
Quick-CULLIDE: Fast Inter- and Intra-Object Collision Culling Using
Graphics Hardware

Naga K. Govindaraju ∗ Ming C. Lin † Dinesh Manocha ‡

Department of Computer Science
University of North Carolina at Chapel Hill

ABSTRACT

We present a fast collision culling algorithm for performing inter-
and intra-object collision detection among complex models us-
ing graphics hardware. Our algorithm is based on CULLIDE [8]
and performs visibility queries on the GPUs to eliminate a sub-
set of geometric primitives that are not in close proximity. We
present an extension to CULLIDE to perform intra-object or self-
collisions between complex models. Furthermore, we describe a
novel visibility-based classification scheme to compute potentially-
colliding and collision-free subsets of objects and primitives, which
considerably improves the culling performance. We have imple-
mented our algorithm on a PC with an NVIDIA GeForce FX 6800
Ultra graphics card and applied it to three complex simulations,
each consisting of objects with tens of thousands of triangles. In
practice, we are able to compute all the self-collisions for cloth sim-
ulation up to image-space precision at interactive rates.

CR Categories: I.3.1 [Computing Methodologies]: Hardware
Architecture—Graphics Processors; I.3.7 [Computing Methodolo-
gies]: Three-Dimensional Graphics and Realism—Visible sur-
face algorithms, animation, virtual reality; I.3.5 [Computing
Methodologies]: Computational Geometry and Object Modeling—
Geometric algorithms;

Keywords: Collision detection, physically-based simulation, vir-
tual environment, graphics hardware, physical interaction

1 INTRODUCTION

The problem of detecting collisions between real and virtual objects
is fundamental in virtual reality (VR), physically-based simulation,
and virtual prototyping. As we simulate the motion of avatars and
other objects in a virtual environment, it is essential to compute all
inter-object and intra-object contacts at interactive rates for gener-
ating realistic motion and behavior.

Collision detection and contact determination problems have
been investigated for more than three decades. Some of the com-
monly used algorithms are based on bounding volume hierarchies
and they work well on objects undergoing rigid motion. However,
these algorithms may not work well on non-rigid or deformable
objects due to the overhead of updating the bounding volume hier-
archy. Furthermore, it is a major challenge to compute intra-object
or self-collisions at interactive rates for complex models with sub-
stantial amount of deformation. Such scenarios frequently arise in
the context of avatar motion, cloth or hair simulation.

∗e-mail: naga@cs.unc.edu
†e-mail: lin@cs.unc.edu
‡e-mail: dm@cs.unc.edu

Recently, GPU-based algorithms are increasingly used to per-
form collision and proximity computations [1, 2, 8, 9, 11, 15, 21,
24, 25, 27]. These algorithms exploit the rasterization capabilities
of the GPUs to check for overlaps and involve no precomputation.
As a result, these algorithms are applicable to deformable and non-
rigid models. However, current GPU-based algorithms are either
restricted to closed objects or do not check for self-collisions or un-
able to perform collision detection at interactive rates for interactive
VR applications.
Main Contributions: We present a fast algorithm for collision
culling and detection among polygon-soup models using graphics
hardware. Similar to CULLIDE [8], our algorithm uses visibility
queries to compute a potentially colliding set (PCS) of objects or
primitives (as shown in Fig. 1) during each frame. Eventually, we
perform exact CPU-based collision detection between the triangu-
lated primitives in the PCS. In order to handle complex environ-
ments, we present two major extensions over CULLIDE.

• We generalize the formulation of PCS to check for both inter-
object and intra-object collisions. As a result, we can auto-
matically compute self-collisions in complex models at inter-
active rates.

• We improve the pruning and culling algorithm to compute
collision-free subsets based on visibility computations. In
particular, we present novel relationships between collision
culling and visibility-based ordering of objects. The new
culling algorithm can significantly lower the number of vis-
ibility queries and the rasterization overhead.

The overall collision detection algorithm, Quick-CULLIDE,
makes no assumptions about the underlying models, has low band-
width requirements, and performs inter-object and intra-object col-
lision computations at image-precision. We have implemented
Quick-CULLIDE on a 3.4 GHz PC with NVIDIA GeForce FX
6800 Ultra card and applied it to three complex simulations with
objects composed of tens of thousands up to 250K triangles. Our
algorithm is able to compute all the contacts up to image-space pre-
cision in tens of milliseconds.
Organization: The rest of the paper is organized as follows. We
give a brief survey of prior work on collision detection and hard-
ware accelerated computations in Section 2. We give an overview
of CULLIDE in Section 3 and extend it to handle self-collisions.
We present the novel culling algorithm in Section 4. In Section 5,
we describe its implementation and highlight its performance on
three different environments. We also analyze its accuracy and per-
formance.

2 RELATED WORK

The problem of interference and collision detection has been stud-
ied for more than three decades and many recent surveys are avail-
able [17, 26]. These interactions require fast and reliable interfer-
ence



Figure 1: Potentially Colliding Set: In this viewpoint, two of the four
objects are in close proximity and belong to the potentially colliding
set.

2.1 Rigid Body Algorithms

Many rigid body algorithms use spatial data structures to accel-
erate interference computations. Common spatial data structures
include spatial-partitioning structures and bounding-volume hierar-
chies [3, 6, 12, 14, 22, 23]. At run-time, the hierarchy is traversed,
and bounding volumes are used to cull away portions of objects that
are not in close proximity. Typically, these representations are built
during the pre-processing stage and are used to accelerate run-time
queries.

Efficient algorithms for handling large environments consisting
of multiple moving objects have also been designed. These tech-
niques reduce the number of pairwise collision checks by using
spatial subdivision algorithms or checking whether the bounding
boxes of the objects overlap [2, 4].

2.2 Deformable Models and Cloth Simulation

Hierarchical data structures have also been used to accelerate col-
lision computations between objects undergoing non-rigid motion.
These include fast update of hierarchies of axis-aligned bounding
boxes (AABBs) [16] and reduced deformable models that can be
expressed using linear superposition of precomputed displacement
fields [13]. Many specialized algorithms have been proposed for
collision detection in cloth simulation [5, 10, 19, 28] and they also
check for self-collisions.

2.3 GPU-based Algorithms

Many image-space algorithms utilize graphics processors (GPUs)
for interference and collision computations [1, 9, 11, 15, 18, 21, 24,
25, 27]. These algorithms require no pre-processing and therefore
are well suited for handling non-rigid motion. Most of these algo-
rithms perform visibility computations to compute overlapping re-
gions between the objects. Objects are rendered from a view-point,
and either 2D or 2.5D overlap tests are performed in image-space.
Many of these algorithms are limited to closed objects or involve
frame-buffer readbacks. Frame-buffer readbacks can be slow on
current graphics systems, as they involve graphics pipeline stalls,
and are limited by the bandwidth from the GPU to the CPU [8, 15].

Many hybrid algorithms [8, 9, 10, 11] combine some of the ben-
efits of the object-space approaches along with GPU-based acceler-
ations. Heidelberger et al. [9] compute layer depth images (LDIs)
on the GPU, use the LDIs for explicit computation of the intersec-
tion volumes between two closed objects, and perform vertex-in-
volume tests. Recently, the algorithm was extended to check for
self-collisions between water-tight objects [10].

3 COLLISION CULLING USING VISIBILITY QUERIES

In this section, we give an overview of CULLIDE and present an
extension of the culling algorithm to check for self-collisions.

3.1 CULLIDE

In this section, we briefly describe CULLIDE [8] which performs
visibility computations on GPUs to eliminate geometric primitives
that are not in close proximity. The algorithm is based on a suf-
ficient condition for testing whether a separating surface of unit
depth complexity exists between a geometric primitive P and a set
of primitives S along the view direction. This condition can be
tested efficiently based on whether P is fully visible with respect
to S along the view direction and is illustrated in Fig. 2. The full-
visibility test can be performed efficiently on GPUs using occlusion
queries. To test if an object P is fully visible against a set of objects
S, CULLIDE first renders S into the frame buffer. Next, it sets the
depth function to GL GEQUAL and disables the depth writes. The
object P is rendered using an occlusion query. The occlusion query
computes the number of pixels that pass the count and determines
whether P is fully visible. The full visibility of P is a sufficient
condition that P does not overlap with S.

Given n objects that are potentially colliding P1, ..., Pn, CUL-
LIDE performs the full-visibility tests and computes a potentially
colliding set (PCS) of objects (as shown in Fig. 1). A linear time
two-pass rendering algorithm is used to test if an object Pi is fully
visible against the remaining objects, along the view direction.

The algorithm begins with an empty frame buffer and proceeds
in two passes as follows:

• First pass: Rasterize the primitives in the order P1, ..., Pn

and test if they are fully visible. In this pass, if a primitive Pi

is fully visible, then it does not overlap with any of the objects
P1, ..., Pi−1.

• Second pass: Perform the same operations as in the first pass
but the order of rendering is changed to Pn, .., P1. In this
pass, if a primitive Pi is fully visible, then it does not overlap
with any of the objects Pn, .., Pi+1.

At the end of two passes, if a primitive is fully visible in both
the passes, then the primitive does not interfere with the remaining
primitives and is pruned from the PCS. The view directions are cho-
sen along the world-space axes and collision culling is performed
using orthographic projections. This culling step is performed at an
object level, as well as a sub-object level to prune the PCS. Even-
tually the primitives in the PCS are tested for exact collision using
a CPU-based triangle overlap routine. In practice, there exist two
major limitations of CULLIDE:

• Self-collisions: The pruning performed by CULLIDE is
based on the existence of a separating surface between the
geometric primitives. Therefore, the PCS computed by CUL-
LIDE could be very conservative on meshes with connected
triangles.

• Culling performance: The extent of culling depends upon
the number of objects occluded by other objects along the
view direction. In the worst case, we may prune at most one
object even though no object is colliding along the view direc-
tion. This affects the culling efficiency as well as performance
of the overall algorithm.

We present two novel algorithms to overcome these limitations.



Figure 2: This figure illustrates a close-proximity scenario between
an object P and a set of objects S = {P1, P2}. The object P is
not colliding with S. Moreover, the object P is fully visible against S

along view 1. Therefore, there exists a separating surface between P

and S of unit depth complexity along view 1. Note that this surface’s
existence is a sufficient but not a necessary condition for computing
that P is not colliding with S. For example, in view 2, there does not
exist a separating surface with unit depth complexity but the objects
are not overlapping.

Figure 3: The left image shows an object composed of trian-
gles with shared edges and vertices. The right image shows the
self-intersecting triangles in the object. Observe that these self-
intersecting triangles do not share an edge or a vertex.

3.2 Self-Collision Culling using GPUs

We extend the PCS computation algorithm in CULLIDE to com-
pute potentially self-intersecting regions of deformable objects.
Our algorithm can handle polygonal soups and does not require
mesh connectivity information for self-collision pruning. We im-
plicitly compute the connectivity information in the depth buffer
while performing collision pruning.

We classify the possible contacts between the geometric prim-
itives including contacts between neighboring primitives into two
categories:

• Touching Contacts: These contacts occur when the primi-
tives touch each other at a point or along an edge. Contacts
computed between neighboring primitives belong to this cat-
egory.

• Penetrating Contacts: These contacts occur when primitives
penetrate each other.

The touching contacts often lead to robustness issues in collision
detection. Our algorithm ignores these cases and considers only the
penetrating contacts for self-collision computations. Self-collision
detection algorithms do not compute the collisions between the

neighboring primitives. Since we ignore touching contacts, our al-
gorithm does not report collisions between two neighboring primi-
tives that share boundary along a vertex or an edge.

Our self-collision culling algorithm proceeds in the following
manner. First, we initialize the PCS used for self-collision culling
by including all the potentially self-colliding geometric primitives
in an object O. We treat each geometric primitive P as a separate
object for collision culling. Next, we perform visibility queries in
image space to test whether a triangle is potentially penetrating.
A geometric primitive P is not potentially penetrating with a set of
rasterized geometric primitives if all the fragments generated by the
rasterization of P have depth values less than or equal to those of
the corresponding pixels in the frame buffer. We use the following
lemma to compute the PCS of self-colliding primitives.

Lemma 1: Given n geometric primitives P1, P2, ..., Pn, a geomet-
ric primitive Pi does not belong to the PCS of self-colliding primi-
tives if it does not overlap with P1, .., Pi−1, Pi+1, ..., Pn, 1 ≤ i ≤
n. This test can be easily decomposed as follows: a geometric
primitive Pi does not belong to the PCS of self-colliding primi-
tives if it does not overlap with P1, .., Pi−1 and with Pi+1, ..., Pn,
1 ≤ i ≤ n.
Proof: Follows trivially from the definition of the PCS and our
formulation of self-collisions. �

We use visibility-based computations described in the previous
section to prune the PCS of self-colliding primitives efficiently. We
classify a geometric primitive as fully visible for self-collision com-
putation based on the following definition.
Definition: A geometric primitive is considered fully visible for
self-collision culling if it is not potentially penetrating.

Our self-collision culling algorithm uses the two-pass rendering
algorithm to perform object-level pruning with the above definition
to compute the fully visible status of a primitive. The geometric
primitives computed as potentially penetrating are then tested for
exact overlap using a CPU-based triangle intersection routine.

4 QUICK-CULLIDE

In this section, we present our novel culling algorithm to compute
a potentially colliding set.

4.1 Efficient Culling

The performance of our collision detection algorithm depends upon
the culling efficiency obtained by our pruning algorithm. It also
depends upon the number of pair-wise overlap tests performed be-
tween the geometric primitives in the PCS during the exact collision
detection phase. We use the visibility information in our two-pass
rendering algorithm to compute collision-free sets. A collision-free
set is defined as a set of objects that do not collide with each other.
We use these collision-free sets to:

• improve the culling efficiency by removing redundant visi-
bility computations on objects in the PCS in subsequent prun-
ing iterations,

• improve rasterization performance by reducing the number
of rendering operations, and

• reduce the number of pair-wise collision tests by eliminat-
ing collision computations among objects in the collision-free
sets.

We classify the objects in the PCS during each iteration of our
two-pass rendering algorithm into four categories:



1. BFV: These objects are fully visible in both the passes and are
pruned from the PCS.

2. FFV: These objects are fully visible only in the first pass.

3. SFV: Objects in SFV are fully visible only in the second
pass.

4. NFV: These objects are not fully visible in both the passes.

The objects in each of these sets are ordered based on their render-
ing order in the first pass of the algorithm. Each object is associ-
ated with an index. For e.g., object Oi has index i. Also, the sets
BFV, FFV, SFV, and NFV are disjoint. We now present some
of the properties of these sets and use them to design an efficient
collision culling algorithm.

Lemma 2: FFV and SFV are collision-free sets.
Proof: Let S denote the set FFV and be composed of objects
{O1

S , O2
S , ..., Om

S }. We now prove that no two objects Oi
S and O

j
S

in S collide with each other. Without loss of generality, let i < j.
Then, in the two-pass rendering algorithm, the object Oi

S is ren-
dered prior to the object O

j
S . As the object O

j
S is fully visible with

respect to Oi
S , using Lemma 1 in CULLIDE, we conclude that the

two objects do not collide. Therefore, FFV is collision-free. The
proof for S = SFV is collision-free is similar. �

We use the following lemmas to design a better culling algorithm.

Lemma 3: For each object Oi ∈ FFV , let Si = {Oj , j > i, Oj ∈
S} where S = SFV ∪ NFV . If an object Oi ∈ FFV does not
collide with Si, then it does not collide with any of the objects in
SFV or NFV and can be pruned from the PCS.
Proof: Follows from Lemma 1 in CULLIDE [8]. This lemma im-
plies that if an object Oi ∈ FFV and is fully visible in the second
pass of the pruning algorithm, then it provides a sufficient condition
to prune the object from the PCS. �

Lemma 4: For each object Oi ∈ SFV , let Si = {Oj , j < i, Oj ∈
S} where S = FFV ∪ NFV . If an object Oi ∈ SFV does not
collide with Si, then it does not collide with any of the objects in
FFV or NFV and can be pruned from the PCS.
Proof: Follows from Lemma 1 in CULLIDE [8]. This lemma im-
plies that if an object Oi ∈ SFV and is fully visible in the first pass
of the pruning algorithm, then it provides a sufficient condition to
prune the object from the PCS. �

Lemma 5: Let S1 = FFV ∪ NFV be a set ordered by object
indices in the increasing order and S2 = SFV ∪ NFV be a set
ordered by object indices in the decreasing order. In the two-pass
rendering algorithm, if we perform the first pass using objects in S1

and the second pass using objects in S2, and an object Oi is fully
visible in both the passes, then it does not collide with any of the
objects in FFV , SFV or NFV .
Proof: Clearly the object Oi belongs to NFV = S1 ∩ S2 as it
is fully visible in both the passes. It is trivial to see that the object
does not collide with any of the objects in NFV . We now prove
that the object does not collide with any object Oj ∈ FFV .

• If j < i, then Oi does not collide with Oj as Oi is fully visible
in the first pass.

• If j > i, then Oj does not collide with Oi as Oj ∈ FFV .

Similarly, we prove that the Oi does not collide with the objects in
SFV . �

Using Lemmas 3, 4, and 5, we come up with an efficient culling
algorithm. We modify the first pass of CULLIDE as follows:

• For each object Oi in PCS, i=1,..,n

– If Oi ∈ SFV or Oi ∈ NFV , test whether the object
is fully visible using an occlusion query.

– If Oi ∈ FFV or Oi ∈ NFV , render the object into
the frame buffer.

• For each object Oi in PCS, i=1,..,n

– If Oi ∈ SFV or Oi ∈ NFV , and the occlusion query
determines Oi as fully visible

∗ If Oi ∈ SFV , then tag Oi as a member of BFV .
∗ If Oi ∈ NFV , then tag Oi as a member of FFV .

Similarly, we modify the second pass as follows:

• For each object Oi in PCS, i=n,..,1

– If Oi ∈ FFV or Oi ∈ NFV , test whether the object
is fully visible using an occlusion query.

– If Oi ∈ SFV or Oi ∈ NFV , render the object into
the frame buffer.

• For each object Oi in PCS, i=n,..,1

– If Oi ∈ FFV or Oi ∈ NFV , and the occlusion query
determines Oi as fully visible

∗ If Oi ∈ FFV , then tag Oi as a member of BFV .
∗ If Oi ∈ NFV , then tag Oi as a member of SFV .

The modified algorithm computes the different sets in the fol-
lowing manner:

1. Objects that are fully visible in both the passes:

• This subset of objects belonging to NFV are pruned
from the PCS (based on Lemma 5).

2. Objects that are fully visible in the first pass:

• NFV: These objects are removed from NFV and placed
in FFV.

• SFV: These objects are removed from the PCS (based
on Lemma 4).

• FFV: Visibility computations are not performed for
these objects in this pass.

3. Objects that are fully visible in the second pass:

• NFV: These objects are removed from NFV and placed
in SFV.

• FFV: These objects are removed from the PCS (based
on Lemma 3).

• SFV: Visibility computations are not performed for
these objects in this pass.

The improved culling algorithm reduces the number of rendering
operations and occlusion queries each by sizeof(FFV ∪ SFV ), as
compared to CULLIDE.

4.2 Collision Detection

Our collision detection algorithm, Quick-CULLIDE, proceeds in
three steps. First we compute the PCS at the object level using our
improved culling algorithm. We use sweep-and-prune [4] on the
PCS to compute the overlapping pairs at the object level. Next we
compute the PCS at the sub-object level and the overlapping pairs.
Finally, we perform exact interference tests between the triangles
on the CPU [20]. For self-collision computations, we use the algo-
rithm described in Section 3.2.



(a) Cloth simulation (b) Wireframe of the cloth (Fig. a)

(c) One snapshot in the time sequence (d) PCS computed using Quick-CULLIDE
in the snapshot in Fig. (c)

(e) PCS computed using CULLIDE-based
culling algorithm applied to the snapshot in
Fig. (c)

(f) Another snapshot in the time sequence (g) PCS computed using Quick-CULLIDE
in the second snapshot (Fig. f)

(h) PCS computed using CULLIDE-based
culling algorithm applied to the second
snapshot (Fig. f)

Figure 4: Cloth simulation: These sequence of images show various instances of a cloth piece falling over a circular table. The cloth is modeled
using 20K triangles as shown in Fig. (a). A wireframe of the cloth is shown in Fig. (b). The simulation is performed using our self-collision
detection algorithm Quick-CULLIDE and we demonstrate its benefit over CULLIDE. Figs. (d) & (e), and (g) & (h) show the PCS computed using
(Quick-CULLIDE) & (CULLIDE), respectively, for the instances shown in Figures (c) & (f), respectively. Quick-CULLIDE is able to perform more
culling and computes a PCS with size smaller by one order of magnitude in comparison to the size of the PCS computed by CULLIDE. The
average collision detection time is 21 msec using Quick-CULLIDE.

5 IMPLEMENTATION AND PERFORMANCE

We have implemented our collision detection algorithm using
OpenGL on a PC with a 3.4 GHz Intel Pentium IV CPU, an
NVIDIA GeForce FX 6800 Ultra GPU, and 2 GB of main mem-
ory. The PC is running on the Windows XP operating system and
the data is transferred from the CPU to the GPU using an AGP
8X interface. We have performed collision culling on the GPU us-
ing an offscreen buffer with a viewport resolution of 4K × 4K.
The rendering operations are performed efficiently using vertex ar-
rays and we use GL NV occlusion query for performing the visi-
bility queries asynchronously. We have tested our system on three
complex environments and compared the level of culling in Quick-
CULLIDE with that in CULLIDE.

• Cloth Simulation: We have implemented a cloth simulator
and used Quick-CULLIDE to check for inter- and intra-object
collisions. The cloth is represented using a rectangular grid
with 20K triangles and the simulation is performed using the
verlet integration method. In this simulation, the cloth falls on

a circular table and as the simulation progresses, the cloth gen-
erates several folds and wrinkles. We have performed colli-
sion culling at the triangle-level using two axis-aligned views
(along X and Z axes). Fig. 4 shows a sequence of the snap-
shots of the cloth simulation based on time. The average col-
lision pruning time is 20 − 22 msec.

• Breaking Objects: In this environment, a bunny composed of
35K polygons repeatedly falls on a dragon composed of 250K
polygons and fractures the dragon. During the course of the
simulation, hundreds of new object pieces are generated into
the scene as the bunny breaks the dragon. We have used three
axis-aligned views for performing the collision culling. Our
algorithm is able to detect all the collisions within 25 msec.

• Objects Undergoing Non-Rigid Motion: In this simulation,
several deformable leaves fall from the tree, and collide with
each other and the branches of the tree as shown in Fig. 6. The
average collision detection time is nearly 25 msec per frame.



(a) PCS (shown in red) computed using Quick-CULLIDE (b) PCS (shown in red) computed using CULLIDE

Figure 5: Breaking objects simulation: In this simulation, a bunny composed of 35K triangles fractures a dragon composed of 250K triangles.
As the simulation progresses, hundreds of new objects in close proximity are introduced into the scene. Our algorithm Quick-CULLIDE is able
to compute all the collisions within 25ms on a PC with a NVIDIA GeForce FX 6800 Ultra GPU. Moreover, our algorithm is able to perform more
pruning and computes a more compact PCS in comparison to CULLIDE. Figures (a) and (b) show the PCS - rendered in color red, computed
using Quick-CULLIDE and CULLIDE, respectively.

5.1 Analysis

In this section, we analyze the culling efficiency and the perfor-
mance obtained by our algorithm.

5.1.1 Culling Efficiency

We have compared the culling efficiency of our algorithm Quick-
CULLIDE with an implementation of CULLIDE within the cloth
simulation system. In order to compare the algorithms, we have
used the same collision culling resolution and the view directions
in both the algorithms. Fig. 7 shows the comparison between the
culling efficiency obtained by Quick-CULLIDE vs. CULLIDE. In
this simulation, Quick-CULLIDE reduces the size of the PCS, as
well as the number of overlapping pairs by nearly one order of mag-
nitude as compared to CULLIDE.

5.1.2 Performance

We have compared the performance of Quick-CULLIDE with
CULLIDE on each of the three simulations. Fig. 8 shows a com-
parison of the performance. In this simulation, we observe that
Quick-CULLIDE can compute all the overlapping pairs of trian-
gles faster than CULLIDE. Table 2 summarizes the average perfor-
mance obtained by Quick-CULLIDE and CULLIDE on each of the
three benchmarks.

5.1.3 Factors

A number of factors affect the performance, as well as the culling
efficiency of Quick-CULLIDE. These include:

Average PCS size (triangles)
Simulation Quick-CULLIDE CULLIDE

Cloth 210 1340

Breaking objects 1400 3600

Non-rigid motion 450 1200

Table 1: This table highlights the average PCS size computed by
Quick-CULLIDE and CULLIDE on the three simulations. We ob-
serve that Quick-CULLIDE is able to prune 4 − 10 times more non-
overlapping triangles as compared to CULLIDE upto image-precision
resolution.

• Depth complexity: The extent of culling obtained by our al-
gorithm along a view direction depends upon the number of
objects that project onto the screen-space along that view di-
rection.

• Order of rendering: Our collision culling algorithm works
best in scenes where the objects are rendered in a back-to-
front order along the view direction. The level of culling ob-
tained by Quick-CULLIDE is always better than CULLIDE.

• Number of views: The culling efficiency also depends upon
the number of views, as well as the choice of the view di-
rections used to perform collision detection. As the number
of views used for collision detection increase, the pruning ef-
ficiency of CULLIDE approaches that of Quick-CULLIDE.
However, as the number of views increases, the cost of colli-
sion culling increases as well.



Figure 6: Simulation with non-rigid objects: In this simulation, many
leaves are falling from the tree. They undergo non-rigid motion and
collide with other leaves and branches of the tree. Our algorithm
Quick-CULLIDE is able to compute all the collisions reliably within 25
msec on a PC with NVIDIA GeForce FX 6800 Ultra GPU.

Average collision time (in msec)
Simulation Quick-CULLIDE CULLIDE

Cloth 21 30

Breaking objects 25 35

Non-rigid motion 25 31

Table 2: This table highlights the real-time performance obtained by
using Quick-CULLIDE and CULLIDE on the three simulations. We
observe that Quick-CULLIDE is faster than CULLIDE in each of the
three simulations.

5.2 Comparison with Other Approaches

In this section, we compare our algorithm with two other GPU-
based self-collision detection algorithms [1, 9]. Our algorithm is
able to compute self-collisions among general deformable models
whereas [1, 9] are designed to work well for closed or water-tight
models. Therefore, it is difficult to perform direct timing compar-
isons. Instead, we compare some of the features of our algorithm
with these algorithms.

Our algorithm is able to handle self-collisions and collisions
among a large number of objects, whereas [1, 9] work on pairs of
objects. The GPU-based implementations of Heidelberger et al.
[9], and Baciu and Wong [1] readback the framebuffer which can
be expensive on current PCs. In contrast, our algorithm does not
perform framebuffer readbacks. Moreover, we perform collision
culling at a very high image-space resolution of 4K × 4K within
just a few milliseconds (< 40 msec). Most of the earlier approaches
used a lower image-space resolution. Finally, our algorithm is well-
suited to handle deformable, breaking, and non-rigid geometry, as
well as polygon-soup models.

5.3 Limitations

Our algorithm has some limitations. Our pruning algorithm com-
putes a PCS of geometric primitives, and does not compute the
overlap information or the extent of penetration. However, a post-
processing step can be added to extract the information. The preci-
sion of our self-collision culling algorithm is limited to image reso-

Figure 7: Comparison of pruning performance between Quick-
CULLIDE and CULLIDE: This graph shows the number of triangles
in the PCS computed using Quick-CULLIDE and CULLIDE respec-
tively on the cloth simulation. We observe that Quick-CULLIDE is
able to reduce the PCS size by nearly a magnitude in comparison to
CULLIDE.

Figure 8: Performance comparison between Quick-CULLIDE and
CULLIDE: This graph compares the time taken by Quick-CULLIDE
vs. CULLIDE to compute all the collisions during each frame in cloth
simulation.

lution and is lower than of object-space algorithms. Also, our self-
collision culling algorithm ignores touching contacts. Our pruning
algorithm achieves best performance when the objects are rendered
in a back-to-front order. Furthermore, the culling efficiency de-
pends on the relative object configurations, and the depth complex-
ity of the scene along the view.

6 CONCLUSIONS AND FUTURE WORK

We have presented an efficient GPU-based collision culling algo-
rithm for performing inter- and intra-object collision detection. Our
algorithm uses a novel visibility-based classification to compute
potentially colliding and collision-free subsets of geometric prim-
itives. The preliminary comparisons of our algorithm with CUL-
LIDE indicate up to an order of magnitude improvement in culling
efficiency for some scenarios. The collision computations are per-
formed upto image-resolution and can be improved to single preci-
sion floating-point computation using our recent techniques [7].

Many avenues exist for future research. It may be possible to



use the collision-free sets for pair-wise overlap computation. We
would like to extend these algorithms for other proximity computa-
tions, including distance and penetration depth computation, as well
as exploring the new programmability features of GPUs to further
improve the performance of our algorithm.

ACKNOWLEDGEMENTS

Our work was supported in part by ARO Contracts DAAD19-02-1-
0390 and W911NF-04-1-0088, NSF awards 0400134, 982167 and
0118743, ONR Contracts N00014-01-1-0067 and N00014-01-1-
0496, DARPA Contract N61339-04-C-0043 and Intel. We would
like to thank NVIDIA corporation for their hardware and driver
support. We would like to acknowledge Kelly Ward for video edit-
ing and members of UNC Walkthrough and GAMMA groups for
useful discussions.

REFERENCES

[1] G. Baciu and S.K. Wong. Image-based techniques in a hybrid collision
detector. IEEE Trans. on Visualization and Computer Graphics, 2002.

[2] G. Baciu, S.K. Wong, and H. Sun. Recode: An image-based collision
detection algorithm. Proc. of Pacific Graphics, pages 497–512, 1998.

[3] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The r*-tree:
An efficient and robust access method for points and rectangles. Proc.
SIGMOD Conf. on Management of Data, pages 322–331, 1990.

[4] J. Cohen, M. Lin, D. Manocha, and M. Ponamgi. I-COLLIDE: An in-
teractive and exact collision detection system for large-scale environ-
ments. In Proc. of ACM Interactive 3D Graphics Conference, pages
189–196, 1995.

[5] F. Cordier and N. Magnenat-Thalmann. Real-time animation of
dressed virtual humans. Eurographics, 21(3), 2002.

[6] S. Gottschalk, M. Lin, and D. Manocha. OBB-Tree: A hierarchical
structure for rapid interference detection. Proc. of ACM Siggraph’96,
pages 171–180, 1996.

[7] N. Govindaraju, M. Lin, and D. Manocha. Fast and reliable collision
detection using graphics hardware. Proc. of ACM VRST, 2004.

[8] N. Govindaraju, S. Redon, M. Lin, and D. Manocha. CUL-
LIDE: Interactive collision detection between complex models in
large environments using graphics hardware. Proc. of ACM SIG-
GRAPH/Eurographics Workshop on Graphics Hardware, pages 25–
32, 2003.

[9] B. Heidelberger, M. Teschner, and M. Gross. Real-time volumetic
intersections of deforming objects. Proc. of Vision, Modeling and Vi-
sualization, 2003.

[10] B. Heidelberger, M. Teschner, and M. Gross. Detection of collisions
and self-collisions using image-space techniques. Journal of WSCG,
12(3), 2004.

[11] K. Hoff, A. Zaferakis, M. Lin, and D. Manocha. Fast and simple 2d
geometric proximity queries using graphics hardware. Proc. of ACM
Symposium on Interactive 3D Graphics, pages 145–148, 2001.

[12] P. M. Hubbard. Interactive collision detection. In Proceedings of IEEE
Symposium on Research Frontiers in Virtual Reality, October 1993.

[13] D. L. James and D. K. Pai. Bd-tree: Output-sensitive collision detec-
tion for reduced deformable models. ACM Trans. on Graphics (Proc.
of ACM SIGGRAPH), 2004.

[14] J. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral, and K. Zikan.
Efficient collision detection using bounding volume hierarchies of k-
dops. IEEE Trans. on Visualization and Computer Graphics, 4(1):21–
37, 1998.

[15] D. Knott and D. Pai. Cinder: Collision and interference detection in
real-time using graphics hardware. Proc. of Graphics Interface, pages
73–80, 2003.

[16] Thomas Larsson and Tomas Akenine-Moller. Collision detection for
continuously deforming bodies. In Eurographics, 2001.

[17] M. Lin and D. Manocha. Collision and proximity queries. In Hand-
book of Discrete and Computational Geometry, 2003.

[18] J. C. Lombardo, M.-P. Cani, and F. Neyret. Real-time collision detec-
tion for virtual surgery. Proc. of Computer Animation, 1999.

[19] J. Mezger, S. Kimmerle, and I. Etzmuβ. Hierarchical techniques in
collision detection for cloth animation. Journal of WSCG, 11(2):322–
329, 2003.

[20] T. Moller. A fast triangle-triangle intersection test. Journal of Graph-
ics Tools, 2(2), 1997.

[21] K. Myszkowski, O. G. Okunev, and T. L. Kunii. Fast collision detec-
tion between complex solids using rasterizing graphics hardware. The
Visual Computer, 11(9):497–512, 1995.

[22] M. Ponamgi, D. Manocha, and M. Lin. Incremental algorithms for
collision detection between solid models. IEEE Transactions on Visu-
alization and Computer Graphics, 3(1):51–67, 1997.

[23] S. Quinlan. Efficient distance computation between non-convex ob-
jects. In Proceedings of International Conference on Robotics and
Automation, pages 3324–3329, 1994.

[24] J. Rossignac, A. Megahed, and B.D. Schneider. Interactive inspection
of solids: cross-sections and interferences. In Proceedings of ACM
Siggraph, pages 353–60, 1992.

[25] M. Shinya and M. C. Forgue. Interference detection through rasteriza-
tion. The Journal of Visualization and Computer Animation, 2(4):131–
134, 1991.

[26] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghu-
pathi, A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnenat-Thalmann,
W. Strasser, and P. Volino. Collision detection for deformable objects.
Eurographics, 2004.

[27] T. Vassilev, B. Spanlang, and Y. Chrysanthou. Fast cloth animation
on walking avatars. Computer Graphics Forum (Proc. of Eurograph-
ics’01), 20(3):260–267, 2001.

[28] P. Volino and N. Magnetat Thalmann. Efficient self-collision detec-
tion on smoothly discretized surface animations using geometrical
shape regularity. Computer Graphics Forum (EuroGraphics Proc.),
13(3):155–166, 1994.


