the camera remains
stationary. The camera is positioned close to the figure, so
the viewer can see fine detail, and primarily shows the ef-
fects of the continuous LODs used within the strand hierar-
chy. Our method allows us to simulate strands with visual
detail comparable to that of the finest strand representation,
whereas the timings for the simulation is comparable to that
of the coarsest strand representation.

Table 2 shows results of the same simulation as the cam-
era zooms away from the figure. With this simulation the
influence of the discrete LODs is obvious. The use of clus-
ters and strips with adaptive grouping and subdivision in-
creases the performance of the simulation with little visual
loss. The table shows comparisons of the same simulation
with the finest detailed strands, versus the coarsest detailed
clusters and coarsest detailed strips.

For this benchmark, we used 9,350 individual strands.
At the finest detail in the hierarchy, these strands were
simulated with 3,570 skeletons, averaging 2.6 strands per
skeleton. The algorithm does not allow all of the hierar-
chies to extend to each individual strand due to the over-
whelming computational cost entailed. Rather, some hi-
erarchies extend to the individual strand level, while oth-



ers contain a minimum of four or five strands at the low-
est level. This combination, automatically generated by our
approach, enables the simulation to distribute the compu-
tational resources where they are needed the most. Hair
strands that originate at the top of the head, near the part of
the hair, are more viewable and will be allowed to extend to
the individual strand level, whereas hairs located at the base
of the neck are typically not as viewable and do not require a
hierarchy reaching as far. These 9,350 strands are then rep-
resented with 110 strips, at the coarsest level, or 330 clusters
at the coarsest level in the cluster hierarchy. The skeletons
comprising the hairstyle consist of 6 control points on aver-
age. Timings were taken on a PC equipped with an Intel(R)
Pentium(R) 4 2-GHz processor, 1 GB main memory and
GeForce(R) 4 graphics card.

Breakdown Fine Strands LODs Coarse Strands

Dyn Sim 0.107636 0.041624 0.038271
Col Detect 7.642328 0.411793 0.338298

Total 7.749964 0.453417 0.376569

Table 1. Performance Comparison. Simulation
for a stationary camera. The average performance numbers
are measured in seconds per frame.

Breakdown LODs Strands Clusters Strips

Dyn Sim 0.026142 0.107636 0.015374 0.003242
Col Detect 0.239489 7.642328 0.171781 0.020142

Total 0.265631 7.749964 0.187155 0.023384

Table 2. Performance Comparison. Simulation
for a camera zooming out. The average performance num-
bers are measured in seconds per frame.

7.3 Analysis and Discussion

The impetus of this research is to explore the use of dy-
namic grouping and subdivision of hair to automatically
generate continuous LODs for hair simulation. This ap-
proach enables us to further increase the visual fidelity
while maintaining an interactive dynamic simulation. It is
difficult to meaningfully quantify the computational errors
introduced by the use of simplified representations for mod-
eling hair. Notwithstanding the foregoing, we can subjec-
tively evaluate the resulting simulation by performing com-
parisons on the visual quality of the simulated results. Us-
ing side-by-side comparisons as shown in the supplemen-
tary video, we notice higher visual fidelity of the simu-
lated hair using continuous LODs. The performance of our
framework varies depending on the scenarios. In general, its
overall performance in simulation and rendering compares
favorably against the use of discrete LOD representations
[24].
Limitations: As with most LOD algorithms that generate

hierarchical representations offline, our approach necessi-
tates considerable memory requirements.

There are other application-dependent transition criteria,
such as collision, that we have not examined closely but
which can improve the system’s overall performance.

7.4 Comparisons Against Earlier Approaches

This research is built upon the discrete LOD represen-
tations introduced in our recent work [24]. In [24], we
discussed the benefit of using discrete LOD representa-
tions that compared favorably against earlier approaches
[4, 5, 11, 12, 13, 14, 16, 17, 20, 23, 25], as the use of
LODs can achieve both high visual quality and interactive
dynamic simulation at the same time.

Compared to [24], our current approach allows for
higher quality visual appearances while maintaining similar
or better runtime performances. Using continuous and dis-
crete LODs for hair simulation enable the user to maintain
complete control over the visual and performance results of
the system.

8 Summary and Future Work

In this paper, we present an approach to adaptively split
and group collections of hair to generate continuous LODs
for accelerating the dynamics computation of hair while
achieving higher visual fidelity. In addition to potential ar-
eas of improvements mentioned in the earlier sections, there
are several possible directions to extend this research:
• Dynamically change the hairstyle, as the user combs or

brushes the hair with a 3D user (e.g. haptic) interface;
• Interactively model the dynamics of the hair in the

presence of other substances, such as styling gel, hair
spray, water, etc.;

• Automatically generate desired simulation outcomes,
given high-level user control.

Acknowledgements

This research is supported in part by Army Research Of-
fice, Intel Corporation, National Science Foundation, and
Office of Naval Research.

References

[1] K. Anjyo, Y. Usami, and T. Kurihara. A simple method for
extracting the natural beauty of hair. Computer Graphics,
26(2):111–120, 1992.

[2] D. Baraff and A. Witkin. Large steps in cloth simulation.
Proc. of ACM SIGGRAPH, pages 43–54, 1998.

[3] F. Bertails, T.-Y. Kim, M.-P. Cani, and U. Neumann. Adap-
tive Wisp Tree - a multiresolution control structure for simu-
lating dynamic clustering in hair motion. Proc. of ACM SIG-
GRAPH / Eurographics Symposium on Computer Animation,
2003.



[4] J. Chang, J. Jin, and Y. Yu. A practical model for hair mutual
interactions. Proc. of ACM Symposium on Computer Anima-
tion, 2002.

[5] L. H. Chen, S. Saeyor, H. Dohi, and M. Ishizuka. A system
of 3d hair style synthesis based on the wisp model. Visual
Computer, 15(4):159–170, 1999.

[6] A. Daldegan, T. Kurihara, N. Magnenat-Thalmann, and
D. Thalmann. An integrated system for modeling, animat-
ing and rendering hair. Computer Graphics Forum (Proc. of
Eurographics, 12(3):211–221, 1993.

[7] S. Hadap and N. Magnenat-Thalmann. Modeling dynamic
hair as a continuum. Computer Graphics Forum (Proc. of
Eurographics 2001), 20(3), 2001.

[8] J. T. Kajiya and T. L. Kay. Rendering fur with three dimen-
sional textures. In J. Lane, editor, Computer Graphics (SIG-
GRAPH ’89 Proceedings), volume 23, pages 271–280, July
1989.

[9] T.-Y. Kim and U. Neumann. A thin shell volume for model-
ing human hair. Computer Animation, 2000.

[10] T.-Y. Kim and U. Neumann. Opacity shadow maps. Proc. of
Eurographics Rendering Workshop, 2001.

[11] T.-Y. Kim and U. Neumann. Interactive multiresolution hair
modeling and editing. Proc. of SIGGRAPH, 2002.

[12] C. K. Koh and Z. Huang. Real-time animation of human
hair modeled in strip. Eurographics CAS Workshop, pages
101–112, 2000.

[13] C. K. Koh and Z. Huang. A simple physics model to ani-
mate human hair modeled in 2d strips in real time. Proc. of
Eurographics Workshop on Animation and Simulation, 2001.

[14] T. Kurihara, K. Anjyo, and D. Thalmann. Hair animation
with collision detection. In Models and Techniques in Com-
puter Animation, pages 128–38. Springer-Verlag, 1993.

[15] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. Dis-
tance queries with rectangular swept sphere volumes. Proc.
of IEEE Int. Conference on Robotics and Automation, 2000.

[16] J. Lengyel. Real-time fur. Proc. of Eurogrpahics Workshop
on Rendering, 2000.

[17] J. Lengyel, E. Praun, A. Finkelstein, and H. Hoppe. Real-
time fur over arbitrary surfaces. Proc. of ACM Symp. on In-
teractive 3D Graphics, 2001.

[18] D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson,
and R. Huebner. Level of Detail for 3D Graphics. Morgan-
Kaufmann, 2002.

[19] N. Magnenat-Thalmann, S. Hadap, and P. Kalra. State of the
art in hair simulation. Int. Workshop on Human Modeling
and Animaton, pages 3–9, 2000.

[20] NVIDIA. Final fantasy technology demo 2001.
http://www.nvidia.com, 2001.

[21] D. O’Brien, S. Fisher, and M. Lin. Simulation level of de-
tail for automatic simplification of particle system dynamics.
Proc. of Computer Animation, pages 210–219, 2001.

[22] E. Plante, M. Cani, and P. Poulin. Capturing the complexity
of hair motion. GMOD number 1 volume 64, January 2002.

[23] E. Plante, M. Cani, and P. Poulin. A layered wisp model for
simulating interactions inside long hair. Proc. of Eurograph-
ics Workshop on Animation and Simulation, 2001.

[24] K. Ward, M. Lin, J. Lee, S. Fisher, and D. Macri. Modeling
hair using level-of-detail representations. Proc. of Computer
Animation and Social Agents, 2003.

[25] Z. Xu and X. D. Yang. V-hairstudio: An interactive tool
for hair design. IEEE Computer Graphics and Applications,
21(3):36 –43, 2001.

[26] Y. Yu. Modeling realistic virtual hairstyles. Pacific Graphics,
2001.

Appendix A: Implicit Integration

We use implicit integration for the dynamic simulation of hair,
as explained in Section 5.6. Here we show the derivation of equa-
tions for our implicit integration formulation. We will first show
how this works with the θ-component. Since we are working with
polar coordinates, we will denote the angular position θ, angular
velocity ω, and angular acceleration α.

We start with the second-order differential equation:

θ̈(t) = f(θ(t), θ̈(t)) = −kθ(θi − θi0).

We can rewrite this as a first-order differential equation by substi-
tuting the variables α = θ̈ and ω = θ̇. The resulting set of first-order
differential equations is

d

dt

„

θ

θ̇

«

=
d

dt

„

θ

ω

«

=

„

ω

f(θ, ω)

«

.
We get the following formulations for 4θ and 4ω when using the
explicit forward Euler method, where 4θ = θ(t0 + h) - θ(t0) and
4ω = ω(t0 + h) - ω(t0) and h is the time step value

„

4θ

4ω

«

= h

„

ω0

−kθ(θ − θ0)

«

Instead, we are going to take an implicit step which is often
thought of as taking a backwards Euler step since we are eval-
uating f(θ, ω) at the point we are aiming for rather than at the
point we were just at. In this case, the set of differential equations
changes to the form

„

4θ

4ω

«

= h

„

ω0 + 4ω

f(θ0 + 4θ, ω0 + 4ω)

«

A Taylor series expansion is applied to f to obtain the first-order
approximation,

f(θ0 + 4θ, ω0 + 4ω) ≈ f0 +
∂f

∂θ
4θ +

∂f

∂ω
4ω

≈ −kθ(θ − θ0) − kθ4θ + 0(4ω) ≈ −kθ(θ − θ0) − kθ4θ

After we substitute the approximation of f back into the differen-
tial equation we get

„

4θ

4ω

«

= h

„

ω0 + 4ω

−kθ(θ − θ0) − kθ4θ

«

We can focus on the angular velocity 4ω alone and substitute 4θ

= h(ω0 + 4ω). We get

4ω = h(−kθ(θ − θ0) − kθh(ω0 + 4ω))

Rearranging this equation gives us

(1 + kθh
2)4ω = −hkθ(θ − θ0) − kθh

2
ω0

4ω =
−hkθ(θ − θ0) − h2kθω0

1 + h2kθ

Once we have calculated the change in angular acceleration,
4ω, we can calculate the change in angular position 4θ trivially
from 4θ = h(ω0 +4ω). The same process can be applied to the
φ-component of the angular position and angular velocity for each
control point of a strand.


