
Rendering Sand
COMP 870 - Advanced Image Synthesis Final Project

Abhinav Golas∗

UNC Chapel Hill

Figure 1: Rendering of 2 sample meshes using the implemented method, Left: Laughing Buddha, Right: My face rendered as sand

Abstract

Rendering of sand is an interesting problem that has been addressed
at various times in the past. Most efforts have been in the direction
of rendering moving sand grains, which are handled as particles
rendered with motion-blur. More recently, there have also been ef-
forts at rendering slow moving and static sand particles. In such
cases, accurate sampling and rendering of particles becomes im-
portant.

This project attempts to create a renderer for such sand on the lines
of the method sketched out in [Allen et al. 2007]. The project is
an attempt to try and recreate a similar quality rendering for 3D
meshes in Renderman c©. In the process, I also aimed to learn more
about Renderman Dynamic Shared Objects (DSOs) and using them
to create procedural objects.

∗e-mail: golas@cs.unc.edu

1 Introduction

Sand rendering has historically been done by using particle sys-
tems with large number of particles. Recently, some work has
also been done on simulating sand. There have been 2 primary
approaches, one using particle systems with relevant forces on the
lines of Smoothed Particle Hydrodynamics (SPH), and the other
being grid based fluid simulation. [Bell et al. 2005] details an ap-
proach for simulating granular materials using particle systems with
pair-wise forces. The simulation is highly accurate, but can only
scale to 10K particles at interactive rates. On the other hand, [Zhu
and Bridson 2005] approximates sand as a fluid with viscosity, and
thus can handle large scale sand simulations, but lacks detail.

Both of these papers follow different approaches to render the sim-
ulated sand. [Bell et al. 2005] renders each particle as a pebble,
while [Zhu and Bridson 2005] renders sand as a fluid with advected
3D textures to add detail to the render.

Also, recently, a sketch was presented at SIGGRAPH 2007 detail-
ing the approach used to render the villain ”SandMan” in Spider-



man 3 [Allen et al. 2007] using Pixar’s Renderman renderer [Up-
still 1989; Apodaca and Gritz 1999; Pixar 2005]. Their module
uses a procedural model to render sand. A DSO generates parti-
cles to render at runtime on a given 3D mesh or using a sample set
of particles. Using runtime particle generation allows the power to
generate close to 480 million particles as needed. The major hur-
dles that need to be solved in such a scenario are:

• Correct sampling to accurately depict the desired object while
ensuring sufficient particle coverage

• Ensuring temporal coherency among particles generated in
different frames to prevent popping artifacts

The sketch does not provide details on any of the above, thus solu-
tions need to be found for the problems. It does, however, detail a
Level of Detail approach that was used to provide sufficient detail
depending on the proximity of the rendered object to the camera.
The paper proposes rendering particles as one of points, curves or
archived mesh models depending on the distance to the camera, and
the pixels occupied in the rendered frame.

2 Rendering Meshes

The basic approach to rendering the mesh as a sand is simple, and
follows the following steps:

1. Load the 3D mesh as vertices and triangles, and define a
bounding box or a hierarchy of bounding boxes for the mesh

2. Sample particles on the mesh as needed

3. Render sampled particles

The details for each operation and the problems encountered are
detailed in this section. For this project, I focused mainly on ren-
dering 3D meshes as sand, as the other possible input, using a set
of representative particles is simply one more sampling problem,
rather than another separate problem.

2.1 Loading a mesh

I wrote a basic OBJ mesh loader, that loaded the required vertex and
triangle mesh information, and generates a bounding box for the
entire mesh. This was later expanded to generate multiple bounding
boxes as a hierarchy.

2.2 Particle Generation

To generate particles on a triangle, particles are seeded randomly
by generating random Barycentric coordinates. The 2 indepen-
dent barycentric coordinates are sampled from a uniform distribu-
tion in the range [0, 1]. We also define 2 other parameters, particle
radius(r) and particle density(ρ). It is ensured that no 2 particles
can intersect, where particles are assumed to be perfect spheres of
the same radius. Also, in order to cover the triangle completely, we
need to know how many particles are sufficient. [Bell et al. 2005]
defines a simple formula for this:

nP = ceil
(

ρA

πr2

)
(1)

where nP is the number of particles to be seeded in the triangle,
ceil is a function that rounds of any floating point number p to the
nearest integer q such that q > p. A, the area of the triangle, is
calculated by taking the cross product of 2 triangle edges, which is
also used to define the triangle normal. ρ acts as a quality control
parameter, by allowing fine grained control of the number of parti-
cles to be seeded. Since it may not be possible to perform a perfect

packing such that no 2 particles intersect, we allow for 1000 itera-
tions of finding a clear spot, after which the last generated location
is used. Though this is not the best method to seed particles, it is
a fast and inexpensive method to generate particles, without having
to perform the density balancing steps detailed in [Bell et al. 2005].

In addition to generating particle positions, we also need suitably
jittered normals. To do so, I generate a random normalized 2D
vector in the triangle plane n2, and use a vector sum of the triangle
normal n, and a scaled version of n2, i.e.

np = n + α× n2 (2)

where α is a random scaling parameter, and n and n2 are vectors
with norm 1. np

‖np‖ is then the normal of point p. This method
ensures that though normals will be jittered, they will never point
against the triangle normal, which would result in a culled point.

A certain amount of displacement is also added to each particle
along the triangle normal, to add another level of detail.

2.3 Rendering particles

[Allen et al. 2007] denotes 4 possible options of rendering parti-
cles. Since we do not need extreme close-ups of the models, using
expensive primitives like curves or archived meshes was avoided.
In addition, obtaining mesh model of rocks or pebbles proved to be
a tough task.

When using points, the sketch described using blocks of 4 points
with jittered normals, which would provide the impression of a
small grain. We employ this method of generating particles. In
the previous section, we described the method for generating parti-
cle normals by generating a vector n2 in the plane of the triangle.
We can use the same generated vector, to generate normals for the
4 points, by simply flipping the signs of the components along 1 or
both of the basis vectors of the triangle plane. I.e. if:

n2 = n2x ı̂ + n2y ̂ (3)

then use a modified normal jitter:

n∗
2 = ±n2x ı̂ +±n2y ̂ (4)

for each of the 4 particles. In addition, we add a displacement along
the jittered normal so that the 4 particles do not intersect, thereby
avoiding spurious popping.

3 Rendering point clouds

As an experiment, I tried rendering sand point clouds I generated
using my implementation of [Zhu and Bridson 2005]. This poses
a different challenge as compared to meshes, as the sampling is-
sue is somewhat simplified. The bigger challenge is to ensure that
any extra generated particles are coherent across frames. For this
purpose, I tried to sample new points randomly in a region around
the simulated particle. To ensure coherency across frames, I sim-
ply re-seeded the random number generator with the same seed at
each frame. Being pseudo-random, RNGs will provide the same
set of random number sequences for each frame if the seed is kept
constant. In spite of being very simple, this method provides com-
pelling results, as can be seen in the images shown in Figure 2.

4 Results and Implementation details

The system was implemented in C++ while utilizing Renderman
DSOs to render the particles as needed. For both mesh examples,



Figure 2: Cubical region of sand with point multipliers 1, 10, and
50

particles of the order of 5-9 million particles were generated. The
time taken to generate particles was between 20-30 seconds on sin-
gle threaded execution, on a Core 2 processor running at 2.4Ghz.
Rendering time to generate images at resolution 600×800 was 3-
4 seconds per frame. To keep temporal coherency, particles are
preserved across frames, and we do not perform a true on-demand
generation method. However, since we are only dealing with static
examples and a simulated sand example is not taken, this is suffi-
cient.

For the simulated example, 10K particles were simulated, and the
examples shown had 1, 10, and 50 particles per simulated point.
Generation times varied from 2 seconds to 10 seconds, with render-
ing times remaining under 1 second.

An experiment to perform on demand generation for triangle blocks
was undertaken, by utilizing a flat bounding box hierarchy, but that
instead lead to an increase in runtime due to the increase in number
of function calls. The number of particles we are working with, do
not seem to warrant such an overhead. As a result, that approach
was discarded, and all particles are generated only once. This does
render the DSO approach an overkill, but I would like to extend the
renderer in the future to use rendering LOD and runtime particle
generation in the near future. This would be useful, and required
to render sand from the grid based simulations, which involve dy-
namic scenes with changing topology.

I would also like to note and interesting digression. During exe-
cution, I ran into an interesting problem where the jittered normals
were approaching 0. This was tracked down to the problem of trian-
gles being too small in the mesh, thus the edge vectors were of very
small magnitude. When their cross product was taken, the mag-
nitude was relatively accurate and usable, but the direction infor-
mation in the normal was lost at floating point precision. To work
around this, the triangle normal generation was done separately, af-
ter normalizing the edge vectors, while the area calculation is done
with the original vectors.

References

ALLEN, C., BLOOM, D., COHEN, J. M., AND TREWEEK, L.
2007. Rendering tons of sand. In SIGGRAPH ’07: ACM SIG-
GRAPH 2007 sketches, ACM, New York, NY, USA, 27.

APODACA, A. A., AND GRITZ, L. 1999. Advanced RenderMan:
Creating CGI for Motion Picture. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

BELL, N., YU, Y., AND MUCHA, P. J. 2005. Particle-based sim-
ulation of granular materials. In SCA ’05: Proceedings of the
2005 ACM SIGGRAPH/Eurographics symposium on Computer
animation, ACM, New York, NY, USA, 77–86.

PIXAR. 2005. The renderman interface, version 3.2.1.

UPSTILL, S. 1989. RenderMan Companion: A Programmer’s
Guide to Realistic Computer Graphics. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA.

ZHU, Y., AND BRIDSON, R. 2005. Animating sand as a fluid.
In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, ACM, New
York, NY, USA, 965–972.


