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Abstract: We present novel algorithms for fast proximity queries using swept sphere

volumes. The set of proximity queries includes collision detection and both exact and

approximate separation distance computation. We introduce a new family of bounding

volumes that correspond to a core primitive shape grown outward by some o�set. The set

of core primitive shapes includes a point, line, and rectangle. This family of bounding

volumes provides varying tightness of �t to the underlying geometry. Furthermore, we

describe e�cient and accurate algorithms to perform di�erent queries using these bounding

volumes. We present a novel analysis of proximity queries that highlights the relationship

between collision detection and distance computation. We also present traversal techniques

for accelerating distance queries. These algorithms have been used to perform proximity

queries for applications including virtual prototyping, dynamic simulation, and motion

planning on complex models. As compared to earlier algorithms based on bounding volume

hierarchies for separation distance and approximate distance computation, our algorithms
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have achieved signi�cant speedups on many benchmarks.

CR Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computa-

tional Geometry and Object Modeling Key Words and Phrases: collision detection,

distance computation, coherence, computational geometry, physically-based modeling,

swept volumes
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1 Introduction

Many applications of computer graphics or computer simulated environments need to

determine spatial or proximity relationship between two geometric objects. The common

set of proximity queries include

� Collision detection { given two or more objects, determine if a geometric contact

has occurred between them.

� Separation Distance Computation { if two objects are disjoint, �nd the mini-

mum Euclidean distance between them.

� Approximate Distance { given an error tolerance value, compute the separation

distance to within the precision of the speci�ed tolerance.

Such queries frequently arise in applications involving dynamics simulation, virtual

prototyping, computer animation, surgical simulation, robot motion planning, simulation-

based design, haptic rendering, molecular modeling, and computer games. Some applica-

tions, such as haptic rendering, have stringent performance requirements. They need to

perform these queries in less than a millisecond on large models composed of hundreds of

thousands of polygons.

Algorithms for such queries have been extensively studied in the literature. While a

number of specialized algorithms have been designed to handle a pair of a special class

of primitives, e.g. convex polytopes, spheres, or ellipsoids, the most general and versatile

algorithms are based on bounding volume hierarchies (BVHs).

Di�erent BVHs are primarily categorized by the choice of bounding volume (BV) type

at each node of the tree. Examples of BV types include spheres, axis-aligned bound-

ing boxes (AABBs), oriented bounding boxes (OBBs), discretely-oriented polytopes (k-

DOPs), etc. The e�ciency of a hierarchy is a�ected by the choice of a BV type. More

precisely, there is a trade-o� between the \tightness of �t" and the speed of operations

between two such volumes. It is clear that no single bounding volume type gives the opti-

mal performance for all proximity queries in all scenarios. For example, hierarchies based

on spheres perform well on collision queries between well-separated objects. But when
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the objects are in close proximity, hierarchies based on tighter �tting bounding volumes,

e.g. k-DOPs or OBBs, may result in superior performance.

Ideally, one may like to combine multiple BV types in a single hierarchy. However,

there are a number of issues in designing hierarchies of mixed bounding volumes, such as

selecting a particular BV type at a given node in the tree for a particular query. We also

need to perform the geometric queries between them e�ciently and accurately. If we use

hybrid hierarchies composed of n di�erent bounding volumes, we may have to implement

O(n2) di�erent tests to check them for overlap or compute distance between them.

Many applications such as dynamics simulation, haptic rendering and path planning

make use of collision detection, distance computation and approximate distance queries.

Because of issues related to software engineering and memory usage, we would like to use

one BVH to perform all these queries e�ciently.

1.1 Main Contributions

In this paper, we present hierarchies of swept sphere volumes for fast proximity queries.

The BVs at the nodes of a BVH belong to a family of three di�erent swept sphere volumes.

They correspond to a sphere (also known as point swept sphere or PSS), and more complex

volumes obtained by sweeping along either an arbitrarily oriented line (line swept sphere

or LSS) or along an arbitrarily oriented rectangle (rectangle swept sphere or RSS). While

it is least expensive to perform the proximity queries on PSSs, the RSSs provide the

tightest �t to the underlying geometry. We present specialized, e�cient and accurate

algorithms to compute distance between any combination of these BVs.

Much of our study has involved applying swept sphere volumes to distance computa-

tion. We present some observations about the distance problem that may help to explain

the costly performance of distance queries relative to collision queries, as well as how the

choice of BV impacts distance queries. Speci�cally, we illustrate that each distance query

between geometric models can be answered by performing collision tests between BVs

and computing exact distance between the primitives. Furthermore, we demonstrate the

e�ectiveness of utilizing coherence or priority directed search to enhance the performance

of distance queries.

Combining these approaches, we present an algorithmic framework that uses swept

sphere volumes as BVs and can be used for fast collision detection, separation distance

as well as approximate distance computation. Some of the advantages of our approach

include:
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1. Good e�ciency and accuracy in performing various proximity queries using just one

type of BV.

2. The 
exibility of including one or more of the three BV types in a BVH.

3. A potentially useful tradeo� between tightness of �t to underlying geometries and

e�ciency of BV operations.

4. An e�cient approach for distance queries that takes advantage of coherence between

successive frames and uses priority directed search.

5. As compared to BVHs composed of spheres, AABBs and OBBs, our distance com-

putation algorithms have achieved signi�cant speedups on di�erent benchmarks.

Our benchmarks include examples of virtual prototyping, dynamics simulation, and

motion planning on complex models composed of tens of thousands of polygons.

1.2 Organization:

The rest of the paper is organized as follows. We survey related work on BVHs and

proximity queries in Section 2. Section 3 gives an overview of using BVHs for various

proximity queries and the cost analysis of proximity queries. Section 4 introduces the

family of swept sphere volumes, and presents algorithms for building BVHs and perform-

ing proximity queries. In Section 5, we present a novel analysis of proximity queries and

show how to transform distance computation to collision detection using BVHs Section 6

describes acceleration techniques for the distance queries. In Section 7, we summarize the

performance of our algorithms based on hierarchies of swept sphere volumes and compare

their performance against the traditional BV types on di�erent benchmarks.

2 Related Work

Proximity queries have been extensively investigated for decades by researchers in com-

puter graphics, robotics, physically-based modeling, computational geometry, and com-

puter animation. Besides collision detection and distance computation, there is con-

siderable work on BVHs for ray-tracing, visibility culling, boolean set operation, and

intersection tests. In this section, we brie
y survey some of the related work.
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2.1 Computational Geometry

Many asymptotically e�cient algorithms for collision detection and distance computation

have been proposed by researchers in computational geometry. These include Dobkin-

Kirkpatrick hierarchies [DK82], linear programming [Sei90] and algorithms for intersecting

convex polytopes [Cha89].

2.2 Hierarchical Data Structures

Hierarchical data structures, such as hierarchical spatial partitions and BVHs have been

widely used to design e�cient algorithms. Typical hierarchies include k-d trees and

octrees, R-trees and their variants, cone trees, BSPs [NAT90] and their extensions to

multi-space partitions [WG91], and spatial representations based on space-time bounds

or four-dimensional tests [AANJ94, Hub93]. The set of BVs for BVHs include spheres

[Hub93, Qui94], axis-aligned bounding boxes [BKSS90, HKM95], oriented bounding boxes

[GLM96, BCG+96], approximation hierarchies based on S-bounds [Cam91], spherical

shells [KPLM98], and k-DOPs [HKM96, KHM+98]. There is also literature on the use of

spatial partitioning structures and BVHs to accelerate ray-tracing. Check out Arvo and

Kirk [AK89] for a survey.

2.3 Distance Computation

Given two convex polytopes, algorithms to compute distance between them have been

proposed by Gilbert et al. [GJK88], Lin and Canny [LC91], Cameron [Cam97], and Mir-

tich [Mir98]. The last three algorithms are incremental and exploit coherence between

successive queries. Hamlin et al. [HKT92] present distance computation between a pair

of spherically-extended polytopes (S-topes). The S-topes closely resemble the bounding

volume shapes described in this paper. For general polygonal models, Quinlan [Qui94]

proposed an algorithm using BVHs of spheres and also used them to compute approx-

imate distance. Johnson and Cohen [JC98] used BVHs composed of oriented bounding

boxes and also presented techniques to compute distance between NURBS primitives. For

parametric or implicit surfaces whose motion can be expressed as a closed form function

of time, Snyder et al. [Sea93] have presented algorithms based on interval arithmetic to

compute distance between them.
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2.4 Hybrid Combinations

Several researchers have proposed hybrid combinations to accelerate proximity queries.

Some of the public domain collision detection systems like SOLID [Sys97] and V-COLLIDE

[HLC+97] make use of AABBs for N-body tests and a combination of AABBs or OBBs for

pairwise primitive tests. Recently, Gregory et al. and Kim et al. [GLGT98, KGS98] used

combinations of spatial partitioning data structures and BVs for faster collision tests.

3 Bounding Volume Hierarchies

In this section, we give an overview on bounding volume hierarchies (BVHs), the cost

equation to measure their performance on proximity queries, and BVH-based algorithms

for collision detection and distance computation.

A bounding volume (BV) is used to bound or contain sets of geometric primitives,

such as triangles, polygons, NURBS, etc. In a BVH, BVs are stored at the internal nodes

of a tree structure. The root BV contains all the primitives of a model, and children BVs

each contain separate partitions of the primitives enclosed by the parent. Leaf node BVs

typically contain one primitive. In some variations, one may place several primitives at

a leaf node, or use several volumes to contain a single primitive [Qui94]. The BVHs are

used for di�erent proximity queries in the following manner:

Collision Detection: Two models are compared by recursively traversing their BVHs

in tandem. Each recursive step tests whether BVs A and B, one from each hierarchy,

overlap. If A and B do not overlap, the recursion branch is terminated. But if A and B do

overlap, the enclosed primitives may overlap and the algorithm is applied recursively to

their children. If A and B are both leaf nodes, the primitives within them are compared

directly.

Separation Distance Computation: The structure of the query is very similar to

the collision query. As the query proceeds, the smallest distance found from comparing

primitives is maintained in a variable �. At the start of the query, � is initialized to

in�nity, or to the distance between an arbitrary pair of primitives. Each recursive call

with BVs A and B must determine if some primitive within A and some primitive within

B are closer than, and therefore will modify, �. The call returns trivially if BVs A and

B are farther than the current �, since this precludes any primitive pairs within them

being closer than �. Otherwise the algorithm is applied recursively to its children. For
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leaf nodes it computes the exact distance between the primitives and if the new computed

distance is less than �, it updates �.

Approximate distance computation: This supposes that a certain relative or abso-

lute error in the distance computation is acceptable. The distance between BVs A and B

gives a lower limit to the exact distances between their primitives, and if this bound pre-

vents � from being reduced by more than the acceptable tolerance, that recursion branch

is terminated.

3.1 Assumptions

The performance of BVHs on proximity queries is governed by a number of design pa-

rameters. These include techniques to build the trees, number of children each node can

have, and the choice of BV type. An additional design choice is the descent rule. This

is the policy for generating recursive calls when a comparison of two BVs does not prune

the recursion branch. For instance, if BVs A and B failed to prune, one may recursively

compare A with each of the children of B, B with each of the children of A, or each of

the children of A with each the children of B. This choice does not a�ect the correctness

of the algorithm, but may impact the performance.

We assume that all BVHs are binary trees and each leaf node consists of a single

triangle. As part of a pre-process, all polygonal models are triangulated. We use a simple

top-down scheme to construct the hierarchies and traverse them. Our descent rule is to

recursively compare the "smaller" BV with the children of the "larger" BV, where relative

size is determined by diameter. More details are given in Section 5.

3.2 Cost of Proximity Queries

Many researchers have provided metrics for evaluating the performance of BVHs. The

commonly used cost equation is [GLM96, KHM+98]:

T = Nbv � Cbv +Np � Cp; (1)

where T is the total cost function for proximity queries, Nbv is the number of bounding

volume pair operations, and Cbv is the total cost of a BV pair operation, including the

cost of transforming each BV for use in a given con�guration of the models, and other

per BV-operation overhead. Np is the number of primitive pairs tested for proximity,
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and Cp is the cost of testing a pair of primitives for proximity (e.g. overlaps or distance

computation).

Typically for tight �tting bounding volumes, e.g., RSS, OBBs or k-DOPs (where k

is high), Nbv and Np are relatively low, whereas Cbv is high. In contrast, Cbv is low

while Nbv and Np may be higher for simple BV types like spheres and AABBs. Due to

these opposing trends, no BV yields optimum performance for proximity queries in all

situations. A major motivation in the design of hybrid hierarchies is to include simple

shapes like PSS for fast overlap tests and tight �tting BVs like RSS to reduce the number

of tests. The LSS may provide a trade-o� between the PSS and the RSS, in terms of

tightness of �t and the cost of overlap test.

4 Swept Sphere Volumes

In this section, we present a new family of BVs for fast proximity queries. These BVs

correspond to geometric shapes composed of a core primitive shape grown outward by

some o�set. Any such shape is also the Minkowski sum or convolution of the core primitive

shape and a sphere. In other words, the BV corresponds to the set of points swept out

by the sphere as its center is moved over all the points of the core primitive shape. From

here on, we will refer to the growth o�set as a radius.

In this paper, we use a family of three BVs for proximity queries. These are:

� Point Swept Sphere or PSS: The core primitive shape is a point. The resulting

BV corresponds to a sphere. We represent it using a point and a radius.

� Line Swept Sphere or LSS: The core primitive shape is a line segment. The

resulting BV forms a cylinder with hemispherical caps at each end. We represent it

using a line segment, the center and the radius.

� Rectangle Swept Sphere or RSS: The core primitive shape is an arbitrary

rectangle in 3D. The resulting BV is like a rounded box. We represent it using the

rectangle, its center, and a radius.

The idea of using any one of these shapes in proximity queries is not novel. For exam-

ples, spheres or PSS have been widely used for collision detection [Hub93] and distance

computation [Qui94]. The LSS closely resembles a cylinder and many researchers have

proposed using cylinders for proximity queries. Xiao and Zhang [XZ96] highlight all the
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Figure 1: A rendering of di�erent swept-sphere volumes; a sphere is on the left, a line

swept sphere in the center, and a rectangle swept sphere on the right.

three shapes in describing a method for contact determination with location uncertainty.

However, we present these shapes as a family of BVs and this has a number of advantages

for proximity queries. These include:

1. E�cient Proximity Queries: It is relatively simple to perform di�erent proximity

queries. It involves computing the distance between the primitive core shapes and sub-

tracting the o�set radius of each BV. The same set of operations can be used for collision

detection, distance computation or approximate distance computation between any pair

of these BVs.

2. Varying Tightness of Fit: Di�erent BVs provide a varying tightness of �t to the

underlying geometry. The RSS is the tightest BV among them. The pruning power of

RSS's is similar to that of OBBs proposed in [GLM96]. As a result, they provide local

quadratic convergence to the underlying geometry. PSS has a linear convergence to the

underlying geometry. The pruning power of LSS lies somewhere between that of a PSS

and a RSS.

3. Hybrid Combinations: It is possible to construct hybrid trees where di�erent nodes

may correspond to di�erent swept sphere volumes. For example, for some shapes (e.g. fat

or symmetric objects) the spheres or PSS provide a good �t to the underlying geometry.

Many CAD environments are composed of lots of pipes, and one can possibly use LSS as
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the BVs for such shapes. For con�gurations in which surfaces are close and parallel, one

may prefer RSS as a choice for the BV. Furthermore, one can either use static or dynamic

selection schemes to choose the appropriate BVs.

4. Low Storage Requirements: The PSS, LSS and RSS take 16, 32, and 48 bytes

respectively to represent, assuming single-precision 
oating point arithmetic.

4.1 Building BVHs of Swept Sphere Volumes

In this section, we present algorithms for building BVHs composed of swept sphere vol-

umes. It has two parts: enclosing a set of triangles by PSS, LSS or RSS and grouping of

nested BVs into a single hierarchy.

Given a set of triangles, we use statistical techniques to compute di�erent bounding

volumes. Our approach is based on �rst and second order statistics summarizing the vertex

coordinates, as used by [GLM96, BCG+96]. They are the mean, �, and the covariance

matrix, C, respectively [DH73]. Let the vertices of the i'th triangle be the points ai, bi,

and ci, then the mean and covariance matrix can be expressed in vector notation as:

� =
1

3n

nX
i=0

(ai + bi + ci);

Cjk =
1

3n

nX
i=0

(aija
i
k + b

i

jb
i

k + cijc
i
k); 1 � j; k � 3

where n is the number of triangles, and ai = ai � �; b
i
= bi � �; ci = ci � �: The

last equations represent subtracting the mean from each row of ai, bi and ci. Our �tting

algorithms use the eigenvectors of the covariance matrix, C, to initially compute an OBB

that encloses the underlying geometry. We compute di�erent BVs as:

PSS: A number of e�cient algorithms are known in computational geometry for comput-

ing the minimum enclosing sphere for a set of points [Wel91].

LSS: We use the largest dimension of the OBB as the central axis of the LSS. All the

triangle vertices are projected onto a plane perpendicular to this axis, and a circle is

computed that contains all of these projected vertices. This circle determines the position

of our central axis and the radius of the LSS. Then we compute extremal vertices along

the central axis and use them to compute the hemispherical caps for the LSS.

RSS: For �tting an RSS, the smallest of the three dimensions of the OBB becomes

the rectangle normal direction. In most cases, this direction is most likely to be the
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perpendicular to a nearly 
at cluster of triangles, and will allow the 
at shape of the

RSS to �t the geometry tightly. The other directions �x the orientation of the rectangle

and the rectangle dimensions are grown appropriately to enclose all the geometry. The

dimensions of the rectangle are initially determined so that they enclose triangles along

the two side projections of the RSS. This may miss triangles near the corners of the

rectangle. As a result, the rectangle corners are extended outward at a 45 degree angle

until they enclose all the triangles.

We use a top-down strategy to create the nodes of our hierarchy. This means that

the hierarchy is built from the root node downward. The triangles in each node of the

tree, starting with the root that contains all of the triangles, are split into two subsets

that become the children nodes of this node. Nodes are recursively subdivided unless

they contain only a single triangle, which corresponds to a leaf node of the hierarchy. Our

splitting rule is the same as used for an OBBTree [GLM96]. A splitting axis is chosen, and

a plane orthogonal to the axis is used to partition the triangles into two sets, according

to which side of the plane their center point lies on.

4.2 Hybrid Hierarchies

The main idea behind hybrid hierarchies is to use di�erent BVs for the same query, making

selections of BV type at either BVH building time or query time. For selection during

a query, each BVH node can contain all 3 BV types, and an algorithm can dynamically

select which two types of BVs (among all nine combinations) will be tested. Alternatively,

a simple static selection criteria �ts only one type of BV to each node in the BVH during

hierarchy building. One strategy is to base the choice of a BV type on the relative

dimensions of the axes of the OBB that is initially �t to the triangles. If the OBB has

three axes of similar lengths, a PSS is used. If one axis length is large and the other two

are relatively small, we use an LSS. In all the other cases, we use an RSS. In our current

implementation, we have chosen a factor of two to decide when one dimension is larger

than the other.

4.3 Proximity Tests

In this section, we present specialized algorithms to compute the distance between the

primitive core shapes: points, lines, or rectangles. These are all convex shapes and one can
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Figure 2: Di�erent relative con�gurations of two edges

possibly use algorithms proposed in [GJK88, LC91, Mir98] to compute distances between

them. However, we present specialized algorithms for three reasons:

� E�ciency: We will like to minimize the operation count as much as possible for

these primitives.

� Accuracy: We will like the algorithm to work on all con�gurations of BV's and

not be susceptible to numerical errors and degeneracies.

� Ease of Implementation: Given that we are using a family of three BV's, we will

like to implement all the overlap tests using a similar set of operations.

Our algorithms utilize properties of external Voronoi regions for proximity queries,

as proposed by Lin and Canny [LC91]. We initially present an algorithm for computing

distance between two arbitrary rectangles in 3D. Later we use subroutines from this

algorithm to handle distance computation between the other combinations of points,

lines, and rectangles. Our algorithm �rst determines if the closest points between the

rectangles lie on the boundary edges. If so, the distance between these points is computed

and returned. If not, one of the two closest points must lie in the interior of a rectangle.

4.3.1 Closest Points on Edges

We use the external Voronoi regions of rectangles to verify that the closest points are found

on the edges of the rectangles. The external Voronoi region of an edge E is de�ned as the
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region of space outside the rectangle in which all points are closer to E than to any other

features of the rectangle. In our formulation, the vertices are not treated as separate

features and therefore, the external Voronoi region of E is a half-space. Consequently

adjacent edges have overlapping Voronoi regions. The region of overlap is the set of

points closest to a corner vertex and thus equally distant to the adjacent edges.

To determine whether the closest points between the rectangles lie on their edges, all

16 pairs of edges (one edge from each rectangle) are examined. To verify whether an

individual pair of edges contains the closest points of the rectangles, we use the following

lemma:

Lemma 1 A point a of edge A and a point b of edge B are the closest points of edges A

and B, and a and b are the closest points for the rectangles. () The point a is in the

external Voronoi region of B, and b is in the external Voronoi region of A.

Hence for every edge pair (A;B), one can compute the closest points a and b, and each

such point can be checked whether it is contained in the external Voronoi region of the

edge. However, computing the closest points on possibly all 16 edge pairs can be relatively

expensive.

To speed up the computation, we check the relative con�gurations of two edges without

explicitly computing the closest points. Consider when we are trying to determine whether

b, the closest point on edge B to A, is contained within A's Voronoi region. In some cases,

this can be trivially answered. There are three cases:

� B is entirely inside the Voronoi region of A. Therefore, b must be in A's Voronoi

region (Fig. 2(a)).

� B is entirely outside the Voronoi region of A. Thus, b cannot be in A's Voronoi

region (Fig. 2(b)).

� Some points of B are inside and some are outside A's Voronoi region. In such cases,

b may be inside or outside A's Voronoi region (Fig. 2(c)).

Our algorithm performs two such tests for each edge pair, taking advantage of the trivial

acceptance and rejection permitted by the �rst two cases. The last case needs extra

analysis for closest point test. When an edge pair passes both the tests, the algorithm

computes a and b, and returns distance between them as the distance between the two

rectangles.
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4.3.2 Other Cases

It is possible that no pair of edges will satisfy Lemma 1. In such cases, either the rectangles

are overlapping or the closest point lies in its interior. To compute the distance in such

cases, we use a variation of separating axis test proposed in [GLM96]. The main idea is

to project each rectangle to a unit direction and compute the distance between resulting

intervals. This distance along a direction is a lower bound to the actual distance.

When one of the closest points is in the interior of a rectangle, that rectangle's normal

vector gives the direction along which the maximal separation occurs. To compute it,

we consider the normal direction of each rectangle and �nd the separation along each of

them and take the maximum. If both these distances are zero, the resulting rectangles

are overlapping.

4.3.3 Other Distance Routines

The algorithms to compute distances between other primitives, e.g. points, lines and

rectangles follow from this rectangle-rectangle distance test. In particular, a line-rectangle

distance algorithm turns out to be a special case of this algorithm. All other queries: line-

line, point-rectangle, point-line, point-point are all subroutines in the rectangle-rectangle

distance test.

4.3.4 Improving the Accuracy

In our applications, a lower bound to the actual distance between the BV's is a conser-

vative result. It doesn't a�ect the �nal outcome of the proximity query, but can increase

the values of Nbv and Np in the cost equation (1). In our implementation, we have made

the algorithm conservative based on this realization. For instance, when division by a

small number can cause the third case in the inclusion test (Fig. 2(c)) to fail. This corre-

sponds to an ambiguity of the closest edges, which can be avoided by simply computing

the separation in the �nal step.

4.3.5 Performance of Proximity Tests

We have implemented these overlap tests to compute distance between di�erent core

primitive shapes. The relative performance of di�erent tests is shown in Table 4.3.5. These

timings were produced by performing proximity queries without any triangle comparisons
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Primitive Pairs Relative Costs

Point-point 1

Point-line 1.25

Point-rectangle 1.53

Line-line 1.83

Line-rectangle 2.39

Rectangle-rectangle 3.10

Table 1: Relative performance of distance tests between primitive core shapes

and dividing the absolute time by the number of BV tests. Thus, they indicate the relative

cost of each operation including some per operation system overhead. We also compared

performance with an implementation of Gilbert et al.'s algorithm [GJK88], which was not

speci�cally optimized for rectangles in 3D. We tested a range of rectangle con�gurations

by extracting a sequence of more than 700; 000 rectangle pairs tested in several hundred

distance queries taken from two applications. We timed the distance computations of

these rectangles using each method. We found our specialized algorithm is approximately

four times faster.

5 Analyzing Proximity Queries

In the previous section, we introduced a family of swept sphere volumes. This section

includes many of the observations made while applying these volumes to collision and

distance queries. A number of concepts are introduced that are general to all BV types,

including the bounding volume traversal tree (BVTT) as well as the concept of trans-

forming a distance query to a collision query.

This discussion primarily bene�ts intuition on several aspects of distance query per-

formance. We use � in the following discussion to denote the current estimate on the

distance between two models, and � to denote the minimal separation distance.

5.1 The Bounding Volume Test Tree

The bounding volume test tree (BVTT) represents the hierarchy of tests performed during

a query. We will introduce several variants of the BVTT that will be helpful in the
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Figure 3: An example BVTT derived from two BVHs

discussion to follow.

Each node in the BVTT corresponds to a single collision or distance test between a

pair of BVs. For the query algorithms described in this paper, a BV test (a node in the

BVTT) often leads to additional BV tests (its child nodes in the BVTT). The root node

of the BVTT is the BV test between the roots of the BVHs. The leaf nodes of the BVTT

are either a test between two BVH leaf nodes or else a test between a pair of nodes which

did not overlap, which prunes their subtree from the BVTT.

A maximal BVTT results from a query in which no branches are pruned. The resulting

tree has O(n2) nodes. This may never occur in practice, but it is a useful concept. Note

that if the BVHs are �xed over all queries, and a descent rule based on BV diameter is

used, the structure of the maximal BVTT does not vary with the con�gurations of the

models.

One may look at the actual BVTT generated for a query as a search path through a

subset of the maximal BVTT. For both distance and collision, the structure of this search

is governed by the con�guration of the models. However, for distance computation, the

use of the distance estimate � in pruning choices also in
uences the degree to which the

maximal BVTT's structure is searched.

Recall that in order to prune the search at a BV pair test, � must be smaller than the

distance between the BVs. Thus the best pruning of the search will occur if � is as small

as possible. Clearly the smallest � can be is �, the true distance between the models. We

can call a BVTT searched when � is always equal to � a minimal BVTT. The minimal
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BVTT provides a lower bound to the set of nodes that must be searched in a distance

query, given the assumptions we have made. In an actual query, one hopes that � can be

reduced quickly, to limit exploration outside the minimal BVTT.

5.2 Transforming Distance Computation to Collision Detection

A collision query proceeds by testing two BVs for overlap, performing further recursive

tests if they touch, but terminating the recursion branch if they are disjoint. A distance

query has the same basic structure, except that the test between BVs measures the

distance, and termination occurs only if the BVs are separated by more than the current

distance estimate, �. There is a natural correspondence between a distance query problem

and a modi�ed collision detection problem.

To explain the transformation, we use the notion of dilating a shape. Dilation of a

shape S by � means to take its Minkowski sum with the origin-centered sphere of radius

�. In the rest of this section, we use subscripts to denote dilations. Consider a bounding

volume hierarchy H. Let the dilated BVH H� be a BVH like H, except that each of its

primitives and BVs have been dilated by distance �.

The minimal BVTT for an exact distance query between two BVHs A and B is

identical to the BVTT for the collision query between A� and B� where �+ � = � and �

is the distance between the models A and B. Consider that for a distance query, a test

between BVs or between primitives a and b prunes if the following condition is satis�ed:

Dist(a; b) > �: (2)

The corresponding test in the dilated collision query prunes its recursion branch if

a� \ b� = ;: (3)

These two expressions are logically equivalent. Equation 2 is a fundamental test in a

distance query, while equation 3 is an overlap test. Since the corresponding tests between

the distance and dilated collision queries are identical, the same recursion branches will

be terminated, and consequently the BVTTs are identical.

The arithmetic and logic required to perform the dilated collision query is exactly

the same as that required by the distance query. So, the transformation from distance

to collision does not make the task computationally simpler. However, it permits us to

bring to bear on the distance computation problem some of the analytic results we know
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about collision queries. For example, Gottschalk et al. [GLM96] assert that tighter-

�tting bounding volumes can enhance performance in certain situations. Also, theoretical

bounds on the complexity of intersection problems concerning \fat objects" may apply

[OvdS96, ZS99], since these dilated BVs and primitives are considered \fat".

5.3 Approximate Distance and Dilated Collision Detection

In an approximate distance query, the pruning condition is

�=(1 +R) < Dist(A;B); (4)

where R is the relative error tolerance. The minimal BVTT is produced when � is always

equal to �, i.e., when each BV pair distance is compared against �
0

= �=(1 +R).

This corresponds to a collision query in which one of the models is dilated by �
0

.

Provided the original models did not already overlap, dilation by �
0

will not bring the

models into contact. Since the dilation depends on the relative error R, one may see a

range of performance between a distance and collision query by changing the value of

R. As R ! 0, the query time for approximate distance computation increases. Quinlan

[Qui94] had also noted this behavior empirically.

5.4 Observations concerning Dilated Collision Detection Prob-

lem

Consider that the collision detection problem resulting from this dilation always contains

a contact, because we are dilating by the minimal distance between the original models.

This has several important consequences. First, although one might think that distance

computation is less expensive on well-separated objects, the dilation is always equal to

the separation distance, so the dilation always brings two primitives back into contact.

Increasing the distance merely increases the dilation, so that the dilated models remain

in contact. Consequently, the complexity of the problem is not reduced by increasing

separation { in fact, we will argue that the complexity is often increased.

Consider what happens as the BVs and primitives of a given BVH are dilated by

ever greater amounts. In some circumstances, this increases the number of overlapping

BVs between the dilated BVHs. We illustrate this concept in the plane in Figure 4. As

the separation distance � between parallel rows of primitives (i.e. the line segments) is

increased, the BV on the left is dilated by ever greater amounts. As the dilation radius
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Figure 4: This �gure illustrates how number of BV tests in a distance query can increase

as parallel surfaces are separated.

increases, the dilated BV touches more of the BVs of the other BVH. Expressed more

formally, consider the BVs of radius r, and let the primitives be separated by distance

�. The row of nodes in the right can be approximate by a rectangle of thickness 2r.

Observing the side lengths of the right triangle, we deduce that a swath of length 2l of

the BVs on the right are touched by the dilated BV on the left, where

l =
q
(� + r)2 � (� � r)2 = 2

p
r�

Since the BVs have radius r, there are l=(2r) of them in the swath. So the number of

BVs on the right touched by the dilated BV on the left is

n = l=(2r) =
q
�=r

Thus, as the separation � between the parallel rows of primitives increases, the number of

BVs on the right touched by each dilated BV on the left also increases. This example is

intended to demonstrate the trend relating to a two dimensional problem. The situation

is much more complicated for tessellated surfaces in space, but a similar trend can be

observed : the number of BV tests, Nbv, for an exact distance query tends to increase as

we separate approximately parallel surfaces.
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Another observation is that the ideal distance query between models A and B is that

its complexity begins to resemble an ordinary (not dilated) collision query between A and

B as the separation distance � approaches zero. This is trivially true when � = 0, in

which case the dilation is zero. We use many of these observations in Section 7 to analyze

our results on di�erent benchmarks.

6 Distance Query Acceleration Techniques

A simple traversal of the BVTT would be a depth-�rst search, in which we recursively

process a left subtree before processing the right subtree. As mentioned in section 5,

if we visit more distant BV pairs before visiting the closeby BV pairs, we may miss

opportunities to prune the search tree, and thereby perform poorly. In this section we

describe two simple techniques for improving the pruning of the BVTT by causing � to

approach � quickly. These two techniques are called priority directed search and triangle

caching.

6.1 Priority Directed Search

Instead of traversing the BVTT as a strictly depth-�rst or breadth-�rst search [JC98], we

use a priority queue to schedule which of the pending tests to perform next. We prioritize

the pending BVTT visits according to the distance: the closest pending BV pair is given

a higher priority and visited next.

The goal is to guide the search process so that � approaches the � value after traversing

as few BV's as possible. In this way the search will proceed towards primitives in each

BVH that will possibly result in a lower value of �.

However, there are several sources of overhead in using a priority queue. One of them

is the space required to store all the candidate BV pairs. The priority queue can have

up to O(n2) pairs in the worst case, where n is the number of primitives in each model.

Additional overhead comes from insertion, deletion and minimum �nding operations in

the priority queue. One way to ameliorate this problem is to use a �xed size priority

queue. When the queue is full, a recursive call is made on that queue's closest BV pair.

This recursive invocation creates its own new queue, which it uses until its subtree is

completely processed. Limiting the queue size limits the worst case storage requirements

and performance of the algorithm.
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6.2 Triangle Caching

Another approach to improve the performance is to utilize coherence between successive

frames. In some applications, the distance only changes slightly between queries. To take

advantage of this, the closest triangle pair from the previous query can be recorded, and

the distance between them in the next query can be used to initialize �. If the motion

between time steps is very small, then � will be very close to the true minimum distance,

�, and only the minimal BVTT may be searched.

6.3 Combining Priority Search and Triangle Caching

Since triangle caching and priority directed search have similar impacts on the pruning,

their e�ects are not additive: if triangle caching has already initialized � close to �, then

our traversal will prune well regardless of which branches we take, and consequently

priority directed search is rendered less e�ective. This has been demonstrated in Table 5

in Section 7.

7 Implementation and Performance

In this section, we describe implementation of our algorithms and compare their per-

formance with other bounding volumes on di�erent benchmarks. We also analyze their

performance and try to highlight situations where they may perform better. Overall,

our collision detection algorithms perform favorably as compared with earlier approaches.

The acceleration techniques described in Section 6 improve the performance of distance

queries in most cases. Overall, our new algorithms for separation and approximate dis-

tance computation have achieved signi�cant speedups on many benchmarks as compared

to other BVs and traversal schemes.

7.1 Implementation

We have implemented all our algorithms as part of a general purpose framework for

performing proximity queries using BVHs. The framework has been implemented in

C++ and runs on top of PC's and SGI workstations. Each BV type is inherited from an

abstract BV class, which de�nes a standard interface for all BV-centered operations, such

as �tting the BV to a set of triangles, and performing distance and overlap operations

on the BV. The desired BV type is speci�ed at run time prior to building the hierarchy
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for an input model. Moreover, the priority based search method uses a binary heap for

extraction of the closest pending BV pair.

7.2 Benchmarks

We used a number of benchmarks to measure the performance of swept sphere volumes

and compare them with other BVs. The main benchmarks come from di�erent applica-

tions. Our goal was to include some real-world benchmarks that consist of a variety of

con�gurations between the models. These include models in close proximity (e.g. parallel

close proximity, transverse contact etc.) as well as models moving away from each other.

They have also been highlighted in the video. These include:

Engine Simulation for Virtual Prototyping: We used our algorithms to perform

di�erent proximity queries on an engine model. It is composed of moving pistons and we

check for collisions and distances with the engine blocks. The path of moving pistons was

pre-speci�ed.

Randomized Path Planner: We used the randomized path planner [HKL+98] to plan

the path of a wrinkled torus in a cave environment. The wrinkled torus has about 20; 000

polygons and the cave environment is composed of 50; 970 polygons. Given the initial

and �nal position of the torus, the path planner computes a trajectory. The randomized

planner probes 2; 880 random positions of the torus in the con�guration space, computes

distance to the nearby obstacle for each of these positions and based on that information

computes a collision-free path. More details about the planner are given in [HKL+98].

All planners based on randomized approaches use all three proximity queries.

Dynamics Simulation of Falling Rings: Given a chain of 10 falling rings, we used the

trajectories (for each ring) computed by a dynamics simulator and di�erent algorithms to

check for collisions and distances along these trajectories. Each ring is composed of 256

polygons. We performed 45 pairwise tests between all ring pairs at each step. We report

the average time for collision and distance queries using di�erent BVs.

Falling Tori: It consists of a lumpy torus, composed of 3; 240 triangles, lying horizontally

in space. The path corresponds to a smaller warped torus composed of 1; 332 triangles

falling onto it. It pivots until it has clear passage and falls through the center of the larger

torus.
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Figure 5: This log-linear plot compares the e�ciencies of exact distance queries using

spheres, LSSs, and RSSs for our \separated sphere models" benchmark. It also shows that

RSSs are signi�cantly faster than the other two BV types in such situations.

7.3 Relative Performance of Swept Sphere Volumes

We compared the relative performance of swept sphere volumes with di�erent BV types

using our \separated sphere models" benchmark, consisting of two 40K polygon sphere

models of unit radius. At various separations of the models, 500 queries were made with

the models given random orientations. The log-linear plot in Fig. 5 shows average query

times. The plot shows that RSSs are signi�cantly faster than spheres and LSSs. All BV

types exhibit a trend of increasing expense with increasing distance, as predicted in our

analysis of distance computation in Section 5, although we observe an apparent ceiling

for the work for each BV type. This occurs because the benchmark involves surfaces

which curve away from one another, whereas in the analysis we had made the simplifying

assumption that the surfaces were parallel and unbounded.

We examined each of the BV types for approximate distance queries also using con-

centric sphere models of 40K triangles each (shown in Fig. 6). The outer sphere model
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Figure 6: This log-linear plot shows performance of each BV type for approximate distance

queries between 40k polygon concentric sphere models. We observe that all BVs do more

work as gap size decreases, but work for RSS increases more slowly than the others.

was unit radius, the inner sphere model had radius ranging from 0:9 down to 0:1 (so the

gap size between the spheres ranged from 0:1 to 0:9). For each gap size, we performed

60 queries, giving the models random orientation prior to each query. The average query

times for each gap size are plotted for each BV type. We note that the RSSs signi�cantly

outperform the other two types when the gap size is very small, but for very large gaps

the performance di�erences are small. We believe that when the gap is small, the problem

resembles a parallel close proximity situation, and that the tighter �t of the RSSs become

a signi�cant factor in performance.

7.4 Choice of BV Type

In Tables 2, 8 and 8, we have highlighted the performance of di�erent bounding volumes

for collision detection, separation distance computation and approximate distance compu-

tation (with 10% relative error), respectively. The set of BVs include spheres, LSS, RSS,
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AABBs, OBBs and hybrid combination. The hybrid refers to the static selection strategy

described in Section 4. We make the following interpretations from these benchmarks.

1. LSS are suitable for certain applications: In Tables 2 through 8, LSSs perform

queries faster than any other BV type for the dynamics simulation benchmark. The ring

models in that simulation are particularly well suited for LSSs: a section of a ring is long

and thin and an LSS bounds it tightly. LSSs prune about as well as RSSs and OBBs for

this scenario, but due to their faster BV test speed (lesser Cbv), they yield faster queries.

This is an example where a simpler BV type �ts the model data nearly as tightly as a

more complex one. Thereby, it allows the simpler BV to yield faster queries by virtue of

a faster BV query test.

2. AABBs suitable for certain applications The engine model in the virtual proto-

typing benchmark contains long thin triangles which are aligned with the world coordinate

axes. AABBs bound these triangles tightly, their simple structure allows for fast overlap

and distance tests. Thus, AABBs outperform all other types in all tests with this bench-

mark. In general, we can expect AABBs to perform better on models with axis-aligned

components than on models with non-aligned components. Note that due to the relatively

coarse tessellation of the models, the higher order convergence of OBBs and RSSs do not

bene�t their queries, since pruning does not occur above the leaf level.

3. Spheres unsuitable for certain applications In Tables 2-8, spheres perform poorly

on the path planning application in all queries. This is because of long triangles in the

stalagmites and stalagtites of the cave model which are poorly �tted by spheres. This

causes the query to perform many BV overlap tests, degrading performance. Sphere BVs

are not suitable for models containing long thin triangles using our algorithms.

4. RSSs most suitable for distance, OBBs not suitable The pruning power of

RSSs and OBBs are comparable, so queries using these types perform a similar number

of BV distance tests. However, since the OBB distance test is much more expensive than

the RSS distance test, distance queries using RSSs complete much faster than distance

queries using OBBs. This is seen clearly in Tables 2-8.

5. RSSs competitive for collision As mentioned before, the pruning power of RSSs

is comparable to that of OBBs. The RSS overlap test is only slightly more expensive

than the OBB overlap test, and consequently collision queries using RSSs tend to have

comparable speed to collision queries using OBBs. This can be seen in Table 2, where

RSSs outperform OBBs in half the benchmarks.
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7.5 Performance of Acceleration Techniques

In Table 5, we have compared the performance of di�erent traversal strategies on the path

planning benchmark. The algorithm computes the separation distance and uses BVHs

composed of RSS only. We have shown performance of �ve di�erent traversal strategies

for path computation and veri�cation. For priority directed search, we used a queue size

of up to 200 BV pairs. The query times are the average over a large sequence. The

ideal proximity query results in the minimal BVTT for that particular con�guration (as

explained in Section 5). While computing a path, the planner selects the con�gurations

randomly. As a result, there is little spatial coherence between adjacent probe sequences

and we see less speedup due to triangle caching than due to priority directed search.

Notice that the combined speedup due to priority directed search (PDS) and triangle

caching (TC) is limited, as explained in Section 5. Overall, we are able to achieve more

than an order of speedup due to these acceleration techniques on these benchmarks.

7.6 Comparison with Other Proximity Query Systems

A number of public domain systems are available for collision detection and distance

computation based on BVHs. We did not directly compare the average query times for

di�erent benchmarks, shown in Tables 2-8, with the public domain systems. We wanted

to ensure that we incur the same system overhead in terms of comparing the performance

of di�erent BVs. This includes same strategies for representing the data structures (e.g.

transformation matrices in model space), traversal routines, �tting di�erent bounding vol-

umes and the overlap tests. However, we have incorporated most of the BVs used by these

systems into our framework and compared their performance with swept sphere volumes.

These include OBBs, used by RAPID and V-COLLIDE [GLM96, HLC+97], AABBs, used

by SOLID [Sys97] and spheres, used for distance computation by Quinlan [Qui94]. How-

ever, Quinlan's implementation di�ers from ours in its approach. In his BVHs, several

leaf node spheres may be used to tile each primitive. The BVH is then built to bound

subsets of these tiling spheres, not the primitives of the model. A parameter \r max" is

used to control the maximum leaf node size and consequently the amount of leaf node

tiling can greatly a�ect its performance. We did not incorporate tiling of primitives in

our system and therefore, did not directly compare the query times. Johnson and Cohen

[JC98] used OBBs and breadth-�rst search based traversal schemes for distance computa-

tion. Their overall performance is comparable to that of Quinlan's and they report up to
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two times speedup on large models. But no public domain implementation is available for

their algorithm. Other candidates for comparisons include k-DOPs for collision detection

[KHM+98]. However, we are not aware of any public domain implementation based on

k-DOPs.

8 Conclusion and Future Work

In this paper, we have introduced a new family of BVs based on swept sphere volumes

and used them to perform di�erent proximity queries. We also provided a novel anal-

ysis of proximity queries and highlight the relationship between distance computation

and collision detection. Based on this analysis, we are able to provide a uni�ed algo-

rithmic framework that performs all these queries e�ciently. We also presented two new

acceleration techniques based on priority directed search and triangle caching, which can

lead to signi�cant speedups in distance computation on some cases. We compared the

performance of our algorithms with other BVHs and traversal strategies on a number of

real-world benchmarks.

In terms of future work, there are many open issues. There are other candidates for

core primitive shape. These include portions of a sphere or other higher order surfaces.

Such BVs will provide a tighter �t to the underlying geometry. We would also like

to classify scenarios or applications where di�erent BVs (or family of BVs) work well.

Based on this understanding, we need to explore hybrid hierarchies in more detail and

design better static and dynamic selection schemes. We would also like to develop e�cient

algorithms and analyze relationships for other proximity queries such as penetration depth

computation as well. Other families of BVs should to be explored for hybrid hierarchies

as well. For example, the k-DOPs [KHM+98] are a good candidate. By varying the value

of k, one can generate a large family of BVs.
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BV Virtual Falling Path Dynamic

Type Prototyping Tori Planning Simulation

Nbv Np Av. Query Nbv Np Av. Query Nbv Np Av. Query Nbv Np Av. Query

�106 �106 Time (ms) �106 �106 Time (ms) �106 �106 Time (ms) �106 �106 Time (ms)

Sphere 4.92 1.44 173.92 6.15 0.70 7.2947 70.5 30.9 449.06 23.1 8.68 119.43

AABB 0.61 0.05 19.200 5.64 0.38 9.4972 7.22 1.45 40.328 15.6 2.46 70.819

OBB 0.39 .002 31.883 0.99 0.01 4.9359 1.92 0.20 25.974 2.10 .082 20.604

LSS 1.89 .208 80.504 3.20 0.20 7.3875 4.20 1.02 34.097 1.97 .253 10.674

RSS 0.37 .002 36.650 0.75 0.01 4.6245 1.85 0.21 29.965 1.42 .081 18.094

Hybrid 0.43 .002 31.024 0.92 0.01 4.7934 1.97 0.21 29.134 1.55 .085 17.795

Table 2: Performance of Collision Detection Algorithms based on di�erent BV types.

BV Virtual Falling Path Dynamic

Type Prototyping Tori Planning Simulation

Nbv Np Av. Query Nbv Np Av. Query Nbv Np Av. Query Nbv Np Av. Query

�106 �106 Time (ms) �106 �106 Time (ms) �106 �106 Time (ms) �106 �106 Time (ms)

Sphere 6.45 2.06 721.40 9.54 1.474 41.05 95.59 42.704 1577.869 83.49 33.67 938.063

AABB 1.58 0.31 170.75 9.25 1.00 37.764 9.56 2.11 103.69 73.9 16.5 616.34

OBB 1.76 0.12 1443.8 1.56 0.04 75.565 1.14 .042 92.443 12.2 0.91 625.36

LSS 3.01 0.49 289.46 5.36 0.51 23.947 4.1 .975 51.279 13.2 2.15 111.37

RSS 1.70 .11 213.30 1.50 0.051 9.02 1.70 .196 25.018 10.5 0.90 121.88

Hybrid 1.80 .12 220.07 1.70 0.05 9.47 1.92 .209 26.743 11.0 0.94 129.08

Table 3: Performance of Distance Computation Algorithms based on di�erent BV types.
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BV Virtual Falling Path Dynamic

Type Prototyping Tori Planning Simulation

Nbv Np Av. Query Nbv Np Av. Query Nbv Np Av. Query Nbv Np Av. Query

�106 �106 Time (ms) �106 �106 Time (ms) �106 �106 Time (ms) �106 �106 Time (ms)

Sphere 6.30 2.005 748.64 8.92 1.307 38.23 89.58 39.97 1494.2 45.7 17.4 609.01

AABB 1.47 0.28 167.27 8.58 .855 34.60 8.18 1.70 88.104 40.8 7.02 358.78

OBB 1.53 .072 1347.9 1.36 .018 66.995 0.93 0.01 78.835 5.43 .173 363.22

LSS 2.90 0.463 279.87 4.95 0.445 21.93 3.62 0.84 45.874 4.15 .506 42.603

RSS 1.47 .071 174.86 1.32 .028 7.73 1.54 0.164 23.026 3.74 .173 50.44

Hybrid 1.57 .075 180.24 1.50 .028 8.13 1.72 0.17 24.10 3.85 .179 51.724

Table 4: Performance of Approximate Distance Computation Algorithms (10% Relative

Error) based on di�erent BV types.

Traversal Path Planning Path Planning

Technique Computation Veri�cation

Nbv Np Av. Query Nbv Np Av. Query

�106 �106 Time (ms) �106 �106 Time (ms)

Depth First Search 25.93 5.514 219.55 23.54 5.279 294.95

Priority Directed Search (PDS) 1.389 0.162 20.61 0.783 0.099 9.771

Triangle Caching (TC) 11.385 2.353 101.911 0.736 0.086 9.841

PDS & TC 1.378 0.159 20.295 0.683 0.076 8.397

Ideal Distance Query 1.126 0.121 16.517 0.679 0.075 6.164

Table 5: Comparison of di�erent traversal schemes on the path planning benchmark.

Average query times for RSS for separation distance computation are reported. Path

computation involves querying 2880 random con�gurations for computing a path. Path

veri�cation consists of 487 steps.
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