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Abstract—We present a novel optimization-based retraction
algorithm to improve the performance of sample-based plan-
ners in narrow passages for 3D rigid robots. The retraction step
is formulated as an optimization problem using an appropriate
distance metric in the configuration space. Our algorithm
computes samples near the boundary of C-obstacle using
local contact analysis and uses those samples to improve the
performance of RRT planners in narrow passages. We analyze
the performance of our planner using Voronoi diagrams and
show that the tree can grow closely towards any randomly
generated sample. Our algorithm is general and applicable to all
polygonal models. In practice, we observe significant speedups
over prior RRT planners on challenging scenarios with narrow
passages.

I. INTRODUCTION

Sample-based planning algorithms have been widely used

to compute collision-free paths for robots in complex envi-

ronments. These algorithms generate samples using random-

ized techniques and attempt to capture the connectivity of the

free space by joining nearby samples via collision-free paths.

The connectivity is represented using probabilistic roadmaps

(PRMs) [1] or rapidly-exploring random trees (RRTs) [2],

[3].

The performance of sample-based planning algorithms

may degrade if the free space of the robot has narrow

passages, i.e. small regions whose removal or perturbation

can change the connectivity of the free space. These regions

can also be characterized in terms of poor visibility prop-

erties [4]. Moreover, the narrow passage problem becomes

more severe for RRT-based planners as compared to other

randomized methods.

Many techniques have been proposed in the literature

to improve the performance of these planners in narrow

passages. These include use of workspace information to

guide the sampling, adaption of the sample distribution based

on history, and retraction-based planning. In this paper, we

primarily focus on improving the performance of retraction-

based planners.

One of the main steps in retraction-based planning is

to retract a sample or a configuration to a more desirable

region of the free space. This includes moving the samples

close to the boundary of the configuration space obstacle

(C-obstacle) or near the medial axes of the free space.

One specific retraction strategy is to retract any in-colliding

configuration (a configuration in C-obstacle) to the closest

boundary point of C-obstacle. In practice, this is equivalent

to computing the penetration depth, which is used to quantify

the interpenetration between overlapping objects. However,

exact computation of global penetration depth has very high

complexity [5]. As a result, prior planners use simple heuris-

tics to perform the retraction step, and their performance

varies with the shape of the robot and the obstacles, and

their relative placement.

Other approaches for handling narrow passages include

dilation-based planners. These algorithms dilate the free

space by considering samples that lie inside the C-obstacle

space and are close to its boundary. However, most of

dilation-based planners can be hard to implement as they

need a robust technique to perform the dilation or shrinking

operation on general polygonal models. Moreover, these

techniques are mainly limited to PRM planners. Overall, no

good algorithms are known for performing the retraction step

efficiently on general models or combining them effectively

with RRT planners.

Main Results: We present a new optimization-based retrac-

tion algorithm and an enhanced RRT planner. We formulate

the retraction step as a constrained optimization problem

using an appropriate distance metric in the configuration

space. Our optimization algorithm performs iterative refine-

ment in the contact space to compute a (local) minima of

the objective function using local contact analysis.

We use our optimization-based retraction algorithm to

improve the performance of RRT planners. We retract the

samples so that they are more likely to be connected to the

nearest nodes of the tree by the local planning algorithm.

The resulting tree in our planner grows closely towards

randomly generated samples, including in-colliding as well

as free configurations. As compared to prior RRT planners,

our enhanced planner generates more samples near the

contact space and in the narrow passages. We analyze the

performance of our planner using the Voronoi diagram of the

nodes in the tree and highlight scenarios where our planner

can work well.

We have implemented our planner and highlight its per-

formance on difficult scenarios with narrow passages. As

compared to the basic RRT algorithm, we observe significant

improvement in the running time and the number of gener-

ated samples. Moreover, our algorithm is general and makes

no assumption about input models, or their connectivity or

topology.

Organization: The rest of the paper is organized as

follows. In Section 2, we provide a brief survey of related

work in sample-based planning. In Section 3, we present

our optimization-based retraction algorithm, and describe our



A narrow passage

C-obstacle

q

Fig. 1. Retraction strategy for sampling narrow passage: The basic

idea is to retract a randomly generated configuration to a more desirable

region in the free space. A desirable location for retraction of an in-colliding

configuration q is the closest boundary point in the free space. Intuitively,

the given in-colliding configuration, e.g. q which is close to the boundary, is

retracted into the narrow passage. This increases the number of samples in

this narrow passage and is almost independent of the volume of the narrow

passage [13], [16].

enhanced RRT planner in Section 4. We analyze the perfor-

mance of our planner using Voronoi diagrams in Section

5. We highlight its performance and compare our enhanced

planner with other RRT planners in Section 6. We discuss

some limitations of our approach in Section 7.

II. RELATED WORK

In this section, we give a brief overview of prior work in

sample-based motion planning and retraction-based methods.

A. Sample-based Planning

The sample-based approaches, such as probabilistic

roadmaps (PRM) [1] and rapidly-exploring random trees

(RRT) [2], [3], have been successfully used to solve high

degree-of-freedom motion planning problems. To improve

the performance of these planners in narrow passages, many

sampling strategies have been proposed. See [4] for a recent

survey. These include use of workspace information to guide

the sampling [6], [7], filters to reject samples [8], [9], [10],

adaption of the sampling distribution based on history [11],

and retraction-based approaches.

B. Retraction-based Motion Planning

The retraction-based approaches have been widely used

to improve the performance of sample-based planners in

narrow passages [12], [13], [14], [15], [16], [17], [18]. The

main idea is to retract a randomly generated configuration

towards a more desirable region, e.g. to the closest point on

the boundary of C-obstacle (Fig. 1) or the medial axis of the

free space.

The main challenge in retraction-based approaches is

that the retraction step may involve complicated or non-

trivial computation. For example, computing the closest

boundary point for an in-colliding configuration boils down

to generalized penetration depth computation based on an

appropriate distance metric. The computation of globally

optimum penetration depth has high complexity [5]. As a

result, most algorithms use heuristics to compute samples

near the boundary of C-obstacle or in the contact space

[12], [15], [16], [19]. Other approaches include dilation-

based planning [13], and current practical solutions for them

compute an approximate medial axes of the model [20],

shrink the boundary using tetrahedral decompositions [21],

or estimate the bound of the motion for the moving robot

[22]. In practice, except [22], most of these techniques are

limited to closed models and can be susceptible to robustness

issues and degeneracies.

C. Contact Space Planning

Many retraction-based approaches tend to generate more

samples near the contact space, the subset of the configu-

ration space (C-space), which consists of the configurations

when the robot touches one or more obstacles without any

penetration. Contact space planning has been shown useful

for handling narrow passages [14], along with manipulator

planning and compliant motion planning. There is consider-

able work on contact modeling using the geometric or al-

gebraic formulation, sampling, and local compliant planning

[23], [24], [25], [26].

III. OPTIMIZATION-BASED RETRACTION

In this section, we present our optimization-based retrac-

tion algorithm for sample generation. We use this algorithm

to improve the performance of RRT planners in Section

4. Given an in-colliding sample, our algorithm retracts this

sample to a more desirable location, i.e. the closest point on

the boundary of C-obstacle or contact space. This idea is

similar to other retraction-based sampling strategies such as

the one used in OBPRM [12], which also tend to generate

samples near the contact space to improve the performance

of the planner in narrow passages. The main difference is that

we perform the retraction step using iterative optimization.

A. The Retraction Step

As shown in Fig. 2, given an in-colliding sample qr, the

retraction step is to compute its closest boundary point qm,

which can be formally defined as:

qm = arg min
q

δ(q,qr),q ∈ Ccontact, (1)

where δ is a distance metric defined in the configuration

space of the robot, and the configuration q lies in the contact

space Ccontact.

An important issue in performing the retraction step is

the choice of an appropriate distance metric δ in C-space.

In practice, it is hard to define a distance metric that

can meaningfully combine the translational and rotational

components in C-space. In our formulation, we use model-

dependent distance metrics such as the DISP distance metric,

since it does not involve any weighting factor to combine the

translational and rotational components [5].

B. Optimization-based Retraction Algorithm

We formulate the retraction computation (Eq. 1) as a

constrained optimization problem. The objective function is

based on the distance metric δ in C-space, and the constraint

is that the resulting configuration needs to lie in Ccontact.

As shown in Fig. 2, to retract a given in-colliding sample

qr, our method starts with a non-colliding sample qn (either

collision-free or in the contact space) as the initial guess. The
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Fig. 2. Optimization-based Retraction: Given an in-colliding sample qr ,

our algorithm retracts it to the locally closest point qm on the boundary

of C-obstacle by iterative optimization. In this case, qn is the initial guess,

while qc and qd are intermediate samples during the optimization.

algorithm then performs the following steps in an iterative

manner:

1) Project qn into the contact space in order to generate

a sample qc in the contact space;

2) Perform a contact query, i.e. compute the closest

feature pairs within a tolerance distance between the

robot at qc and the obstacles;

3) Searching over the local contact space formed by the

closest feature pairs, compute a new non-colliding

sample qd, which locally minimizes the distance to

the sample qr according to a distance metric δ;

4) Assign qn = qd, and go to Step 1.

These steps are iterated until the distance to qr cannot be

further reduced, which means a sample qm realizing a local

minima is found, or the maximum number of iterations

has been reached. We use the symbol S to represent the

sequence of samples qn, qc, and qd generated by each

iteration, excluding the duplicated or in-colliding samples.

The distance of every sample in the sequence S to qr strictly

decreases, i.e. δ(qi,qr) > δ(qi+1,qr), and it monotonically
approaches the local minima δ(qm,qr). The generated sam-
ples in S can be used by any sample-based planner.

Our algorithm can efficiently optimize over the contact

space and compute a local minima. We briefly describe some

issues in implementing this algorithm. In Step 1, in order to

compute the qc in the contact space, we reduce the problem

to computing the configuration when the robot barely touches

the obstacles along the interpolating motion from qn to

qr. We use a binary search to compute qc since qn is a

non-colliding configuration and qr is an in-colliding one. In

Section 6, we address the problem of computing the closest

feature pairs in Step 2. In Step 3, we randomly generate

samples over the local contact space formed by the closest

feature pairs [5]. We discard in-colliding samples using

collision checking and compute the non-colliding sample qd

that is closest to qr.

The optimization algorithm only needs to perform colli-

sion detection, along with local contact analysis to sample

and search over the local contact space. Such computation

can be implemented for any type of polygonal models,

including polygon soup models. As a result, our algorithm

is general and applicable to all general polygonal models.

qc

Free Space 

C-Obstacle

qn

Free Space 

C-Obstacle

qc

(a) Standard RRT Extension

qr
T

qn

qr

(b) Retraction-based RRT Extension 

qd qm

T

Fig. 3. RRT Extension: (a) Given a randomly generated configuration
qr, the standard RRT extension scheme grows the tree - T from its nearest
node qn towards qr, stopping at the configuration qc on the boundary.

(b) In our retraction-based extension, we retract qr to the free space by

using optimization. The retraction step generates a sequence of non-collision

configurations S = {qc,qd, ...,qm}, where qm is a local minima point

of the distance δ to qr. We then extend the tree to every configuration in S
using the standard RRT extension. Therefore, the tree in our algorithm can

grow towards qr closely.

IV. RETRACTION-BASED RRT PLANNER

In this section, we use the optimization-based retraction al-

gorithm to improve the performance of the rapidly-exploring

random tree planners (RRT). Prior retraction-based sampling

strategies have mainly been applied to PRM planners and

only retract the samples that lie in C-obstacle space. In our

case, we retract many of the generated samples including the

ones that belong to the free space.

A. RRT Planner

The RRT algorithm explores the free space by randomly

sampling and building a tree (Fig. 3-(a)). RRT’s are used

to search high-dimensional spaces with both algebraic con-

straints (arising from obstacles) and differential constraints

(e.g. the non-holonomic constraints). The basic RRT algo-

rithm is as follows. Starting with a tree T with a root node,

the algorithm iteratively adds more nodes to the tree. During

each iteration, a configuration qr is randomly generated, and

the basic RRT algorithm attempts to connect the nearest node

qn in the tree T to qr by a straight line in the configuration

space (Fig. 3-(a)). If the configuration qr and qn can be

connected via a collision-free path, the tree is extended from

qr to qn and grows. Otherwise, the planner computes qc, the

first in-contact configuration (a configuration in the contact

space) on the straight line from qn to qr. The tree then

extends to qc. We refer to this way of growing the tree as

the standard RRT extension.

One of the challenges for RRT planners is to generate

samples in narrow passages of the free space. Moreover,

though the basic RRT planner can perform a biased search

towards regions not yet visited, such bias does not take

into account the obstacles in the environment. Therefore, the

basic RRT planner can have difficulty growing out of narrow

passages in cluttered environments.

B. Retraction-based RRT

We use the retraction-based algorithm to improve the

performance of RRT planners, especially in narrow passages.

Our modified RRT algorithm (Alg. 1) proceeds as follows:



Algorithm 1: Retraction-based RRT Extension

Input: T = {V, E} - an RRT
qr - a randomly generated configuration in C-space

Output: T , an extended RRT
begin

qn ←− the nearest neighbor of qr in T
if (qn,qr) is a collision-free path then

T.AddV ertex(qr), T.AddEdge(qn,qr)

else
// To get a set of non-colliding configurations using
// the retraction step; using qn as the initial guess
S ←− Optimize(qr,qn)

for qi ∈ S do
Standard RRT Extension(T,qi)

return T
end

1) Given the randomly generated configuration qr, free

or in-colliding, we compute the nearest node qn in the

tree;

2) Check whether qr and qn can be connected via a

collision-free path. If there is such a path, grow the

tree from qn to qr.

3) Otherwise, we retract the sample qr, as shown in Fig.

3-(b):

a) Using qn as the initial guess, we apply the

optimization-based retraction step presented in

Section 3. The retraction step generates a se-

quence S of non-collision configurations, ap-

proaching the closest boundary point of qr;

b) For every configuration in S, our algorithm per-

forms the standard RRT extension.

We refer to our scheme of growing the tree as retraction-

based extension. There are several benefits of our enhanced

RRT planner using this new extension scheme. First, the sam-

pled configurations that are close to the narrow passages are

likely to be retracted into the narrow passages. Consequently,

our extended planner generates more samples in narrow

passages. Secondly, the tree grows closely towards any

randomly generated configuration, significantly improving

the bias of the growth of the tree towards regions not yet

visited. Finally, we perform the retraction step on free as

well as in-colliding configurations. Overall, our retraction-

based RRT can explore or capture the connectivity of narrow

passages quickly. We further analyze the behavior of our

retraction-based RRT algorithm in Section 5 and demonstrate

these benefits on many challenging benchmarks in Section

6.

V. ANALYSIS

In this section, we analyze the behavior of our retraction-

based RRT planner. We use the Voronoi diagram defined over

the nodes of the RRT in the configuration space to analyze

the performance of our enhanced RRT planner. Based on

this analysis, we identify the planning scenarios with narrow

passages where our retraction-based RRT planner can be

quite effective.

Tqr

qn
V(qn)

C-Space

Fig. 4. Analyzing RRT using Voronoi Diagrams: Given a randomly

generated configuration qr , the step of finding its nearest node qn in the

tree T for extension is equivalent to locating the Voronoi region that contains
qr [3].

A. Voronoi Diagrams

The behavior of RRT algorithms can be understood using

Voronoi diagrams [2], [3], [27]. Specifically, the Voronoi

diagram for a set of points S in a metric space is the partition

of this space which associates a region V (q) with each point
q from S in such a way that all points in V (q) are closer
to q than to any other point in S. Given a tree built by an

RRT algorithm, we consider the Voronoi diagram over the

set of nodes of the tree (Fig. 4) in the configuration space

associated with a distance metric δ.

Given a randomly generated configuration qr, the step

of computing the nearest node in the RRT algorithm is

equivalent to locating the Voronoi region that contains qr

(Fig. 4). Therefore, the probability of a node q in the tree

being chosen for extension is proportional to the ratio ρ of

the volume of its Voronoi region V (q) to the volume of the
sampling space [28] or the entire configuration space C:

ρ(q) =
V olume(V (q))

V olume(C)
. (2)

We refer to this ratio as extension ratio of a node. If a node

has a higher value of extension ratio ρ, this node has a higher

likelihood of being chosen for extension as compared to other

nodes in the tree [3]. Therefore, RRT planners can bias the

growth of the tree towards regions not yet visited [3].

B. Analysis of Retraction-based RRT

We analyze the behavior of our retraction-based RRT

planner (Fig. 5). The tree in our planner is biased towards the

contact space, and many nodes of the tree are either close to

it or in the contact space (e.g. qn1 in Fig. 5-a). This is due

to the retraction algorithm, which iteratively optimizes over

the contact space. We classify the nodes in the tree, near or

in the contact space, according to whether a node is:

• Type 1: far away from any narrow passage (e.g. qn0 in

Fig. 5-(a)),

• Type 2: lying in a narrow passage, or

• Type 3: close to the entrance of a narrow passage (e.g.

qn1 in Fig. 5-(a)).

Among these nodes, the nodes of Type 2 or Type 3 are

important for planning as they are associated with narrow

passages. Our retraction algorithm utilizes them in a manner

such that many samples are generated in close proximity

of Type 2 and Type 3 nodes or in the associated narrow

passages. This is due to our retraction computation, and Fig.

5-(b) shows such an example. For a randomly generated

sample qr1
, its nearest neighbor qn1

with Type 3 is chosen
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Fig. 5. Analysis of Retraction-based RRT planner: (a) A tree - T needs to grow through a zigzag narrow passage. The Voronoi diagram is defined over
the nodes of the tree in the configuration space. The Voronoi region of the node qn1

is denoted as V (qn1
). (b) For a randomly generated in-colliding

configuration qr1
, our RRT planner uses its nearest neighbor qn1

as the initial guess and performs the optimization-based retraction. Since qn1
is close

to the entrance of the narrow passage, it is very likely that the optimization algorithm generates configurations, e.g. qn2
, in the narrow passage. (c)

Though the node qn2
in the tree T lies in the narrow passage, it has a high value of extension ratio ρ due to the large volume of its Voronoi region

V (qn2
). Therefore, the node qn2

has a high likelihood of being chosen for extension. (d) Given a randomly generated collision-free configuration qr2
,

the node qn2
is chosen for extension and more samples in the narrow passage are generated. (e) With a high value of the extension ratio, the node qn3

in the narrow passage has a high likelihood of being chosen for extension. Therefore, more nodes in the narrow passage can be generated. (f) Finally, the

tree grows through the narrow passage.

for extension. Stating from qn1
, our retraction algorithm

iteratively optimizes over the contact space and generates

more samples towards or along narrow passages.

A key factor that governs the effectiveness of our

retraction-based RRT planner is the probability with which

the nodes of Type 2 and Type 3 are chosen for RRT

extension. In general, the performance of sample-based ap-

proaches degrades in narrow passages since the ratios of the

volumes of narrow passages to the volume of the sampling

space are typically small. As a result, prior randomized

sampling methods may not compute sufficient number of

samples in narrow passages to find collision-free paths.

However, there are many planning scenarios with narrow

passages where the extension ratios, ρ, for the tree nodes

of Type 2 and Type 3 are much larger as compared to the

ratios of the volumes of their associated narrow passages

to the volume of the sampling space. Fig. 5 illustrates such

cases. Our retraction algorithm can generate more samples

in the narrow passages and thereby improve the performance

of the planner.

VI. IMPLEMENTATION AND RESULTS

In this section, we present experimental results of our

retraction-based RRT planner, RRRT, on 3D rigid robots. We

first address some implementation issues. Next, we highlight

the performance of our planner on a set of benchmarks (Figs.

6, 7, 8 and 9). In each benchmark, a rigid robot needs to plan

through some narrow passages in the 3D environment. All

the timings reported here were taken on a Windows PC with

2.8GHz of CPU and 2GB of memory.

A. Implementation

We have implemented RRRT on 3D rigid robots. Our

implementation consists of two parts: the implementation

of the retraction step and the integration with an RRT

planner. In the first part, we use the DISP distance metric

defined in SE(3) and extend the generalized penetration depth

computation algorithm in [5] to perform the retraction step.

We set the maximum iteration in each retraction step as

5. We use PQP [29] for collision detection. We further
extend this library to perform contact query by computing the

closest features [30]. We implement a basic RRT planner. For

simplicity, we perform the local planning by using a linear

interpolation motion and checking for collisions on a finite

number of intermediate configurations of the motion.

We integrate our retraction algorithm into the basic RRT

planner. During each retraction step, a sequence of config-

urations, close to or in the contact space, are generated.

Our planner RRRT then attempts to extend the tree to each

configuration using the standard RRT extension scheme. In

our implementation, we observe the difficulty of connecting

two nearby samples when both of them are close to the

contact space. Currently we use an enhanced local planning

scheme - vertex enhancement that can generate additional

samples around them [1]. To deal with this issue, other local

planning schemes can also be employed [31].

B. Results

We test our retraction-based RRT planner on a set of

benchmarks. In our experiment, we run every benchmark

10 times and compute the average running time. The timing
is summarized in Table I. The geometric complexity of the

benchmarks is highlighted in Table II. RRRT can handle

general polygonal models, including polygon soup models.

In the notch benchmark (Fig. 6), there are three narrow

passages since the width of the corridor within each notch-

shaped model is 1 and it is slightly larger than the ‘thickness’
of the g-shaped robot, 0.95. The environment also possesses
an interesting property. The widths of the two gaps formed

by the three notch-shaped models are 0.9, resulting in two
potentially false passages. Therefore, dilation-based planners

may not work well on this benchmark. In our experiment,

the basic RRT planner was unable to find a solution within

1, 232.2s. On the other hand, our planner can find a collision-



Fig. 6. Notch Benchmark: (a) A G-shaped robot. (b) The environment is consisted of three notch-shaped obstacles, and the robot needs to move from
one side to the other. Due to the narrow passages, the basic RRT planner was unable to find a solution after 500, 000 iterations within 1, 232.2s. On the
other hand, RRRT can find a collision-free path within 25.4s. In (b), (c), the collision-free path, the tree and its nodes are highlighted after being projected
from the 6D C-space into 3D Euclidean. Many nodes are biased towards the contact space as well as the narrow passage. (d) is a magnified version of

the result. Here, a node in the tree is visualized by a 3D point to indicate the position of the robot, together with a 3-dimensional orthogonal frame to

indicate the orientation. (e) shows the nodes generated by the basic RRT planner, where no node lies in the narrow passages.

Notch Torus Flange Alpha Puzzle

RRRT: tall (s) 25.4 44.9 25.0 4,130.5

RRRT: nodes 1,401 1,471 119 103,121

Basic RRT: tall (s) > 1,232.2⋆ 4,920.9 680.1 > 40,747.1 ⋆
Basic RRT: nodes > 105,987⋆ 43,512 95 > 28,219 ⋆

TABLE I

Performance: THE TABLE COMPARES THE PERFORMANCE OF OUR

PLANNER - RRRT WITH THE BASIC RRT PLANNER ON DIFFERENT

BENCHMARKS. THE TABLE INCLUDES THE PLANNING TIME tall AND

THE NUMBER OF NODES IN THE RESULTING TREE. ⋆: THE BASIC RRT

PLANNER CANNOT FIND A PATH WITHIN A LARGE MOUNT OF TIME.

Notch Torus Flange Alpha Puzzle

# Tri of robot 28 20 3,525 1,044

# Tri of obstacles 756 5,760 5,306 1,044

# of obstacles 3 2 1 1

TABLE II

Model Complexity: THE TABLE SUMMARIZES THE GEOMETRIC

COMPLEXITY OF EACH BENCHMARK.

free path within 25.4s. Figs. 7,8 show two additional bench-
marks where the models are more complex. Our planner

can compute a collision-free path through a narrow passage

within 44.9s and 25.0s, respectively. Fig. 9 shows Alpha
Puzzle - a well-known challenging benchmark for motion

planning algorithms [12]. Our planner can solve it within

4, 130.5s, generating 103, 121 nodes.
Table III highlights two ways to break down the running

time for RRRT. One way is to measure the tretraction,

the time on the retraction step and tlinking , the time on

connecting the samples. The other way is to measure tcd

the time on collision detection and tcontact, the time on

contact query. Overall, the function for collision detection

takes around 70% to 80% of the total time.

C. Comparison with RRT planners

We compare the performance of our retraction-based RRT

planner with other RRT planners. We first compare with the

basic RRT planner, which uses the standard RRT extension.

Table I shows for all four benchmarks, RRRT is much

more efficient than the basic RRT planner. We also test

both planners on different versions of the notch benchmark,

i.e. scaling the G-shaped robot from 0.8 to 0.95. Tab. IV
shows that RRRT drastically improves the performance for

Fig. 7. Torus Benchmark: Left: A L-shaped robot needs to move from one
side (red) in the environment, consisting of two torus knot shaped obstacles,

to the other (green). Our planner can compute a collision-free path within

44.9s. Right: the computed tree is highlighted.

each version of the problem. Figs. 6-(c),(e) compare the

distribution of the nodes generated by RRRT and the basic

RRT planners for the 0.95 version. The RRRT planner
generates more samples in the contact space and narrow

passages, while the basic RRT cannot generate samples in

narrow passages.

There are variants of RRT-based planners such as [15],

[32] to improve the performance on narrow passages. We

quantitatively compare our planner with the RRT-based

planner presented in [15] by using the flange benchmark

(Fig. 8). Our planner takes 25.0s for this task and is much
more efficient than the planner in [15], which takes 227.1s
on a similar PC. Compared with another RRT planner in

[32], one difference is that we perform the retraction on

both in-colliding as well as collision-free configurations,

while their method can only bias the growth of the tree

using the collision-free configurations. Finally, another RRT

variant [27] also takes into account C-obstacle into the RRT

bias as ours. However, their work mainly characterizes the

issue when the sampling domain is not well adapted to

the problem, while our method focuses on improving the

performance in narrow passages.

We have not performed an extensive comparison with

other retraction-based methods [20], [21]. However, our

planner has many distinct features as compared to them. The

small-step retraction-based methods [20], [21] identify the

in-colliding configurations near the free space by shrinking

the models of the robot and the obstacles. These methods

are only applicable to closed models. Moreover, it is difficult



Fig. 8. Flange Benchmark: The CAD model - ‘elbow’ needs to slide out
of the hole of the CAD model - ‘flange’. Our planner takes 25.0s for this
task, while a variant of RRT presented in [15] takes 227.1s on a similar
PC.

Notch Torus Flange Alpha Puzzle

tall(s) 25.4 44.9 25.0 4,130.5

tretraction(s) 11.0 22.1 16.1 2,655.8

#retraction 625 1,203 232 61,650

tper retra(ms) 17.600 18.371 69.397 43.079

tretraction/tall 43.3% 49.2% 64.4% 64.3%

tlinking (s) 14.2 18.9 6.6 1,343.1

#linking 1,587 2,920 303 164,242

tper linking (ms) 8.948 6.473 21.782 8.178

tlinking/tall 55.9% 42.1% 26.4% 32.5%

tcd(s) 18.5 32.1 19.3 3,273

#cd 91,958 133,580 20,794 14,453,046

tper cd(ms) 0.201 0.240 0.928 0.226

tcd/tall 72.8% 71.5% 77.0% 79.2%

tcontact(s) 0.9 2.0 2.9 479.2

#contact 1,548 2,831 252 132,837

tper contact(ms) 0.581 0.706 11.508 3.607

tcontact/tall 3.4% 4.4% 11.5% 11.6%

TABLE III

Breakdown of Running Time: THE TABLE SUMMARIZES TWO WAYS TO

BREAK DOWN THE RUNNING TIME FOR MAIN FUNCTIONS IN RRRT. ONE

WAY IS TO MEASURE tretraction , THE TIME ON THE RETRACTION STEP

AND tlinking , THE TIME ON CONNECTING THE GENERATED SAMPLES.

ANOTHER WAY IS MEASURE tcd , THE TIME ON COLLISION DETECTION

AND tcontact , THE TIME ON CONTACT QUERY. #retraction AND

tper retra DENOTE THE NUMBER OF RETRACTION STEPS AND THE

AVERAGE TIME OF EACH RETRACTION STEP, RESPECTIVELY.

to perform the shrinking step on complex models, and the

topology of the dilated free space may be different. On

the other hand, our algorithm is directly applied to general

polygonal models. Furthermore, based on the shrinking of

geometric models, these methods implicitly use the formu-

lation of growth distance for quantifying the amount of

interpenetration among the models [33]. This formulation is

not as rigorous as our underlying formulation of generalized

penetration depth computation, which is based on a proper

distance metric that meaningfully combines the translational

and rotational motion of the robot [5]. Fig. 10 shows such

an example.

VII. LIMITATIONS

There are several limitations of our approach. Our

optimization-based retraction searches over the contact space

and computes a local minima. As a result, it can generate

many configurations that lie in the contact space but not

in the narrow passages. This can affect the overall perfor-

mance of the planner. Furthermore, the optimization-based

Fig. 9. Alpha Puzzle Benchmark: RRRT can solve this challenging

problem - to separate the two interlocked alpha-shaped models within

4, 130.5s.

retraction step has additional overhead. If the configuration

has no narrow passages, our enhanced planner may take

longer time as compared to the basic planner. However, in

the notch benchmark where the robot is scaled down to 0.8

so that the narrow passages become wider, our planner still

performs as well as the basic RRT. Finally, our algorithm is

restricted to rigid models, and performing the retraction step

on articulated models can be more expensive.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present an optimization-based retraction

algorithm to improve the performance of RRT planners

by retracting the samples so that they can be more likely

to be connected to the tree. The resulting tree can grow

closely towards every randomly generated sample, including

in-colliding as well as free configurations. We analyze the

behavior of our planner using Voronoi diagrams of the

configurations in the tree and highlight the scenarios where

our planner can handle narrow passages well. We have

implemented this algorithm and applied it for rigid robots

in challenging planning scenarios. Our experimental results

show that our algorithm generates more samples near the

contact space or in the narrow passages than prior RRT

planners and is able to explore more difficult regions in

the configuration space. In practice, we observe significant

speedups over prior RRT planners.

There are many avenues for future work. We are interested

in applying our retraction algorithm to PRM planners and

B A

Fig. 10. Growth Distance vs. Penetration Depth: When the square

A is slightly shrunk, it will be disjoint from the notch B. Therefore, the
formulation of growth distance treats this case as shallow penetration.

However, the formulation of generalized penetration depth characterizes

it as deep penetration. The latter characterization is more accurate in the

context of path planning.



Robot Scale 0.80 0.85 0.90 0.91 0.92 0.93 0.94 0.95

Basic RRT: tall(s) 11.6 31.2 120.8 143.4 184.7 292.7 306.3 > 1,232.2 ⋆
RRRT: tall(s) 6.6 7.0 9.4 14.0 8.1 26.1 23.6 25.4

Basic RRT: nodes 4,226 8,843 22,755 23,085 28,417 43,200 42,530 > 105,987 ⋆
RRRT: nodes 398 467 524 786 510 1,519 1,460 1,401

TABLE IV

Comparison: THE TABLE COMPARES THE PERFORMANCE OF RETRACTION-BASED RRT WITH THE BASIC RRT PLANNER ON THE NOTCH

BENCHMARK. THE ROBOT IS SCALED FROM 0.8 TO 0.95. OUR PLANNER SIGNIFICANTLY IMPROVES THE PERFORMANCE ON EACH VERSION OF THE

PROBLEM. ⋆ DENOTES THE MOST DIFFICULT VERSION - 0.95. THE BASIC RRT PLANNER CANNOT SOLVE IT AFTER RUNNING 500, 000 ITERATIONS

WITHIN 1.232.2S, WHILE OUR RRRT CAN COMPUTE A PATH WITHIN 25.4S.

performing the retraction computation for articulated robots.

Moreover, it would be interesting to apply our algorithm to

CAD part disassembly [30]. Finally, we would like to extend

our RRT planner for motion planning under differential

constraints, e.g. non-holonomic motion planning.
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