Modeling Hair Using L evel-of-Detail Representations

Kelly Ward MingC. Lin
University of North Carolinaat Chapel Hill

Joohi Lee
Alias|Wavefront

Susan Fisher
Pixar Studio

Dean Macri
Intel Corporation

http://gamma.cs.unc.edu/HSLOD/

Abstract: We present a novel approach for modeling hair
using level-of-detail representations. The set of representations
include individual strands, hair clusters, and hair strips. They are
represented using subdivision curves or surfaces, and have the
same underlying base skeleton to maintain consistent high-level
physical behavior when a transition between different levels-of-
detail occurs. This framework supports automatic simplification of
dynamic simulation, collision detection, and graphical rendering
of animated hair. It also offers flexibility to balance between the
overall performance and visual quality, and can be used to model
and render different hairstyles. We have used these level-of-detail
representations to animate various hairstyles and obtained no-
ticeable performance improvement, with little loss in visual quality.

Keywords: Geometric Modeling, Hair Modeling, Level-of-Detail
Algorithms.

1 Introduction

The ability to model human features has become an essential aspect
of 3D graphics for modeling avatars in virtual environments, vir-
tual humans in computer games, and human characters in animated
films. A human head can have over 100, 000 individual strands of
hair. Animating hair in real-time is a challenging problem due to the
high number of primitives required to model hair accurately and re-
alistically. It is also difficult to achieve stable and robust simulation
of hair dynamics as well as interactions among the hair and between
the hair and the body for different types of hairstyles.

The current commercial renderers, such as Pixar’s RenderMan

and other proprietary software used in movies like Monsters, Inc.
and Final Fantasy, can generate beautiful and realistic appear-
ances for hair and fur. However, to the best of our knowledge, these
systems do not offer interactive performance for either animation
or rendering of hair. Modeling, styling, simulating and animating
hair remains a slow, tedious and often painful process for anima-
tors. A few existing real-time algorithms [Koh and Huang 2001] or
hardware accelerated rendering and shading [NVIDIA 2001], on the
other hand, often do not yield realistic hair renderings or are limited
to certain hairstyles (e.g. short, straight hair). One of the major
bottlenecks in achieving real-time simulation of moving hair is col-
lision detection among hairs and between the hair and the body. This
is often the dominating factor in terms of the overall computational
cost [Plante et al. 2001].
Main Contribution: In this paper, we present a novel, unified
framework for modeling hair based on level-of-detail (LOD) repre-
sentations. We use a series of subdivision surface patches [Schroder
and Zorin 1998] for modeling the least significant layers of hair,
hair clusters represented as subdivision surfaces of variable thick-
ness for modeling the intermediate layers, and subdivision curves
for simulating the most visible and highest-resolution individual hair
strands. Two hairstyles modeled and simulated using a combination
of these representations are shown in Fig. 1 and Fig. 2. Our algo-
rithm combines this set of LOD representations to simulate moving
hair, perform collision detection, and accelerate graphical render-
ing. It automatically switches between different approximations of
varying fidelity, depending on the user specified screen-space error
tolerance, viewing distance, visibility, hair motion and other appli-
cation dependent factors. Overall, our framework offers several ad-
vantages:

e Unified representations based on the subdivision framework
and the “base skeleton” representation;

Figure 1: Long, curly red hair blowing in the wind.

Figure 2: Short, wavy brown hair.

e Automatic simplification of both geometry and physics for
hair animation and rendering;

e Computational efficiency in the overall dynamic simulation,
collision detection, and graphical rendering;

o Flexibility in achieving the desired balance between simula-
tion speed and visual fidelity;

e Generality in terms of modeling many different types of hair:
short vs. long, straight vs. wavy, thin vs. thick, fine vs. coarse.

Using these level-of-detail representations for modeling hair, we
observed noticeable overall performance improvement with little
degradation in visual appearance of the simulation.

Organization: The rest of the paper is organized as follows. Section
2 gives a brief survey of related work. Section 3 describes the three
basic model representations of hair based on the subdivision frame-
work and the base skeleton. The dynamics model and our collision
detection algorithm using the LOD representations are described in
Section 4 and Section 5 respectively. In Section 6, we describe tech-
niques to render hair using the proposed level-of-detail representa-
tions. The criteria for automatically switching and selecting LOD
representations are outlined in Section 7. Section 8 highlights the

results of our implementation, and analyzes its performance. Fi-
nally, we suggest several areas for future work.

2 Related Work

Our work is built upon a large body of knowledge and concepts from
several different areas, including hair modeling, rendering and ani-
mation, multiresolution representations, and simulation acceleration
techniques. We synthesize together many key ideas from different
areas, improve upon several known algorithms for simulating and
rendering hair, and propose a new approach for hair modeling based
on the subdivision framework and the base skeleton.

2.1 Hair Modeling

Modeling hair has been an active area of research in computer
graphics and numerous approaches have been proposed to ad-
dress this problem [Magnenat-Thalmann et al. 2000; Hadap and
Magnenat-Thalmann 2001; Yu 2001; Kim and Neumann 2002].
Some fundamental techniques were presented to model the motion
of individual hair strands in [Anjyo et al. 1992; Kurihara et al. 1993;
Daldegan et al. 1993], with each strand of hair represented as a series
of connected line segments and the shape of the hair determined by
specifying the desired angles between segments. Forces are applied
to the control points of the line segments to simulate the hair mo-
tion. To reduce the overall computation time, strands of hair that are
near each other or move in a similar fashion, are bundled together
as a group or as a wisp [Kurihara et al. 1993]. Using a similar phi-
losophy, individual strands of hair are grouped together as “wisps”
for animating long hair, each modeled using a spring-mass skeleton
and a deformable envelope [Plante et al. 2001]. A similar approach
is used for interactive hairstyling [Chen et al. 1999; Xu and Yang
2001]. Adaptive guide hairs were used in [Chang et al. 2002] to add
more detail to overly interpolated regions. Using guide strands in-
volves animating a few strands and the dynamics of the remaining
strands are interpolated from these guides.

None of these techniques, though, can perform hair animation or
rendering in real-time. Recently, a thin shell volume [Kim and Neu-
mann 2000] and 2D strips [Koh and Huang 2000; Koh and Huang
2001] have been used to approximate groups of hair. Such tech-
niques enable real-time hair simulation. However, the resulting sim-
ulation lacks a realistic, voluminous appearance of the hair. Tech-
niques for real-time rendering of fur and hair that exploit graphics
hardware were presented in [Lengyel 2000; Lengyel et al. 2001;
NVIDIA 2001]. However, these techniques do not work well or are
not applicable for rendering long, wavy or curly hair.

2.2 Model Simplification

Model simplification algorithms, such as automatic generation
of geometric level-of-detail (LOD) representations and multi-
resolution modeling [Schroder and Zorin 1998] techniques, have
been proposed to accelerate the rendering of complex geometric
models. A recent survey on polygonal model simplification is pre-
sented in [Luebke 2001]. A generic framework for selecting and
switching between different geometric levels-of-detail (LODs) to at-
tain a nearly constant frame rate for interactive architectural walk-
throughs was introduced in [Funkhouser and Séquin 1993].

2.3 Simulation Level-of-Detail

The use of levels-of-detail has been extended to motion model-
ing and dynamic simulation as well. Simulation levels-of-detail
(SLOD) are used to simplify or approximate the dynamics in a
scene, similar to the way that geometric LODs are used to simplify
a complex model.

Carlson and Hodgins explored techniques for reducing the com-
putational cost of simulating groups of legged creatures when they
are less important to the viewer or to the action in the virtual world
[Carlson and Hodgins 1997]. In [Perbet and Cani 2001], levels-
of-detail, including 3D geometry, volumetric textures and 2D tex-
tures, are used to animate and render prairies in real-time. SLODs
have also been proposed for the automatic dynamics simplification
of particle systems [O’Brien et al. 2001].

Other types of simulation acceleration techniques, such as

P
4 (a) (b)
Figure 3: Basic Physics Models. (a) The base skeleton model; (b)
The parameters that define the style of hair.

view-dependent dynamics culling [Chenney and Forsyth 1997] and
Neuro-Animator [Grzeszczuk et al. 1998], have also been investi-
gated to reduce the total computational costs for simulating a large,
complex dynamical system.

3 Modd Representations

Our approach uses three novel representations based on the subdi-
vision framework and a base skeleton to create both discrete and
continuous levels-of-detail for hair. They are strips, clusters, and
individual strands.

3.1 Design Consideration

Although the set of proposed LOD representations may appear to
be intuitive and simple, it is carefully designed and chosen. We
have adapted the use of the subdivision framework. The subdivision
framework can model different hairstyles as effectively as NURBS,
quickly perform adaptive dynamic tessellation, and most of all can
potentially take advantages of new graphics hardware for interac-
tive rendering of curve primitives. (More detail will be given in
section 6.)

The use of the base skeleton is intentionally selected to main-
tain a global, consistent, macroscopic physical behavior, as LOD
switches take place. This choice helps to drastically simplify many
transition difficulties typically present during LOD switching. It au-
tomatically reduces a fairly high degree-of-freedom dynamical sys-
tem down to a lower degree-of-freedom dynamical system, without
any extra expensive computations other than performing the LOD
switching tests (to be described in section 7).

3.2 Subdivision Representations

Subdivision curves and surfaces have been chosen as the underlying
geometric representation for all LODs in our hair modeling frame-
work because of their scalability and uniformity of representation
[Schroder and Zorin 1998]. The subdivision process creates smooth
curves and surfaces through successively refining a curve or mesh of
control points. Defining the levels of successive refinement can con-
trol the smoothness of the resulting surface or curve. This is used to
generate adaptive, continuous LODs for rendering. A detailed dis-
cussion on the subdivision framework and techniques can be found
in [Schrdder and Zorin 1998].

Subdivision in 1D is used to create the curves that represent
hairs as individual strands, to be discussed in Sec. 3.6. The 4pt
scheme in 1D is an efficient method for creating a smooth curve.
For surface representations, we create a triangular base mesh and
subdivide. The control mesh for each of the three representations is
shown in Fig. 4(a)(c) and (e).

3.3 The Base Skeleton

Based on the idea for modeling each individual hair strand [Kuri-
hara et al. 1993], we use a similar structure for the base skeleton,
which forms the “core” of our proposed set of LOD representations.
The base skeleton is comprised of n control points, or nodes. This
value is decided automatically based on criteria such as the length of
the hair, the waviness or curliness specified for the hair, and the de-
sired smoothness. The skeleton is modeled as an open chain of line

segments that connect these nodes. Spring forces are used to con-
trol the angles between each node, while the distance between each
node is fixed. Fig. 3(a) shows the basic setup of the skeleton. The n
nodes (pg, P1;---,Pn—1) and n — 1 segments (s1, $2,...,8n—1)
define the skeleton. Specifying the shape of the skeleton model is
discussed in Sec. 3.8.

3.4 Strips

The strip model in Fig. 4(a) and (b) uses a single skeleton model
as its basis for motion. The structure for this model is inspired by
the strips representation presented by [Koh and Huang 2000; Koh
and Huang 2001]. The skeleton is the center of the strip and for
each node in the skeleton there are two control points that are used
to define the strip. These two strip control points and the skeleton
node point are collinear. A skeleton with n nodes will result in a
subdivision surface created from a control polygon consisting of 2n
control points.

A strip is typically used to represent the inner most layers of hair
or parts of hair that are not visible to the viewer and, therefore, are
often not rendered. It is the coarsest (lowest) level-of-detail used
for modeling hair. It is mainly used to maintain the global physical
behavior and the volume of the hair during the simulation.

I
I

nnlfﬁ-‘i\l“

sE=

M
Ay

1
E\

¥

I
iy

(8 (b) (d) (e) ()
Figure 4: Level-of-Detail Representations for Hair Modeling. (a)
Subdivision representation of strip with skeleton; (b) Rendered strip; (c) Subdivision

representation of cluster with skeleton; (d) Rendered cluster; (€) Subdivision represen-
tation of a strand with skeleton; (f) Rendered individual strand.

3.5 Clusters

The clusters are represented as generalized cylinders created with
texture-mapped subdivision surfaces, as shown in Fig. 4(c) and (d).
Each cluster is based on one skeleton that is located at the center
of the cluster. A radius is specified at the top and the bottom of
each cluster. The radius is then linearly interpolated at each skeleton
node point; this allows the thickness to vary down the length of the
cluster. At each skeleton node, a circular cross-section, made up of
m control points, is created based on the radius value at that node.
Thus, a skeleton made up of n points will create a cluster of mn
control points. Typically having m=4 is enough detail to define the
cross-section.

A cluster is used to model the intermediate layers of hair and
often makes up the majority of the body of semi-visible hair. When-
ever appropriate, it is far less costly to represent a group of hair using
the cluster model, instead of a large number of individual strands.

3.6 Individual Strands

Each individual strand is modeled as a subdivision curve using 1D
subdivision with n control points, as shown in Fig. 4(e) and (f).
Most human heads have a few individual strands that are separate
from the body of their hair. These types of small imperfections are
usually only noticeable when viewing the hair closely. The ability

to see these individual strands is what makes this representation a
finer detailed model of hair than the clusters.

3.7 Generating LODs

In the model simplification literature, typically either static LODs
are generated offline for online switching, or dynamic LODs are
computed on the fly. In our current framework, a combination of
both static and dynamic LOD representations is used.

Continuous LOD representations are generated by the subdivi-
sion of curves and surfaces for fast rendering. Given the three basic
discrete LOD representations, a small number of individual strands
are grouped into clusters and a few hair clusters are combined to
form a hair strip. In our current implementation, for the ease of val-
idating the effectiveness of this framework, a predefined number is
used in the simulation. (Due to page limitation, more implemen-
tation detail is given at the project website.) However, this can be
modified to generate dynamic groupings of strands and clusters on
the fly. This is a non-trivial computation to perform in real-time,
considering the number of strands or clusters on a human head. It
is thus beyond the scope of this paper and we plan to investigate the
feasibility of this option in our future work.

We also use a hybrid representation, where only a single skele-
ton model is used to simulate physical behavior for a group of indi-
vidual strands, while individual strands are rendered. This is a fairly
popular technique used to generate high-quality animation. This is
used in some of our simulations to help further accelerate the overall
performance, while maintaining the overall visual quality.

3.8 Hairstyling

The skeleton controls the motion and the shape of each hair section
and is responsible for the overall style of the hair. Various shapes or
styles of hair can be specified by stipulating the rest angles 8o and
¢o (see Fig. 3) of each node 7 of the skeleton. Straight hair can be
created by assigning 6;0 to 0 and ¢;o to 0 for each node p; of the
skeleton. In addition, we can create a wavy hairstyle by zig-zagging
the position of the nodes down the length of the skeleton. A zigzag
or wavy skeleton is created by assigning each ;o to a certain angle
between 0 and 90 degrees and then the values of ¢;o alternate by
180 degrees. Ringlet or spiral curls can also be created using the
skeleton by specifying an angle value between 0 and 90 degrees for
0:0 and then, to achieve the spiral effect, each ¢;o value increments
by 90 degrees down the length of the skeleton.

These two processes for stipulating waves or curls can be altered
to create varying styles. The segment size and the values for ¢ can
be changed to create non-uniform curls and waves according to the
desires of the user.

Both the strands and the clusters are able to accurately depict the
shape defined by the user. While the strip representation gives better
visual results for straight hair, it can also be used to model wavy and
curly hair, but not in as fine a detail as the other two representations.
Strips are only used when the viewer cannot observe fine detail, such
as when the hair is at distances far from the viewer, or when the hair
is not in sight. Thus, while the strip cannot depict all hairstyles as
accurately as the other two LODs, it is not usually apparent to the
viewer. Criteria for choosing an LOD is discussed in further detail
in Sec. 7.

4 Dynamic Simulation

The use of the same underlying skeleton model for each hair rep-
resentation, i.e. strips, clusters, and individual strands, provides
a simple yet effective mechanism for switching between different
levels-of-detail. In this section, we describe the dynamic model of
the skeleton, and explain our hair simulation algorithm that uses a
combination of these three representations.

4.1 Basic Physics Model

The physics of motion for the base skeleton is similar to those de-
scribed in [Anjyo et al. 1992; Kurihara et al. 1993]. The forces
that are applied to each node point govern the motion of the skele-
ton. The force measured from the angular springs of the skeleton
model, Fspring, helps hold the specified hairstyle during the simu-

lation. F;__ .., force for the sth node of the skeleton, is calculated
by combining the forces for F;, and F;,.

Fi, = —ko(0; — 6i0),
F, = —kg(¢i — dio),

where kg and k, are angular spring constants and 8;0 and ¢;o are
initial angles for node 4.

Other forces that act on the hair are gravity, Fy,qvizy, external
forces, F..:, such as wind, and forces due to collision. We will
ignore the influence of collision forces on a node until Sec. 5. Sum-
ming the remaining forces together, we obtain a magnitude and di-
rection for the simulation force Fy;,,, applied to each skeleton node
p:, to be:

Fiyin = Fieor + F;

sim spring + Figmuity .

4.2 Transitioning between LODs

One of the most crucial aspects of using LODs in a simulation is
the ability to switch between different representations smoothly. In
order to avoid a sudden jump or popping in the graphical display,
it is necessary that the motion and positioning of the hair remain
consistent throughout the transition.

Since the motion of each LOD is based on the same underlying
skeleton model, we can use this formulation to move from one level
to another with little visual artifacts. When a switch is made, the
skeleton of the new level-of-detail inherits the dynamics state of the
skeleton of the previous level.

For example, if the current LOD is a strip, the algorithm re-
fines the hair model and makes a transition to multiple clusters. The
section of hair transitions from a model with one skeleton to one
with ¢ skeletons, where ¢ is the number of clusters represented by
one strip. Each cluster skeleton linearly interpolates position and
motion values from the strip skeleton based on the position of the
cluster skeleton’s root, or the first skeleton node, po, in relation to
the root of the strip skeleton.

The transitions are even more straightforward going in the re-
verse direction. As we move from multiple clusters back to a sin-
gle strip, the skeleton of the strip simply inherits the average posi-
tion and motion values of the cluster skeleton that the strip repre-
sents. Transitions between the clusters and individual strands are
performed in a similar manner.

By using these simplified representations together, our frame-
work automatically switches between different LODs of hair, sim-
plifying the dynamics of the hair as needed. Criterion for switching
between LOD:s is discussed in Sec. 7. A strip can model the largest
portion of hair and its simulation requires as little computation as a
single strand or a cluster of hair. When appropriate, strips are used
to accelerate the simulation of hair, while maintaining some high-
level behavior of the hair dynamics. Clusters are used in a similar
manner to accelerate the simulation.

5 Collision Detection

Collision detection is a vital part of hair simulation since hair is in
constant contact with the scalp of the head and other hairs. Due to
the high complexity of hair, this can be a costly computation and it
is crucial that the collision detection is performed efficiently.

5.1 Bounding Volume Hierarchy

There are many techniques known for collision detection. Some of
the commonly used algorithms for general models are based on the
use of bounding volume hierarchies (BVHSs). A tree of bounding
volumes (BVSs) is pre-computed offline to enclose sets of geometric
primitives, such as triangles. To perform collision detection using
BVHs, two objects are tested by recursively traversing their BVHs
[Larsen et al. 2000].

5.2 Swept Sphere Volumes
To perform collision detection on the different representations of
hair, we adapt the family of “swept sphere volumes” (SSV) [Larsen

et al. 2000] to surround the hair. SSVs are a family of bounding
volumes that correspond to a core skeleton grown outward by some

offset. The set of core skeletons may include a point, line, or n-gon.
We have chosen to use arbitrarily oriented rectangles, instead of n-
gons, as the most complex skeleton in our current framework. More
precisely, let C' be the core skeleton and .S be a sphere of radius .
Each SSV, B, can be defined as:

B=Co®S={c+r|lceC,resS}

SSVs are chosen as the bounding volumes in our framework,
because the shape of our LOD representations shares close resem-
blance to those of SSVs. Different SSVs provide varying tightness.
For clusters and strands, line swept spheres (LSS) are the best can-
didates for each segment, while rectangle swept spheres provide the
better fit for strips, and the point swept sphere for the head at the
top level. To detect a collision between a pair of SSVs we simply
perform a distance computation on the corresponding pair of core
skeletons and then subtract the appropriate offset (radius of each
SSV).

5.3 Constructing SSVs for Hair Representations

For each rigid segment of the skeleton model, that is, each line seg-
ment between two nodes, we pre-compute an SSV BV. Since each
representation of the hair can be tightly encapsulated using a single
SSV, a BVH is not necessary for the hair. For a skeleton with n
nodes, there are n — 1 segments, and thus n — 1 single SSVs. The
variable thickness of each segment defines the radius of the SSV
along its length.

In order to compute a BV for a strip, we let the four control
points of the strip that outline a skeletal segment define the area for
a BV to enclose. This is performed for each of the n — 1 segments
along the skeleton. The geometry of the strip is different from the
other two representations in that the strip is a surface while the clus-
ters and a collection of strands are volumes. In order to allow the
transition from a strip into multiple clusters remain faithful to the
volume of hair being depicted we create a BV for a strip section by
surrounding it with a box of certain thickness. Each strip is given
a thickness equal to that of its cluster and strand grouping counter-
parts. While the strip is rendered as a surface, it acts physically as
a volume. Thus, when a transition from a strip into clusters occurs,
the volume of hair being represented remains constant throughout
this process.

For the cluster representation, we create a BV around the 2m
control points that define a segment (m control points, as defined in
section 3.5, from the cross-section at the top of the segment and m
control points at the bottom of the segment).

For individual strands, we perform collision detection for each
strand or group of strands, depending on implementation, in a man-
ner similar to that of the clusters. We compute an LSS around the
skeleton that defines each segment with a radius defining the thick-
ness. The radius of each BV is varied based on the thickness of a
group of strands.

Once the BVs are computed for the hair we construct a BVH of
SSVs using a top-town hierarchy construction for the other objects
in the scene, head, body, etc., as a pre-computation. During the run-
time simulation, the single SSVs and the BVHSs are used to perform
collision queries, and are lazily updated on the fly. To detect a colli-
sion between a segment of hair and an outside object, the hair’s SSV
is tested against the BVH of the object. (Please refer to [Ward et al.
2003] for more detail.)

5.4 Collision Response

Since the same skeleton model is used for each representation,
whenever a collision is detected we calculate the response using the
same method for all of the representations. Once a collision between
the hair and the head, or other object, has been detected our algo-
rithm determines how much the segment of hair is penetrating the
head, the velocity of that segment of hair in the direction of the head
is set to zero, and the hair segment is moved so that it is outside of
the head. A frictional force in the direction tangent to the head is
also applied to each skeleton node when a segment of hair collides
with the head or bodly.

During the simulation, segments of hair are in constant contact
with other segments of hair. Since we do not want to perform a col-
lision detection test on a hair segment against all of the remaining
segments of hair, the area around the head is spatially decomposed
or broken into three-dimensional grids. Each segment of hair is in-
serted into the grids and only hair segments that fall into the same
grid are tested against each other. Segments of hair are tested against
each other for collision by performing an intersection test on their
SSVs.

If two hair segments intersect with each other, they need to be
moved apart. The SSV overlap test determines the distance the
skeleton segments are from each other in addition to testing for col-
lisions. We then use this calculated distance as the amount to move
the intersecting segments apart.

Further detail on the hair collision detection and collision re-
sponse algorithms, including exact methods for determining re-
sponse magnitudes and directions for hair-object and hair-hair col-
lisions and calculating frictional forces, can be found in [Ward et al.
2003].

6 Rendering

In our system, a mixed model of discrete and continuous geomet-
ric LODs is used to render the hair representations as described in
section 3. We adapted the shading model suggested by [Kajiya and
Kay 1989], to capture the anisotropic nature of hair. An efficient im-
plementation of anisotropic surface rendering is performed using an
OpenGL texture matrix, as appears in [Heidrich and Seidel 1998].
The rendering of the subdivision surfaces that are used for clusters
and strips are assigned two additional textures. The first texture con-
tains the hair color information. It is created as a pre-process from
the same color range that assigns color values to the strands. The
next texture used on the surfaces contains alpha values that define
the transparency of the surfaces [Koh00]. Alpha mapping is used to
create the illusion that there are individual strands being rendered.
The anisotropic lighting, the hair color, and the alpha textures for
the surfaces are rendered in a single pass using multi-texturing.

Self-shadowing is a vital factor to increase the volumetric cue of
the hair. We use opacity shadow maps [Kim and Neumann 2001],
which are a fast approximation of deep shadow maps.

Aliasing is an innate problem of hair rendering, because each
hair strand is too thin to occupy a single pixel. Fortunately it is
not as major of a problem for high LOD representations like the
clusters and strips, as it is for strands. We rely on graphics hard-
ware for antialiasing. NVIDIA GeForce family provides hardware
implemented high resolution antialiasing through multi-sampling
[NVIDIA 2002]. We select 4-sample 9-tab multi-sample mode -
the highest quality available to us, because various multi-sampling
modes provided by the graphics hardware does not affect overall
performance of our system. In order to render the simulated hairs
with motion blur, we adapt the technique presented by [Haeberli and
Akeley 1990]. The current image is rendered into the accumulation
buffer so that it can be integrated with previous images. Using the
accumulation buffer also reduces the aliasing of individual strands.

Switching between different LODs can introduce visual distur-
bances. To address this problem, we combine several methods. By
using the alpha channel in the textures for clusters and strips we add
the visual illusion of strands, making the LOD transition less no-
ticeable. The density values necessary for the opacity shadow map
computations for the clusters and strips are based on the number
of strands they represent. This helps to keep the brightness of the
shadows constant. We also blend the images of previous and current
LODs to make transitions smoother.

7 Choosing Hair Representations
Given the three representations for a section of hair, a single repre-
sentation for modeling and simulating that section is computed on
the basis of several criteria. We have used the following components
in our current implementation:

o Visibility

e Viewing distance

o Hair motion

7.1 Visibility

If a viewer cannot see a section of hair, that section does not need
to be simulated or rendered at its highest resolution. The viewer
cannot see hair if it is not in the field of view of the camera or if it is
completely occluded by the head or other objects in the scene.

If a section of hair in strand representation is normally simu-
lated using g number of skeletons but is occluded by other objects,
we simulate that section of hair using one larger strip, and therefore,
one skeleton. When that section of hair comes back into view, it
is important that the placement and action of the hair are consistent
with the case when no levels-of-detail are used at all, therefore we
continue to simulate it. In addition, when a hair section is occluded,
it does not need to be rendered at all. Therefore, when a section of
hair is occluded, we simulate the hair that might normally be repre-
sented as either clusters or strands as strips that use fewer skeletons
and these sections are not rendered.

In our current implementation, we perform a simple occlusion
test that involves fitting a sphere to the head so that it is slightly
smaller than the head. If there are other objects in the scene, such as
a body, a similar method is applied. We then test the SSV bounding
volumes of the hair to see if they are visible from the camera or if
the occluders occlude them. It is possible to use more sophisticated
occlusion culling algorithms, such as [Zhang et al. 1997], or special
features on new GPUs (e.g. NVidia NV30) to perform these tests
more efficiently.

7.2 Viewing Distance

Hair that is far from the viewer cannot be seen in great detail. We
can estimate the amount of detail that will be seen by the viewer by
computing the screen space area that the hair covers. As the distance
from the viewer to the hair increases, the amount of pixels covered
by the hair gets smaller and less detail is viewable. We can calculate
the amount of pixels covered by the hair to choose the appropriate
LOD.

A single strip, a group of ¢ clusters, or a group of g strands rep-
resent a given portion of hair. Each is designed to cover a similar
amount of world space, thus we can use the control skeleton of the
strip as an estimate to the amount of screen space area a given hair
section occupies. To determine the screen coverage of this hair, we
create a line from the first skeleton node to the last skeleton node
and project this line into screen space. If the amount of screen space
covered by this line exceeds the pre-determined maximum allow-
able size for a strip, then the given hair section will be rendered as
a cluster. Similarly, if the amount of screen space covered by the
line exceeds the maximum allowable size for a cluster, then it will
be rendered as individual strands. The pre-determined maximum al-
lowable size for each LOD is decided experimentally based on the
viewer’s preference.

7.3 Hair Motion

If the hair is not moving at all, then a large amount of computa-
tion is not needed to animate it and we can use a lower level-of-
detail. When the avatar makes sudden movements, e.g. shaking his
or her head, or a large gust of wind blows through the hair, a higher-
detailed simulation is used. When a large force is applied to the hair,
such as wind, often individual strands can be seen even by a person
who is normally too far away to see individual strands of hair that
are not in motion.

We choose the particular LOD based on hair motion by first de-
termining the skeleton node in the current representation that has
the strongest force acting on it. This value is compared to certain
thresholds defined for strands or clusters. If the force acting on the
skeleton is not high enough to be represented as either strands or
clusters, then the hair can be modeled as a strip.

7.4 Combining Criteria

At any given time during a simulation, a head of hair is represented
by multiple LODs. Each section of hair uses its own parameter val-
ues to trigger a transition. The sections of hair that have a root lo-
cation at the top of the head, and therefore more viewable, remain
at the individual strands level longer than the sections of hair that

are located at the base of the neck. Thus, even if these two sections
are at the same distance from the camera and have the same motion,
it is more important that the top layer be represented as individual
strands instead of clusters, since it is in direct view. When deter-
mining an appropriate LOD to use, we first test that section of hair
for occlusion. If the hair is not visible to the viewer then we auto-
matically simulate it as a strip and do not render it. In this case, no
other transition tests are needed. If the section of hair is visible, we
perform the motion and distance tests described above. The LOD
representation is chosen based on whichever of these two tests re-
quires higher detail. The use of different representations for the hair
is virtually unnoticeable to the viewer.

8 Resultsand Comparisons

We have implemented our automated simplification algorithm for
hair modeling in C++. We modified and extended the publically
available proximity query package, PQP [Larsen et al. 2000], to per-
form collision detection. The simulation results are displayed using
OpenGL.

8.1 Implementation Issues

In order to speedup the LOD transitions at runtime, many compo-
nents are precomputed. An interactive hairstyling tool was created
to allow the user to place the skeletons on the head at the desired lo-
cations. The styling tool also lets the user set parameters for curly or
wavy hair automatically by setting the angles that control the degree
of the curl or wave, respectively. The size (length, width, radius,
etc.) of each representation is also set using this styling tool.

We also precompute the corresponding BV for each representa-
tion of hair to be used for collision detection. Therefore, during an
LOD transition, the only values that need to be updated are the posi-
tions of the skeleton nodes. Moreover, we use a simplified represen-
tation of the head model in performing collision detection between
the head and the hair in our simulation.

8.2 Performance Comparisons

We have tested our implementation on various scenarios. Please
visit our project website:

http://gamma.cs.unc.edu/HSLOD

for MPEGs of these simulation runs and for a sequence of snapshots
taken from a hair simulation using our LOD representations.

We also compared the performance for the overall dynamic sim-
ulation (not including collision detection) and collision detection us-
ing different representations on various simulation scenarios. Ta-
ble 1 gives a detailed comparison of the average running times
using a combination of LOD representations (indicated as LODs)
against the use of only one of the three discrete LOD representations
(Strands, Clusters, and Strips). Fig. 5 shows the runtime comparison
of the simulation performance over the entire duration, as the cam-
era zooms out, increasing the distance to the viewer. The rendering
performance is similar to that of the simulation. The basis for our
comparisons uses the average timings for the strand simulation as
the value 1 on the graph.

For this benchmark, we used 8045 individual strands, which
were represented using only 173 strips or only 519 clusters. In these
benchmarks, a combination of all three discrete LOD representa-
tions was automatically determined by our framework at any given
time during the simulations. Timings were taken on a PC equipped
with an Intel(R) Pentium(R) 4 2-GHz processor, 1 GB main mem-
ory and GeForce(R) 4 graphics card.

Strips provide the best overall performance in simulation time,
since it is the coarsest (lowest) LOD of hair. But, a combination of
three discrete LOD representations using our framework offers sig-
nificant performance advantages over the use of individual strands
alone. Note there are also implicitly continuous LOD representa-
tions used in our system with the subdivision framework. While it
renders images of almost equal visual quality as that of individual
strands, our LOD implementation gives much better timing perfor-
mances than modeling with individual strands in simulation, colli-
sion detection, as well as rendering.

[Breakdown [LODs [Strands | Clusters | Strips |

Dyn Sim 0.0175 | 0.5834 0.0298 0.00592
Col Detect | 0.0567 | 2.1934 0.1297 0.01896
Total 0.0742 | 2.7768 0.1595 0.02488

Table 1: Performance Comparison. Smulation for a camera zooming ou.
The average performance numbers are measured in seconds per frame.

Simulation Performance Comparison

120

100 j
% 60 ——LODs
: f Stranids
= B0
= a— Clusters
] —+— Strips
= 40 P
’ /

R ey Yy 22 T =

Distance

Figure 5: Simulation Performance Comparison. We show the factors of
speed-up among LOD, strips, and clusters over the strands alone, which is the baseline
for comparison. The simulation speed of our system consistently outperforms the indi-
vidual strands. It quickly outperforms the use of clusters alone, as the camera startsto
zoom out. Then, soon after a certain distance threshold, it performs comparably to the
use of stripsalone.

8.3 Analysis and Discussion

The impetus of this research is to explore the use of level-of-detail
representations for modeling hair to automatically generate its ag-
gregate behavior, while preserving the visual fidelity of the overall
simulation. Itis difficult to meaningfully quantify the computational
errors introduced by the use of simplified representations for mod-
eling hair. However, we can subjectively evaluate the resulting sim-
ulation by performing comparison on the visual quality of rendered
images.

Using side-by-side comparison (see the project website), we no-

tice little degradation in the visual quality of the rendered image us-
ing LODs. While they offer the best computational performance, the
images of hair simulated by strips appear sharp and angular, lacking
arealistic appearance. The performance of our framework varies de-
pending on the scenarios. In general, its overall performance in sim-
ulation and rendering compares favorably against the use of strands,
clusters or strips alone. However, our approach can automatically
place the computing resources at places where the hair is most visi-
ble to the viewer, and thus offer a much higher visual quality for the
resulting simulation.
Limitations: One possible limitation of our algorithm is the slight
popping that can occur if aggressive LOD transitions are used. How-
ever, we have alleviated this visual artifact with motion blurring and
image blending during the LOD transition in our system.

Occlusion culling is an active and challenging area of research.
To perform occlusion culling for hair rendering presents many more
new challenges, as the hair can self occlude, but each strand, clus-
ter or strip is rather small in size yet in aggregation its capability to
occlude the rest of the hair can be significant. Our current imple-
mentation only has simple object-hair occlusion tests to validate the
basic idea. However, we have already observed some performance
gain using occlusion culling. We plan to investigate more sophisti-
cated techniques, including the use of new graphics hardware, in the
near future.

One of the foremost difficulties in hair simulation is to achieve
stability for all types of hairstyles, lengths and interactions. We have
implemented Runge-Kutter of order 4 for numerical integration. We
are currently investigating the use of implicit methods.

In order to achieve high rendering rates, we are only perform-
ing two-pass refinement in our current implementation of opacity
shadow maps. For better rendered images, more passes are required

[Kim and Neumann 2001]. We plan to develop a nicer interface to
allow the users to trade off speed for higher-quality rendering and
vice versa.

There are other application dependent transition criteria, such
as collision, that we have not examined closely. These factors can
further contribute to improving the overall system performance.

8.4 Comparisons Against Other Approaches

A multiresolution technique for hairstyling is presented in [Kim and
Neumann 2002]. They only use groups of strands of different sizes.
They have not applied this approach to hair simulation. The switch-
ing is directly controlled by the user, while ours offers the capability
of automatic switching. To apply this technique to hair simulation
requires dynamic grouping on the fly. This is very difficult to per-
form given the number of strands.

Techniques that use interpolation from guide strands, such as
[Chang et al. 2002], can be limiting in the types of hairstyles that
can be modeled as well as interaction capabilities. Furthermore,
their simulations run at slower rates than ours [Yu 2002].

Our approach compares favorably to those using only cluster-
like representations (e.g. wisps or generalized cylinders) [Chen et al.
1999; Kurihara et al. 1993; Xu and Yang 2001; Plante et al. 2001],
as we can achieve similar visual quality with faster rendering rates.

The real-time animation techniques [Koh and Huang 2000; Koh
and Huang 2001; Lengyel 2000; Lengyel et al. 2001; NVIDIA
2001] and those commonly found in video games are either lim-
ited to certain hairstyles (mostly short, straight hair) or the resulting
image quality is inferior to ours.

9 Summary and Future Work

In this paper, we present the use of levels-of-detail for modeling
hair to accelerate dynamics computation, simplify collision detec-
tion and reduce rendering costs. In addition to potential areas of
improvements mentioned in the earlier sections, there are several
possible directions to extend this research:

o Interactively modify the dynamics of the hair in the presence
of other substances, such as water, styling gel, hair spray, etc.;

e Dynamically change the hairstyle, as the user combs or
brushes the hair with a 3D user interface;

e Automatically generate desired simulation outcomes, given
high-level user guidance.

Acknowledgements

This research is supported in part by Army Research Office, Intel
Corporation, National Science Foundation, and Office of Naval Re-
search. We would like to thank Ben Lok for the body model and
help in capturing head motion.

References

ANJYO, K., UsaMlI, Y., AND KURIHARA, T. 1992. A simple method for extracting
the natural beauty of hair. Computer Graphics 26, 2, 111-120.

CARLSON, D., AND HODGINS, J. 1997. Simulation levels of detail for real-time
animation. In Proc. of Graphics Interface 1997.

CHANG, J., JIN, J., AND YU, Y. 2002. A practical model for hair mutual interactions.
Proc. of ACM Symposium on Computer Animation.

CHEN, L. H., SAEYOR, S., DOHI, H., AND ISHIZUKA, M. 1999. A system of 3d hair
style synthesis based on the wisp model. Visual Computer 15, 4, 159-170.

CHENNEY, S., AND FORSYTH, D. 1997. View-dependent culling of dynamic systems
in virtual environments. In Proc. of ACM Symposium on Interactive 3D Graphics.

DALDEGAN, A., KURIHARA, T., MAGNENAT-THALMANN, N., AND THALMANN,
D. 1993. An integrated system for modeling, animating and rendering hair. Com-
puter Graphics Forum (Proc. of Eurographics 12, 3, 211-221.

FUNKHOUSER, T. A., AND SEQUIN, C. H. 1993. Adaptive display algorithm for
interactive frame rates during visualization of complex virtual environments. In
Proc. of ACM SSIGGRAPH, J. T. Kajiya, Ed., 247-254.

GRZESZCZUK, R., TERZOPOULOS, D., AND HINTON, G. 1998. Neuroanimator: Fast
neural network emulation and control of physics-based models. In Proc. of ACM
SIGGRAPH, 9-20.

HADAP, S., AND MAGNENAT-THALMANN, N. 2001. Modeling dynamic hair as a
continuum. Computer Graphics Forum (Proc. of Eurographics 2001) 20, 3.

HAEBERLI, P. E., AND AKELEY, K. 1990. The accumulation buffer: Hardware sup-
port for high-quality rendering. In Proc. of ACM SIGGRAPH, F. Baskett, Ed., 309—
318.

HEIDRICH, W., AND SEIDEL, H.-P. 1998. Efficient rendering of anisotropic surfaces
using computer graphics hardware. Proc. of Image and Multi-dimensional Digital
Sgnal Processing Workshop (IMDSP).

KAJYA, J. T., AND KAy, T. L. 1989. Rendering fur with three dimensional textures.
In Proc. of ACM SSGGRAPH, J. Lane, Ed., 271-280.

KiMm, T.-Y., AND NEUMANN, U. 2000. A thin shell volume for modeling human hair.
Computer Animation.

Kim, T.-Y., AND NEUMANN, U. 2001. Opacity shadow maps. Proc. of Eurographics
Rendering Workshop.

KiMm, T.-Y., AND NEUMANN, U. 2002. Interactive multiresolution hair modeling and
editing. In Proc. of ACM SIGGRAPH. 620-629

KoH, C. K., AND HUANG, Z. 2000. Real-time animation of human hair modeled in
strip. Eurographics CASWbrkshop, 101-112.

KoH, C. K., AND HUANG, Z. 2001. A simple physics model to animate human hair
modeled in 2d strips in real time. Proc. of Eurographics Workshop on Animation
and Smulation.

KURIHARA, T., ANJYO, K., AND THALMANN, D. 1993. Hair animation with colli-
sion detection. In Models and Techniques in Computer Animation, Springer-Verlag,
128-38.

LARSEN, E., GOTTSCHALK, S., LIN, M., AND MANOCHA, D. 2000. Distance
queries with rectangular swept sphere volumes. Proc. of IEEE Int. Conference on
Robotics and Automation.

LEBLANC, A. M., TURNER, R., AND THALMANN, D. 1991. Rendering hair using
pixel blending and shadow buffers. The Journal of Visualization and Computer
Animation.

LENGYEL, J. 2000. Real-time fur. Proc. of Eurogrpahics Workshop on Rendering.

LENGYEL, J., PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. 2001. Real-time fur
over arbitrary surfaces. Proc. of ACM Symp. on Interactive 3D Graphics.

LUEBKE, D. 2001. A developer’s survey of polygon simplification algorithms. |IEEE
CG & A (May), 24-35.

MAGNENAT-THALMANN, N., HADAP, S., AND KALRA, P. 2000. State of the art in
hair simulation. Int. Workshop on Human Modeling and Animaton, 3-9.

NVIDIA. 2001. Final fantasy technology demo 2001. http://mmw.nvidia.com.
NVIDIA. 2002. http://devel oper.nvidia.comvdocs/lo/1451/SUPP/accuview.fi nal .pdf.

O’BRIEN, D., FISHER, S., AND LIN, M. 2001. Simulation level of detail for automatic
simplification of particle system dynamics. Proc. of Computer Animation, 210-219.

PERBET, F., AND CANI, M. 2001. Animating prairies in real-time. Proc. of ACM
Symposium on Interactive 3D graphics.

PLANTE, E., CANI, M., AND POULIN, P. 2001. A layered wisp model for simulating
interactions inside long hair. Proc. of Eurographics Workshop on Animation and
Smulation.

SCHRODER, P., AND ZORIN, D. 1998. Subdivision for modeling and animation. In
ACM SIGGRAPH Course Notes.

WARD, K., LIN, M. C. AND MACRI, D. Collision Detection for Animating Hair Using
Multiresolution Respresentations. Technical Report, University of North Carolina
at Chapel Hill. January 2003.

Xu, Z., AND YANG, X. D. 2001. V-hairstudio: An interactive tool for hair design.
|EEE Computer Graphics and Applications 21, 3, 36 —43.

Yu, Y. 2001. Modeling realistic virtual hairstyles. Pacifi ¢ Graphics.
Yu, Y. 2002. Personal Communication.

ZHANG, H., MANOCHA, D., HUDSON, T., AND HOFF, K. 1997. Visibility culling
using hierarchical occlusion maps. In Proc. of ACM SSGGRAPH, 77-88

