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Abstract

We present a novel and fast algorithm to compute penetration depth
(PD) between two polyhedral models for physically-based anima-
tion. Given two overlapping polyhedra, it computes the minimal
translation distance to separate them using a combination of object-
space and image-space techniques. The algorithm computes pair-
wise Minkowski sums of decomposed convex pieces and performs
a closest point query using rasterization hardware. It uses bound-
ing volume hierarchies, object-space and image-space culling al-
gorithms to further accelerate the computation and refines the esti-
mated PD in a hierarchical manner. We demonstrate its application
to contact response computation and a time-stepping method for
dynamic simulation.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric Algorithms, Object Hi-
erarchies, Physically Based Modeling; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Visible Line/Surface
Algorithms

Keywords: Collision detection, Graphics hardware, Image-
space computations, Dynamics simulation, Geometric modeling,
Robotics

1 Introduction

The need to perform fast proximity queries, including collision de-
tection, tolerance checking, distance calculation and penetration
computation, arises in numerous areas. Some applications include
physically-based animation, planning of autonomous characters,
computer games, and virtual environments. While several of these
queries, such as collision detection and distance computation, have
been extensively studied in the field, there is relatively little work
on penetration computation that provides a measure of intersection
or penetration between two overlapping models. Given two inter-
penetrating rigid polyhedral models, the penetration measure be-
tween them can be defined using different formulations. One of the
widely used measures for quantifying the amount of intersection is
penetration depth, commonly defined as the minimum translational
distance required to separate two intersecting rigid models [Dobkin
et al. 1993; Cameron and Culley 1986; Cameron 1997].

Most of existing collision detection algorithms and systems do
not handle inter-penetrations and current distance computation al-
gorithms do not provide a continuous distance measure when two
(non-convex) objects collide. This can induce numerical problems,
e.g. instability or invalid results, in dynamic simulation. Further-
more, several commonly used techniques like penalty-based simu-
lation methods often need to perform PD queries for imposing the
non-penetration constraint for rigid body simulation [McKenna and
Zeltzer 1990; Mirtich 2000; Stewart and Trinkle 1996]. Various
heuristics, such as reducing the frequency of PD computation [Mc-
Neely et al. 1999] or estimating PD based on the last closest feature
pairs [Mirtich 2000; Gregory et al. 2000], are sometimes used. But,
the results can be inconsistent and inaccurate. Fast and reliable PD
computation is important for robust and efficient simulation of dy-
namical systems.

The PD between two overlapping objects can be formulated
based on theirMinkowski sum. However, the worst case computa-
tional complexity of computing the Minkowski sum can beO(n6),
wheren is the number of features [Dobkin et al. 1993]. In addi-
tion to its high computational complexity, the resulting algorithms
are also susceptible to accuracy and robustness problems. Hence,
no practical algorithms are yet known for accurately computing the
PD between general polyhedral models.

Main Results: We present a novel approach to approximate the PD
between general polyhedral models using a combination of object-
space and image-space techniques. Given the global nature of the
PD problem, we systematically decompose the boundary of each
polyhedron into convex pieces, compute the pairwise Minkowski
sums of the resulting convex polytopes and use the polygon inter-
polation based rasterization hardware to perform the closest point
query up to image-space resolution. To further speed up this com-
putation and improve the estimate, we use a hierarchical refinement
technique that takes advantage of object-space culling and image-
space acceleration. The overall approach combines image-space ac-
celerated queries with object-space culling and refinement at each
level of the hierarchy.

This algorithm has been implemented and tested on different
benchmarks. Depending on the combinatorial complexity of poly-
hedra and their relative configuration, its performance varies from
a fraction of a second to a few seconds on a 1.6GHz PC with an
NVIDIA GeForce 3 graphics card. To illustrate the effectiveness of
our algorithm, we demonstrate its application to contact response
computation and a time-stepping method for rigid-body dynamic
simulation. To the best of our knowledge, this is the first practical
algorithm for computing a reliable PD between general polyhedral
models for physically-based animation and it works well for differ-
ent challenging scenarios.

Organization: The rest of the paper is organized in the following
manner. We give a brief summary of the related work in Section 2
and present some background material along with an overview of
our approach in Section 3. Section 4 describes the underlying algo-
rithm that uses a combination of object space and image space com-



putations. We present a number of acceleration methods in Section
5 to improve the overall performance. Section 6 describes its imple-
mentation and performance on different configurations. Section 7
highlights its application to physically-based animation, including
penalty-based rigid-body simulation and time-stepping methods.

2 Previous Work

In this section, we briefly review previous work related to proxim-
ity queries, penetration depth computation and the use of graphics
rasterization hardware for geometric computations.

2.1 Collision and Distance Queries

The problems of collision detection and distance computations are
well studied in computational geometry, robotics, and simulated en-
vironments. Most of the prior work on polyhedra can be catego-
rized based on the types of models, such as convex polytopes and
general polygonal models.

For convex polytopes, various techniques have been developed
based on Minkowski sum [Cameron 1997; Gilbert et al. 1988] and
feature tracking using Voronoi regions [Lin and Canny 1991; Mir-
tich 1998]. Some of these algorithms also utilize the spatial and
temporal coherence between successive frames and perform incre-
mental computations [Baraff 1992; Cameron 1997; Lin and Canny
1991; Mirtich 1998].

For general polygonal models, bounding volume hierarchies
(BVHs) have been widely used for collision detection and sepa-
ration (or Euclidean) distance queries. They localize the problem
based on the “divide-and-conquer” paradigm. BVHs often differ
based on the underlying bounding volume or traversal schemes.
These include the OBB trees [Gottschalk et al. 1996], sphere trees
[Hubbard 1995], k-dops [Klosowski et al. 1998], and convex hull-
based trees that use surface based convex decomposition [Ehmann
and Lin 2001]. Due to the global nature of the PD problem, none of
them can be directly used for PD computation between non-convex
models.

2.2 Penetration Depth Computation

A few efficient algorithms to compute the penetration depth (PD)
between convex polytopes have been proposed. The simplest exact
algorithm is based on computing their Minkowski sum [Guibas and
Seidel 1987; Kaul and Rossignac 1992] followed by computing the
closest point to its boundary from the origin. But its worst case
complexity isO(mn), wherem andn are the number of features in
each polytope. Dobkin et al. computed the directional PD using the
Dobkin and Kirkpatrick polyhedral hierarchy [Dobkin et al. 1993].
For any directiond, it finds the directional PD inO(lognlogm)
time. A randomized algorithm to compute the PD is given in [Agar-
wal et al. 2000].

Given the worst-caseO(mn) complexity of PD computation be-
tween convex polytopes, a number of approximation approaches
have been proposed for interactive applications. All of them ei-
ther compute a subset of the boundary or a simpler approximation
of the Minkowski sum and compute an upper or lower bound to the
PD [Cameron 1997; Bergen 2001; Ong and Gilbert 1996; Kim et al.
2002a]. They also take advantage of frame-to-frame coherence and
perform incremental computations.

Other approximation approaches for general polygonal models
are based on discretized distance fields. These include discretized
algorithms based on fast marching level-sets for 3D deformable
models [Fisher and Lin 2001] and others based on graphics ras-
terization hardware and multi-pass rendering for 2D objects [Hoff
et al. 2001]. These techniques provide a localized estimation that

may not be correct. No good global algorithms are known for PD
computation between general polyhedral models.

2.3 Graphics Hardware for Geometric Applications

Interpolation-based polygon rasterization hardware is increasingly
being used for geometric applications. These include visibility and
shadow computations, CSG rendering, proximity queries, morph-
ing, object reconstruction etc. A recent survey on different applica-
tions is given in [Theoharis et al. 2001]. All these algorithms per-
form computations in a discretized space (i.e. the image-space) and
their accuracy is governed by the underlying pixel resolution. The
set of proximity query algorithms include cross-sections and inter-
ferences [Rossignac et al. 1992] and distance computations, includ-
ing separation and local penetration estimation [Hoff et al. 1999;
Hoff et al. 2001]. An algorithm to compute a discretized approx-
imation to the convolution of general polyhedral models using the
rasterization hardware is presented in [Kaul and Rossignac 1992].
Algorithms for direct rendering of CSG models based on graphics
rasterization hardware have been presented in [Epstein et al. 1989;
Goldfeather et al. 1986; Wiegand 1996]. They render the CSG hi-
erarchies using multiple passes of clipping (i.e. stencil tests) and
depth tests.

3 Background and Overview

In this section, we give a brief overview of the PD computation
problem and our approach to solve it.

3.1 Penetration Depth and Minkowski Sums

Let P and Q be two intersecting polyhedra. The PD ofP and
Q, PD(P,Q), is the minimum translational distance that one of
the polyhedra must undergo to render them disjoint. Formally,
PD(P,Q) is defined as:

min{‖ d ‖ | interior(P+d) ∩ Q = /0} (1)

Here,d is a vector inR3.
A general framework to compute the PD is based on Minkowski

sums. The Minkowski sum,P⊕Q, is defined as a set of pairwise
sums of vectors fromP andQ. In other words,P⊕Q = {p+q| p∈
P,q∈Q}. Furthermore,P⊕−Q is defined by negatingQ; i.e. P⊕
−Q = {p−q| p∈ P,q∈Q}.

It is well known that one can reduce the problem of comput-
ing the PD betweenP andQ to a minimum distance query on the
surface of their Minkowski sum ,P⊕−Q [Cameron 1997]. More
specifically, if two polyhedraP andQ intersect, then the difference
vector,OQ−OP, between the origins1 of P andQ is insideP⊕−Q.
Let us denoteOQ−OP by OQ−P. The PD(P,Q) is defined as a
minimum distance fromOQ−P to the surface ofP⊕−Q.

3.2 Local Vs. Global Computations

The computation of the PD between two polyhedral models is a
global problem and it is rather difficult to localize it using some
‘divide-and-conquer’ approach. A local solution computed using
intersecting features or boundaries may not be correct, as shown
in Fig.1-(b). However, as Fig. 1-(c) shows, the minimum distance
from the origin,O, to the surface of the Minkowski sum of the
two polygons in Fig. 1-(b) is the global PD. Furthermore, a local

1The origin of a polyhedron refers to the origin of the local coordinate
system of the polyhedron with respect to the global coordinate system. Also,
throughout the rest of the paper, the origin of the Minkowski sum will refer
to the difference vector of the origins of two polyhedra.



solution to the PD problem may fail to compute a correct response
for dynamic simulation, as explained in Section 7.

o

(a) (b) (c)

Figure 1: Local vs Global PD Computation.(a) shows the situation

before two polygons in 2D come into contact. (b) shows O(nm) intersections after

the polygons are intersected. However, a localized PD computation (denoted by solid

arrows) based on O(nm) intersections may not provide a global PD which is denoted

as a dotted arrow in this figure. (c) shows the Minkowski sum of the two polygons

in (b). The minimum distance from the origin to the surface of the Minkowski sum

corresponds to the global PD.

3.3 Our Approach

It is relatively easier to compute Minkowski sums of convex poly-
topes as compared to general polyhedral models. However, for
non-convex polyhedra in 3D, the Minkowski sum can haveO(n6)
worst-case complexity [Dobkin et al. 1993]. One possible approach
for computing Minkowski sums for general polyhedra is based on
decomposition. It uses the following property of Minkowski com-
putation. IfP = P1∪P2, thenP⊕Q = (P1⊕Q) ∪ (P2⊕Q). The
resulting algorithm combines this property with convex decompo-
sition for general polyhedral models:

1. Compute a convex decomposition for each polyhedron

2. Compute the pairwise convex Minkowski sums between all
possible pairs of convex pieces in each polyhedron

3. Compute the union of pairwise Minkowski sums.

In order to overcome its combinatorial and computational com-
plexity, we use asurface-basedconvex decomposition of the
boundary and utilize the graphics rasterization hardware to estimate
the PD. Moreover, we do not explicitly compute the boundary of
the union or any approximation to it. Rather, we perform theclos-
est point queryusing a multipass algorithm that computes the clos-
est point from the origin to the boundary of the union of pairwise
Minkowski sums. The resulting maximum depth fragment at each
pixel computes an approximation to the PD, up to the image-space
resolution used for this computation.

We improve the performance of the basic algorithm highlighted
above using a number of acceleration techniques. These include
hierarchical representation based on convex bounding volumes,
object-space culling approaches and image-space acceleration tech-
niques applied to the multipass algorithm. These are explained in
detail in Section 5.

The resulting algorithm includes a pre-computation phase as
well as a runtime query. The pre-computation phase consists of
the following steps:

1. Decompose the boundary of each polyhedron into convex
patches using a greedy approach (Sec. 4.1).

2. Compute a bounding volume hierarchical representation of
the model. Each node in the tree corresponds to a convex
polytope and each leaf is a convex hull of a decomposed con-
vex patch (Sec. 5.2).

Given two polyhedra and their bounding volume representations,
the runtime phase of the algorithm proceeds in the following man-
ner:

1. Compute an upper estimate to the amount of PD. Let that es-
timate bedest. Initially we compute an estimate based on the
root nodes of each tree (Sec. 5.3).

2. At each level of the two hierarchies, repeat the following
steps:

(a) Consider all pairwise combinations of nodes at the
current level. Cull away all the pairs that are non-
overlapping and are more thandest apart (Sec. 5.3).

(b) Compute pairwise Minkowski sums of the rest of the
node pairs that have not been culled away (Sec. 4.2).

(c) Perform the closest point query using the rasterization
hardware to compute a PD estimate (Sec. 4.3).

The entire pipeline of our PD algorithm is illustrated in Fig. 2.

Precomputation

Convex Decomposition
Decompose the boundary 
of each polyhedron into 

convex patches.

BVH Construction
Compute a convex 

hull hierarchy of the 
model

Run-time PD Query

Culling

Cull away the 
pairs of nodes that 
are more than dest

Pairwise Minkowski Sum

Compute Minkowski 
sums for the rest of 

node pairs

Closest Point Query
Using the rasterization 

hardware, perform the closest 
point query on the union of 
pairwise Minkowski sums

Refine the current PD estimate, dest, and go to the next level of BVH

Figure 2: PD Computation Pipeline

3.4 Notation

We use bold-faced letters to distinguish a vector from a scalar value
(e.g. the origin,O). In Table 1, we enumerate the notations that we
use throughout the paper.

Notation Meaning

∂P The boundary ofP
CP

i A decomposed convex piece ofP
CP,l

i
A decomposed convex piece ofP at levell

Mi j Minkowski sum betweenCi andCj

dk
est kth refinement of the PD estimation

Table 1: Notation Table

4 Penetration Depth Computation

In this section, we present our basic algorithm for global PD com-
putation. It involves decomposing the boundary of the model into
convex patches, computing their pairwise Minkowski sums, and
then performing a closest point query using rasterization hardware.

Given two intersecting polyhedra, the PD query reports a PD
scalar value and direction, along with the associated PD features2.

2These are a pair of features that realize the reported PD. The PD value
is the same as the inter-distance between planes which locally support the
PD features.



In this case, the origin is contained inside the Minkowski sum of
the two polyhedra. Fig. 3 illustrates the result computed by the PD
query.

Q-P
e

vo

P

Q
l

(a) (b) (c) (d)

s

Figure 3: Simple Penetration Depth Computation in 2D.(a) Two poly-

gons P and Q intersect. (b) The Minkowski sum P⊕−Q is computed, and the minimum

distance from the originOQ−P to ∂ (P⊕−Q) is determined. (c) When P is translated

by the amount of PD, there exists a line s locally supporting both polygons. In this

case, the edge/vertex feature pair,(e,v), as shown in (d) makes up the PD features.

The PD features are also identified in (b) as a corresponding line l.

4.1 Object Decomposition

We decompose the boundary of each polyhedronP into a collection
of convex patchesci . Theseci ’s are mutually disjoint except for
their shared edges, and the union of all theci ’s covers the entire
boundary ofP, ∂P.

We compute the convex patches,ci ’s, by dualizing the polyhe-
dral surface and performing a graph search on it in a greedy manner.
First, we construct a dual graphG of the polyhedral surface∂P by
reversing the roles of faces (F) and vertices (V) in∂P, while using
the same edges (E) inG from ∂P [Chazelle et al. 1997; Ehmann and
Lin 2001]. We traverse the dual graphG by adding faces into a cur-
rent convex patchci as long as it maintains its convexity. We repeat
this process until we cover the entire boundary of∂P. For example,
Fig. 7-(h) is a convex surface decomposition for a wrinkled torus
model, Fig. 7-(a).

Furthermore, we compute a convex hull of each surface patch,ci ,
and denote the resulting polytope byCi . The union of theseCi ’s is
completely contained in the original polyhedronP. Notice that our
decomposition strategy is merely a partition of∂P, not of P. This
surface decomposition is sufficient for PD computation, because we
are only concerned with the surface of Minkowski sums between
polyhedra.

4.2 Pairwise Minkowski Sum Computation

Our PD computation algorithm is based on the decomposition ap-
proach described in Section 3.3. The first step involves computing
the pairwise Minkowski sums between all possible pairs of convex
polytopes,CP

i andCQ
j
, belonging toP andQ, respectively. Let us

denote the resulting Minkowski sum asMi j . We use a simple algo-
rithm based on the convex hull property of Minkowski sums:

P⊕Q = CH({vi +v j |vi ∈VP,v j ∈VQ}) (2)

Here,CH denotes the convex hull operator, andVP,VQ represent
the sets of vertices, respectively in polyhedraP andQ. Based on
this fact, we compute the Minkowski sum as follows:

1. Compute the vector sum between all possible pairs of vertices
from each polytope.

2. Compute their convex hull.

4.3 Closest Point Query Using Graphics Hardware

Given all the pairwise Minkowski sums,Mi j , let

M =
⋃
i j

Mi j . (3)

Our goal is to compute the closest point on the boundary ofM,
i.e. ∂M, from the origin. We use z-buffer polygon rasterization
hardware to perform this query up to image-space resolution. The
main idea is to visualize∂M from the origin without computing a
surface representation of∂M explicitly. After that we compute the
closest point, the distance and the direction.

4.3.1 Visualizing the Boundary of the Union

Mi0

Mi1

Mi2
V

(a) (b) (c) (d)

Figure 4: Visualizing the Boundary of the Union From Inside.In (a),

V is the current view-frustum. In (b), Mi0 is rendered, and a new∂M is constructed

(thick line). In (c), when Mi1 is rendered, it opens up a new window (dotted line), and

the update region (thick gray line) on the current∂M is established. Thus a new∂M

(thick line) is constructed. In (d), we perform the same procedure for Mi2.

Our algorithm for visualizing∂M from a point inside is essen-
tially a ray-shooting procedure from the origin to∂M, and in-
crementally expands the front of∂M. For example, in Fig. 4,
we expand the current∂M (thick line) by repeatedly rendering
Mi0,Mi1,Mi2. Each timeMi0,Mi1,Mi2 are rendered, as shown in
Fig. 4(b)-(d), it opens up a new window (shown as dotted line) of
the update region (thick gray line) on the current∂M.

The algorithm maintains the current boundary ofM, ∂Mk, where
k is the current iteration, and incrementally expands it withMi j that

intersects∂Mk. We attempt to addMi j by rendering the front faces

of Mi j . The front faces that “pierce” the current∂Mk open up a
window through which the origin can see∂M. After that we render
the backfaces ofMi j into the opened window using the maximum
depth test. However, we should not render the backfaces ofMi j ,
that are created by non-original (virtual) faces ofP andQ. In other
words, we should allow the ray to hit only∂M.

In summary, the basic algorithm simply performs the following
procedure:

1. Initialize∂M0 to infinity.

2. Repeat steps 3-5m times

3. Repeat steps 4-5 for eachMi j

4. Render front faces ofMi j , and using the standard stencil oper-
ation, open a window where the depth value of the front faces
is less than that of the current∂Mk.

5. Classify the backfaces ofMi j into original and non-original.
Render only the original back faces ofMi j where the depth
value of the back faces is greater than that of the window.
This updates the∂Mk in the window.

After themth iteration in step 2 highlighted above, the algorithm
correctly finds the portion of∂M that is visible from the origin in



the following sense. After thekth iteration in step 2,∂Mk includes
the subset of∂M that the ray can reach with less than or equal tok−
1 hopsfrom the origin. Here, thehopon some pointp on∂M means
the number ofMi j ’s the ray should pass through to reachp. For

example,∂M1 includes the possible contribution to the final∂M of
all Mi j ’s that contain the origin and have zero hops. Therefore, by
induction onk, we correctly find the portion of∂M that is visible
from the origin after themth iteration.

4.3.2 Computing the Closest Point

For a given view, we can compute the closest point on the boundary
by simply finding the pixel with the minimum distance value. The
algorithm reads back the Z-buffer to obtain the depth values for
each pixel. However, these depth values have undergone the per-
spective depth transformation and do not contain the non-linearity
that is present in the distance values.

The algorithm transforms the pixel depth values into distance
values based on their(x,y) coordinate positions on the viewing
plane. Each pixel depth value is divided by cosθ , whereθ is the
angle between the vector to the(x,y) position on the viewing plane
and the center viewing direction. This depth transformation is CPU-
bound, and this operation typically takes a few milliseconds.

The minimum distance and direction to the closest point are de-
rived from the pixel position containing the minimum transformed
depth value. In order to examine views in all directions, we con-
struct six views on the faces of a cube around the origin and repeat
the operation.

5 Acceleration Techniques

The global PD computation algorithm described in Section 4 esti-
mates the amount of PD between two polyhedral models. However,
its running time can vary based on the underlying models as well as
their relative configuration. In the worst case, the convex decom-
position algorithm can result inO(n) patches and this can lead to
O(n2) pairwise Minkowski sums,Mi j . Furthermore, the cost of the
closest point query using rasterization hardware can be as high as
O(m2), wherem is the number of convex polytopes. This results in
O(n4) worst case complexity for the PD estimation algorithm.

In this section, we present a number of acceleration techniques
to improve its performance. These include hierarchical culling and
image-space acceleration techniques.

5.1 Object Space Culling

A significant fraction of the time of the PD estimation algorithm
is spent in pairwise Minkowski sum computation. The algorithm
presented in Section 4.2 considers all pairs of convex polytopes,CP

i
andCQ

j
, and computes their Minkowski sum,Mi j . If we are given

an upper bound on the PD,dest, we can eliminate some pairs of
convex polytopes without computing their Minkowski sum. This is
based on the following lemma:

LEMMA 5.1 Let di j be the separation or Euclidean distance be-

tween CP
i and CQ

j
. If di j >‖ dest ‖, then the closest point from the

origin to ∂M lies on∂ (M−Mi j ).

For example, in Fig. 5, there are two intersecting polygonsP
andQ. We estimatedest based on the convex hull ofP andQ (Fig.
5-(b)). Then, we can cull away the pairs whose separation distance
is more thandest (Fig. 5-(c)).

Based on the Lemma 5.1, we can cull away all pairs of convex
polytopes,CP

i andCQ
j
, whose separation distances are more than

1Q

P dest
1
P

Q
C

(a) (b) (c)

C Q

C0
P C

0

Figure 5: Object Space Culling.(a) There are two intersecting polygons P

(decomposed into CP0 , CP
1 ) and Q (decomposed into CQ

0
and CQ

1
). (b) Based on the

convex hull of P and Q, we first estimate the PD as dest. (c) Using dest, we can cull

away pairs (CP
0 , CQ

0
), (CP

0 , CQ
1

), (CP
1 , CQ

1
), whose separation distances are more than

dest.

dest. Computing separation distance between convex polytopes is
relatively cheap as compared to Minkowski sum computation and
a number of efficient algorithms are known [Lin and Canny 1991;
Cameron 1997]. The efficiency of this culling approach depends on
the quality of the estimate,dest. Furthermore, checking all possi-
ble pairs for separation distance can takeO(n2) time. We improve
their performance using a bounding volume hierarchy to perform
hierarchical culling.

5.2 Bounding Volume Hierarchy

We compute a bounding volume (BV) hierarchy for each polyhe-
dron using a convex polytope as the underlying BV. Each convex
polytope obtained using the decomposition algorithm explained in
Section 4.1 becomes a leaf node in the hierarchy. We recursively
compute the internal nodes in a bottom-up manner, by merging the
children nodes and computing the convex hull of the union of their
vertices. Let us define the nodes of polyhedronP at levell asCP,l

i
.

The resulting hierarchy is a hierarchy of convex hulls. For exam-
ple, Fig. 7-(b)∼ (h) shows a BV hierarchy for the torus model, Fig.
7-(a).

This hierarchy is used in our runtime algorithm to speed up the
intersection and separation distance queries for the culling algo-
rithm. Furthermore, each level of the hierarchy provides an approx-
imation of the model, which is used by the PD estimation algorithm.

5.3 Hierarchical Culling

We use the BV hierarchy to speed up the performance of the object-
space culling algorithm. The goal is to start with an initial estimate
to the PD and refine it at every level of the tree. We denote the
estimate computed using levelk of each BV tree asdk

est.
We initially start with the root nodes of each hierarchy,CP,0

0
andCQ,0

0
, which correspond to the convex hulls ofP and Q, re-

spectively. We compute the PD between those convex polytopes
[Cameron 1997; Bergen 2001; Kim et al. 2002a] and use that as the
estimated PD at level 0. The algorithm proceeds in a hierarchical
manner through the levels in each tree:

1. Consider all the pairwise nodes at levelk in each tree,CP,k
i

andCQ,k
j

. For each(i, j) pair, compute the separation distance

between them. If the nodes overlap, the separation distance is
zero.

2. Discard all the node pairs whose separation distances are more
thandk

est. Compute the Minkowski sum of the rest of the pairs.

3. Perform the closest point query on the Minkowski sum pairs
and compute the new PD estimate,dk+1

est using rasterization
hardware.
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(a) Two BV hierarchies (b) BV hierarchy Traversal

Figure 6: Hierarchical Culling.(a) shows two BV hierarchies for two different

objects. (b) shows a snapshot of the traversal on the BV hierarchies. During the

traversal, it turns out that node CP,0
0

and node CQ,1
0

are non-overlapping and their

inter-distance is greater than a upper bound on the current PD estimation. Thus, no

more traversal is performed between the children nodes of CP,0
0

and CQ,1
0

.

During each iteration, we go down a level in each tree. If we reach
the maximum level in one of the trees, we do not traverse down in
that tree any further. The algorithm computes an upper bound on the
PD in an iterative manner and refines the bound with every traversal
as:‖d0

est‖ ≥ ‖d1
est‖ ≥ . . .≥ ‖dh

est‖, whereh is the maximum height.
Finally, the algorithm returnsdh

est as the estimated PD betweenP
andQ.

Fig. 6-(a) shows BV hierarchies for two different objectsP and
Q, and Fig. 6-(b) shows a snapshot of how the BV hierarchy traver-
sal is performed. Without the culling scheme, one should consider
all four pairs betweenCP,1

0
, CP,1

1
andCQ,1

0
, CQ,1

1
. However, during

the traversal,CP,0
0

andCQ,1
0

are found to be non-overlapping and
they are more thandest apart. In this case, no more traversal is
needed between the children nodes ofCP,0

0
andCQ,1

0
.

5.4 Image Space Culling for Closest Point Query

The algorithm also spends a considerable fraction of its time in per-
forming the closest point query using the rasterization hardware (as
described in Section 4.3). Here we present a number of techniques
to improve its performance.

First of all, we compute a subset of the pairs,Mi j ’s, that contain
the origin and render them only once in the algorithm described in
Section 4.3.1. All the pairwise Minkowski sums in this subset have
a zerohop. We identify this subset, sayl out of a total ofm pairs
of Mi j ’s, by checking whether the corresponding convex polytopes,

CP
i andCQ

j
, overlap [Lin and Canny 1991; Cameron 1997; Ehmann

and Lin 2001]. Once we have computed thesel Mi j ’s, we first
render them using the maximum depth test and then the remain-
ing (m− l) pairwise Minkowski sums,Mi j ’s, (m− l) times using
the incremental algorithm.

Secondly, when we repeat the closest point query six times, once
for each face of the cube, we apply a culling technique similar to
the one discussed in Section 5.1. At each view, the algorithm main-
tains the current minimum depth value,dest, and then as it proceeds
to the next view, it culls away theMi j ’s whose distance from the
origin is more thandest, as shown in Lemma 5.1. These distances
are also computed in object space. Finally, for each view, when
we render theMi j ’s, we perform view-frustum culling by check-
ing whether the axis aligned bounding box of eachMi j lies in the
current view. This object-space view frustum culling significantly
reduces the number of primitives rendered during each iteration of
the algorithm.

6 Implementation and Results

In this section, we describe the implementation of our PD computa-
tion algorithm and demonstrate its performance on different bench-
marks. For extensive experiment results on our PD computation
and its optimization, we refer the readers to see [Kim et al. 2002b]

6.1 Implementation Issues

Our algorithm requires quick and robust implementations of the
separation distance query between convex polytopes and convex
hull computation in 3D.

We use the SWIFT++ implementation of theVoronoi marching
technique [Ehmann and Lin 2001] to efficiently perform the sep-
aration distance query. It performs distance queries between non-
convex polyhedra by using a hierarchy of convex hulls. We use
the public domain QHULL package [Barber et al. 1993] for the
pairwise Minkowski sumsMi j ’s, by using the convex hull based
algorithm described in Section 4.2.

We used the OpenGL graphics library to implement the closest
point query. Also, we typically set the screen space resolution to
128× 128 at the intermediate step of the hierarchical refinement,
then at the finest level of the refinement, we set the resolution to
256×256. For our benchmarking models, these different resolution
schemes provide reasonable accuracy for our applications, and they
also balance the computation time between the object space and the
image space algorithms.

6.2 Performance Benchmarking

We have applied our PD algorithm to four benchmarks: interlocked
tori, touching tori, interlocked “grates” and a pair of alphabet mod-
els, with their relative configuration shown in Fig. 8.

We measure the timings on a PC equipped with an Intel Pen-
tium IV 1.6 GHz processor, 512 MB main memory and GeForce
3 graphics card. The complexity of the models varies from a few
hundred faces to a few thousand faces. The number of leaf nodes,
computed using the convex surface decomposition algorithm, vary
from 67 pieces to 409 pieces. The running times vary based on the
model complexity and the relative configuration of two polyhedra.
It can vary from a fraction of a second, for the touching tori and
a pair of alphabet models, to a few seconds for models that have
deep penetration (e.g. interlocked tori and interlocked “grates”).
Detailed timings for some levels of the hierarchy are given in Table
2.

We also observe that the performance of our algorithm depends
heavily on the extent of object-space culling, which is directly re-
lated to the amount of inter-penetration between the objects. There-
fore, for applications that have spatial and temporal coherence be-
tween successive instances, our algorithm performs quite well since
penetration is typically shallow during successive time steps. As a
result, the algorithm is able to cull away a very high percentage of
Minkowski pairs (as shown in Table 2) and is quite fast in practice.

6.3 Performance Speedup by Acceleration Tech-
niques

In Table 3, we also compare our accelerated PD algorithm presented
in Section 5 with the basic algorithm presented in Section 4. As
the table illustrates, the basic algorithm suffers fromO(n4) com-
putational costs, and our accelerated algorithm outperforms it by
several orders of magnitude. The result is even more dramatic in a
very complex scenario such as the interlocking grates model.



Level Cull Ratio Min. Sum HW Query ‖dest‖
3 31.2 % 0.219 sec 0.220 sec 0.99
5 96.7 % 0.165 sec 0.146 sec 0.53
7 98.3 % 1.014 sec 1.992 sec 0.50
(a) Interlocked Tori (2000 faces, 67 convex pieces each)

Level Cull Ratio Min. Sum HW Query ‖dest‖
3 98.4 % 0.135 sec 0.014 sec 0.29
7 99.9 % 0.105 sec 0.032 sec 0.29
(b) Touching Tori (2000 faces, 67 convex pieces each)

Level Cull Ratio Min. Sum HW Query ‖dest‖
3 0 % 0.66 sec 0.29 sec 6.41
7 96.9 % 0.43 sec 0.39 sec 0.63
9 99.9 % 0.03 sec 0.07 sec 0.63

(c) Grates (444 & 1134 faces, 169 & 409 pcs)

Level Cull Ratio Min. Sum HW Query ‖dest‖
2 50.0 % 0.055 sec 0.021 sec 0.06
4 56.2 % 0.099 sec 0.062 sec 0.03
6 97.6 % 0.080 sec 0.161 sec 0.01

(d) Alphabets (144 & 152 faces, 42 & 43 pcs)

Table 2: Benchmark Results.We show the performance of our PD algorithm

for various models. We also break down the performance to the object space culling

rate, the pairwise Minkowski computation time and the closest point query time on

some of the levels of the hierarchy.

Type Without Accel. With Accel.
Interlocked Tori 4 hr 3.7 sec
Touching Tori 4 hr 0.3 sec

Grates 177 hr 1.9 sec
Alphabets 7 min 0.4 sec

Table 3: Performance Speedup by Acceleration Techniques

6.4 Accuracy of PD Computation

Our algorithm always computes an upper estimate to the PD. In
other words, the algorithm may be conservative and the computed
answer may be more than the global minimum defined in Equation
1. The tightness of the upper bound varies based on the underlying
precision of the object-space and image-space computations. The
accuracy of the algorithms for surface decomposition, Minkowski
sum computations and object-space culling is governed by the pre-
cision of floating-point CPU-based hardware, which typically has
53 bits of mantissa. However, the rasterization errors and precision
of image-space computations governs the tightness of the resulting
answer. The main sources of these errors are:

1. The discretization of ray directions to lie on a pixel grid for
each view.

2. The fixed precision of the Z-buffer.

Increasing the resolution of the grid decreases the worst-case angu-
lar error that is proportional to the distance between adjacent pix-
els. Moreover, constructing tighter bounds on the minimum and
maximum distances in each view (near and far plane distances), de-
creases the Z-buffer precision error.

7 Application to Rigid Body Simulation

In this section, we describe the application of our PD algorithm
to dynamic simulation of rigid bodies, as shown in Fig. 9. This
includes contact response computation in penalty-based methods
[McKenna and Zeltzer 1990; Moore and Wilhelms 1988], as well

as a time stepping technique for either impulse-based [Mirtich and
Canny 1995] or constraint-based simulation [Baraff 1992; Baraff
1994; Witkin and Baraff 1997].

PD computation is important for robust physically-based anima-
tion. Inter-penetration is often unavoidable in numerical simula-
tions, unlike in the physical world. Moreover, for applications in-
volving articulated joints, stacking objects and parts assembly, the
bodies are nearly in contact or actually touching each other all the
time. Our PD computation algorithm provides a consistent and ac-
curate measure of PD for rigid body dynamic simulation using var-
ious (including penalty-based, constraint-based, or impulse-based)
simulation methods.

7.1 Penalty-based Methods

In penalty-based methods, the forces between rigid bodies are pro-
portional to the amount of inter-penetration. Letd be the transla-
tional PD,n the direction of penetration andk a stiffness constant.
The force vectorF is given as:

F = (k ·d)n (4)

Local vs. Global PD Computation: Localized approaches for
computing the PD may fail to give a correct response for penalty-
based methods. For example, in the configurations shown in Fig.
1, which illustrated 2D geometric models of letters ‘C’ and ‘I’, the
forces based on localized values of PD may not prevent the rigid
bodies from inter-penetrating. However, our global PD computa-
tion algorithm can provide a correct and robust response for such
configurations. In the scenario shown in Fig. 10 several digits are
interlocked. In this simulation, local approximations to the PD fail
to report consistent or correct outputs for many pairs of digits.

7.2 Time Stepping

Unlike penalty-based methods that allow the models to inter-
penetrate, some other simulation approaches impose strict non-
penetration constraints. These include constraint-based simulation
that distinguishes between resting contacts and colliding contacts.
The resting contacts are classified based on the fact that the relative
velocity is lower than a certain value. For colliding contacts, the
impulsive forces are applied to prevent inter-penetration and pre-
serve momentum properties. These impulsive forces are computed
at the time of contact between the rigid bodies. In practice, the ex-
act time of impact cannot be computed using analytic techniques.
As a result, time stepping techniques are often used to estimate the
time of collision [Stewart and Trinkle 1996; Mirtich 2000].

Some of the commonly used high-level scheduling algorithms
for impulse-based or constraint-based rigid body simulation include
retroactive detection and conservative advancement [Mirtich 2000].
Both of the techniques advance or retract the simulation time based
on the separation distance between the objects and use some form
of root finding algorithm to estimate the time of collision.

• Bisection search. Performing a simple bisection search in
time is one of the commonly used technique to estimate the
time of collision. This approach converges given a sufficient
number of iterations. Moreover, it does not suffer from the
inaccuracy of penetration depth estimation or approximations
to the motion. However, it can take a long time to converge,
if the time step used in the simulation is large.

• Extrapolation. If no information is gathered on the extent of
penetration at the end of an interval, a common approach to
predict the time of collision is based on extrapolation. The
separation distance and the velocity of the closest features at
the beginning of the interval are used for extrapolation. The



main problem with this approach arises when the two objects
are penetrating at the estimated time of collision. In such
cases, the predicted time of collision cannot be corrected.

• Interpolation. If penetration information between the two
objects is known, it is possible to perform interpolation. Un-
like extrapolation, we make use of penetration information at
the end of the interval and an iterative interpolatory scheme
can be used to estimate the time of collision [Witkin and
Baraff 1997]. As shown in Fig. 1, localized estimations can
deviate largely from the actual penetration depth. That can re-
sult in inaccurate estimation of the time of contact. A global
and exact computation of penetration depth provides a faster
and more robust convergence of the root finding scheme. De-
pending on the position and velocity information, the algo-
rithm can select an appropriate order of interpolation. For
example, [Mirtich 1998] performs linear interpolation using
the separation distance at the beginning of the interval and an
estimated penetration depth at the end of the interval. If we
also know the velocity of the object, we can perform higher
order interpolation. If only the initial velocity and the scalar
value of penetration distance are known, but not the penetra-
tion direction or penetrating features, we can use a quadratic
interpolation scheme. In such cases, the interpolation is per-
formed based on the initial separation distance, and velocity,
as well as the penetration depth at the end of the interval. If
the algorithm also knows the penetrating features, then we can
compute the relative velocity and perform cubic interpolation.

In our implementation of the time stepping scheme for dynamic
simulation, we utilize the knowledge about PD features and direc-
tion and use a cubic interpolation scheme to estimate the time of
collision. In general, using higher order interpolation allows us to
take large steps in the simulation [Witkin and Baraff 1997]. How-
ever, sometimes it is not possible to take large time steps in the
simulation because of the following reasons:

• The stability of numerical integration.

• The frequency of collision events. Even if the system is nu-
merically stable, a high frequency of contacts between the ob-
jects make the effective time step small. In such cases, the
time stepping can not benefit from higher order interpolation.

Given two inter-penetrating objects, our PD algorithm computes
the penetration depthd, the directionn and the penetrating features
(as shown in Fig. 3). Object’s motion in the last time step is ap-
proximated as a one-dimensional motion by projecting it onto the
penetration direction. We compute a cubic interpolation of the mo-
tion, using the separation distances and the relative velocity of the
closest features at the beginning of the intervalvs, along with the
penetration depth and the relative velocity of the penetration fea-
tures at the end of the intervalvd. The cubic function is expressed
as:

x(t) = At3 +Bt2 +Ct +D.

We treatx(t) as the one dimensional distance function between
the closest features or penetrating features of the rigid bodies. The
parametersA, B, C andD are generic constants of a cubic polyno-
mial that are computed by solving the following set of linear equa-
tions:

x(0) = s= D,

x(T) = d = AT3 +BT2 +CT +D,

ẋ(0) = vs ·n = C,

ẋ(T) = vd ·n = 3AT2 +2BT +C,

whereT is the size of the time step andn is the direction of pen-
etration. After computing the coefficients of the cubic polynomial,
we compute its first real root in the interval[0,T].

Based on this approach, our algorithm is able to compute the
time of collision using fewer iterations, as compared to earlier
methods. If there is any error, e.g. the cubic polynomial has no
real root in the interval[0,T], then we use bisection search to esti-
mate the time of collision.

In one of the example scenarios, as shown in the video at
http://gamma.cs.unc.edu/PDand in Fig. 9, geometric models of
200 letters and digits fall along a structure consisted of multiple
funnels and ramps. The letters and digits have an average complex-
ity of 250 triangles in their boundary surface, which is decomposed
into roughly 60 convex pieces. Each frame (at 30fps) of the dy-
namic simulation for this complex scenario takes about two minutes
to compute.

For the second scenario in the video at the same web site and
in Fig. 10, there are 10 digit models dropped into a bowl. The
geometric model of each digit has an average complexity of 250
triangles. The bowl consists of 176 triangles and its surface is de-
composed into roughly 65 convex pieces. Some of the digits come
into an interlocking position as they fall into the bottom of the bowl.
These are challenging scenarios for contact computation and re-
sponse. Each frame of this simulation takes about 18 seconds to
compute.

8 Summary and Future Work

We present a fast, global algorithm to estimate penetration depth
between polyhedra using both image-space acceleration techniques
and object-space culling and refinement algorithms. The resulting
algorithm provides an accurate and robust measure of penetration
between overlapping objects for physically-based animations. We
have used it for contact response computation and designed a time-
stepping method for rigid body dynamic simulation.

There are several areas for future work. The performance of our
algorithm can be further improved by exploring more optimiza-
tions. These include faster implementations of the closest point
query using new features of the high-end graphics cards, as well
as better hierarchical decompositions. We would also like to fur-
ther compare the performance, in terms of both running time and
accuracy, of our PD-based time-stepping algorithm with earlier ap-
proaches. Currently our PD algorithm only computes the minimum
translational distance to separate two overlapping objects. It will be
useful to extend it to handle rotational penetration depth.
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Figure 7: Convex Surface Decomposition and Bounding Volume Hierarchy.(a) shows an original model for a torus, and (h) shows its convex surface

decomposition. From (b) to (h), the figure shows a BV hierarchy of the torus from root level to leaf level. In the figure, the green color indicates an original face in the model, the red

color highlights a virtual face created by convex hull computation, and the yellow color indicates a virtual face created while converting a convex patch to a convex piece.

Figure 8: PD Benchmark Models.From left to right: interlocked tori, touching tori, interlocked grates, and letters.

                                    

                                    

Figure 9: Application to Rigid-Body Dynamic Simulation.Our algorithm is used to perform smarter time stepping in a dynamic simulation. A sequence of snapshots

(from left to right, top to bottom) are taken from a rigid-body simulation of200models of letters and numerical digits falling onto a structure consisting of multiple ramps and funnels.

                        

Figure 10: Challenging scenario with interlocked digits.On the left,10 digits are falling onto a bowl. On the right, a resting position of these digits is shown.

Localized approaches to compute PD fail for some pairwise digits in this interlocked configuration.


