Modeling of Granular Materials

Abhinav Golas

COMP 768 - Physically Based Simulation

April 23, 2009
Motivation

- Movies, games
- Engineering design – grain silos
- Avalanches, Landslides
Overview

- What are Granular Materials?
- Simulation
- Rendering
Overview

- What are Granular Materials?
 - Simulation
 - Rendering
What are Granular Materials?

- A granular material is a conglomeration of discrete solid, macroscopic particles characterized by a loss of energy whenever the particles interact (Wikipedia)

- Size variation from 1μm to icebergs

- Food grains, sand, coal etc.

- Powders – can be suspended in gas
What are Granular materials?

- Can exist similar to various forms of matter
 - Gas/Liquid – powders can be carried by velocity fields
 - Sandstorms
 - Liquid/Solid – similar to liquids embedded with multiple solid objects
 - Avalanches, landslides
 - Hourglass
 - Similar to viscous liquids
Why the separate classification?

- Behavior not consistent with any one state of matter
 1. Can sustain small shear stresses – stable piles
 - Hydrostatic pressure achieves a maximum
 2. Particle interactions lose energy
 - Collisions approach inelastic
 - Infinite collisions in finite time – inelastic collapse
 3. Inhomogeneous and anisotropic
 - Particle shape and size inhomogeneous

Granular solids, liquids, and gases – Jaeger et al.
Understanding the behavior - Stress

- Stress: \(\sigma = \frac{F}{A} \)

\[\sigma = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix} \]

- At equilibrium – matrix is symmetric – 6 degrees of freedom

- Pressure for fluids – tr(\(\sigma\))/3
Stress

- Different matrix for different basis – need invariants
- Pressure! – I_0
- Deviatoric invariants – Invariants based on $\sigma - I_0 \delta$
 $\implies J_1 J_2$
- Eigen values? – called principle stresses
Understanding the behavior

- Why can sand sustain shear stress?
 - Friction between particles
- When does it yield? – yield surface/condition
Yield surface

- Many surfaces – suitable for different materials
- Mohr Coulomb surface with Von-Mises equivalent stress – \(f(I_0, J_1) \)

\[
I_0 = \sigma_m = \frac{\text{tr}(\sigma)}{3} \quad J_1 = \bar{\sigma} = \frac{||\sigma - \sigma_m \delta||_F}{\sqrt{2}}
\]

- Condition for stability/rigidity:

\[
\sqrt{3} J_1 < I_0 \sin \Phi
\]

- \(\sin \Phi \) – coefficient of friction
So why is it difficult to simulate?

- Scale - >10M particles
- Nonlinear behavior – yield surface
- Representation – discrete or continuum?
Overview

- What are Granular Materials?
- Simulation
- Rendering
Simulation

- Depends on what scenario to simulate
 - 2 dimensional – Animating Sand, Mud, and Snow, Sumner et al.
 - Discrete particles – Particle-Based Simulation of Granular Materials, Bell et al.
 - Continuum – Animating Sand as a Fluid, Zhu et al.
Animating Sand, Mud, and Snow

- Model deformations on a 2D height field surface caused by rigid bodies
 - Hash based grid – space saving
- Model features
 - Material redistribution, compression
 - Particles that get stuck to rigid body
Animating Sand, Mud, and Snow

- Rigid body intersection check – ray casting
- Extra material
 - Displaced
 - Compressed
- Transferring extra material
 - Construct distance field to nearest clear cell
 - Transfer material to that cell
Redistribution of material

- **Erosion**
 - Distribute material equally to all neighboring lower height cells – if slope > threshold

- **Particle Generation**
 - Material may get stuck to bottom of body
 - Seed particle system from each contact triangle on rigid body – volume = c * area of triangle
 - Volume lost per time step – exponential decay
Particle-Based Simulation of Granular Materials

- Use a particle system with collision handling
- Define objects in terms of spheres
 - Need to define per sphere pair interaction forces
- Collision system based on Molecular Dynamics
 - Allow minor spatial overlap between objects
Sphere pair interaction

- Define overlap (ξ), relative velocity (V), contact normal (N), normal and tangential velocities (V_n, V_t), rate of change of overlap ($V.N$)

- Normal forces

$$\vec{F}_n = f_n \vec{N} \quad f_n + k_d \xi^\alpha \dot{\xi} + k_r \xi^\beta = 0$$

- k_d : dissipation during collisions, k_r : particle stiffness

- Best choice of coefficients: $\alpha=1/2$, $\beta=3/2$

- Given coefficient of restitution ε, and time of contact t_c, we can determine k_d and k_r
Sphere pair interaction

- Tangential forces
 \[\vec{F}_t = -\min(\mu f_n, k_t \parallel \vec{V}_t \parallel) \frac{\vec{V}_t}{\parallel \vec{V}_t \parallel} \]

- These forces cannot stop motion – require true static friction

 - Springs between particles with persistent contact?
 - Non-spherical objects
Solid bodies

- Map mesh to structure built from spheres
 - Generate distance field from mesh
 - Choose offset from mesh to place spheres
 - Build iso-surface mesh (Marching Tetrahedra)
 - Sample spheres randomly on triangles
 - Let them float to desired iso-surface by repulsion forces

- \(D = \text{sphere density}, A = \text{triangle area}, R = \text{particle radius} \), place \(\frac{DA}{\pi R^2} \) particles, 1 more with fractional probability
Solid bodies

\[\vec{v} = \vec{v}_F + \vec{v}_R \quad V_F = -\Phi(\vec{P})\vec{N} \quad \vec{v}_R = \sum_{P_i \in S \setminus P} K \left(\frac{\vec{P} - \vec{P}_i}{\|\vec{P} - \vec{P}_i\|} \right) \frac{\vec{P} - \vec{P}_i}{\|\vec{P} - \vec{P}_i\|} \]

- Rigid body evolution

- Overall force = Σ forces

- Overall torque = Σ torques around center of mass
Efficient collision detection

- Spatial hashing
 - Grid size = 2 x Maximum particle radius
 - Need to look at 27 cells for each particle \(\Rightarrow O(n)\)
 - Not good enough, insert each particle into not 1, but 27 cells \(\Rightarrow\) check only one cell for possible collisions

- Why better?
 - Spatial coherence
 - Particles moving to next grid cell, rare (inelastic collapse)
 - Wonderful for stagnant regions
Advantages/Disadvantages

- The Good
 - Faithful to actual physical behavior

- The Bad and the Ugly
 - Computationally intensive
 - Small scale scenes
 - Scenes with some “control” particles
Animating Sand as a Fluid

- Motivation
 - Sand ~ viscous fluids in some cases
- Continuum simulation
- Bootstrap additions to existing fluid simulator
- Why?
 - Simulation independent of number of particles
 - Better numerical stability than rigid body simulators
Fluid simulation? what’s that?

- Discretize 3D region into cuboidal grid
- 3 step process to solve Navier Stokes equations
 - Advect
 - Add body forces
 - Incompressibility projection
- Stable and accurate under CFL condition
Extending our fluid simulator

- Extra things we need for sand
 - Friction (internal, boundary)
 - Rigid portions in sand
- Recall
 - Stress
 - Yield condition
Calculating stress

- Exact calculation infeasible
- Smart approximations
- Define strain rate – \(D = \frac{d}{dt}(\text{strain}) \)

\[
D = \left(\nabla u + \nabla u^T \right) \quad D_{i,j} = \frac{1}{2} \left(\frac{\partial u_i}{\partial j} + \frac{\partial u_j}{\partial i} \right)
\]

- Approximate stresses
 - Rigid \(\sigma_{\text{rigid}} = -\frac{\rho D \Delta x^2}{\Delta t} \)
 - Fluid \(\sigma_f = -p \sin \phi \frac{D}{\sqrt{1/3|D|_F}} \)
The algorithm in a nutshell

- Calculate strain rate
- Find rigid stress for cell
- Cell satisfies yield condition?
 - Yes – mark rigid, store rigid stress
 - No – mark fluid, store fluid stress
- For each rigid connected component
 - Accumulate forces and torques
- For fluid cells, subtract friction force
Yield condition

- Recap

\[I_0 = \sigma_m = \frac{tr(\sigma)}{3}, \quad J_1 = \overline{\sigma} = \frac{\|\sigma - \sigma_m \delta\|_F}{\sqrt{2}} \]

\[\sqrt{3}J_1 < I_0 \sin \Phi \]

- Can add a cohesive force for sticky materials

\[\sqrt{3}J_1 < I_0 \sin \Phi + c \]
Rigid components

- All velocities must lie in allowed space of rigid motion (D=0)
- Find connected components – graph search
- Accumulate momentum and angular momentum

\[M_i \hat{v_i} = \int_{R_i} \rho_i \hat{u} dV_i \quad I_i \omega_i = \int_{R_i} r_i \times \rho_i \hat{u} dV_i \]

- \(R_i \) – solid region, \(u \) – velocity, \(\rho \) – density, \(I \) – moment of inertia

Rigid Fluid: Animating the Interplay Between Rigid Bodies and Fluid, Carlson et al.
Friction in fluid cells

- Update cell velocity: \[u^+ = \Delta t / \rho \nabla \cdot \sigma_f \]
- Boundary conditions:
 - Normal velocity: \[u \cdot n \geq 0 \]
 - Tangential velocity: \[u_T = \max \left(0, 1 - \frac{\mu |u \cdot n|}{|u_T|} \right) u_T \]
Representation

- Defining regions of sand
 - Level sets
 - Particles
 - Allow improved advection
 - Hybrid simulation
 - PIC – Particle In Cell
 - FLIP – FLuid Implicit Particle
Advection

- Semi – Lagrangian advection
 - Dissipative
 - Relies on incompressibility – volume conservation
- Hybrid approach
 - Use grids coupled with particles
 - Advect particles – no averaging losses!
PIC and FLIP methods

- **PIC – Particle in cell**
 - Particles support grid
 - Particles take velocity from grid

- **FLIP – Fluid Implicit Particle**
 - Grid supports particles
 - Particles take acceleration from grid
PIC and FLIP methods

- No grid based advection
 - Lesser dissipation
 - Particle advection is simpler
- No need for a level set
- PIC, more dissipative – suited for viscous flows, FLIP for inviscid flows
- Surface reconstruction?
Surface reconstruction

- Surface $\Phi(x)$ – define using all particles i

$$\Phi(x) = |x - \bar{x}| - \bar{r}$$

$$\bar{x} = \sum_i w_i x_i$$

$$\bar{r} = \sum_i w_i r_i$$

$$w_i = \frac{k\left(|x - x_i| / R\right)}{\sum_j k\left(|x - x_j| / R\right)}$$

- $k(s)$ – kernel function, $R = 2 \times$ average particle spacing, x – position, r – radius, w_i – weight for particle

- Suitable choice of kernel?

 - Must provide flat surfaces for what should be flat
 - $k(s) = \max(0,(1-s^2)^3)$
Surface reconstruction

- **Issues**
 - Concave regions – centre might lie outside region
 - Smoothing pass
 - Radii must be close approximation to distance from surface
 - Non-trivial, constant particle radius assumed

- **Advantages**
 - Fast
 - No temporal interdependence
Advantages/Disadvantages

- Advantages
 - Fast & stable
 - Independent of number of particles – large scale scenes possible

- Disadvantages
 - Not completely true to actual behavior
 - Detail issues – smoothing in simulation, surface reconstruction
Overview

- What are Granular Materials?
- Simulation
- Rendering
Rendering

- Non-trivial due to scale and visual complexity
- Surface based rendering
 - Use volumetric textures
 - Texture advected by fluid velocity
- Particle rendering
Particle Rendering

- Level of detail necessary

* Rendering Tons of Sand, Sony Pictures Imageworks

- Different approaches for different levels
Particle Rendering

- Sand clouds
 - Light Reflection Functions for Simulation of Clouds and Dusty Surfaces, Blinn
 - Defines lighting and scattering functions for such materials
 - Suitable options for dust, clouds
Rendering Tons of Sand

- Surfaces with sand
 - Generate particles on mesh at runtime with temporal coherence

- Sand particles
 - Generate required number for visual detail from base "control" particles

- Rendering level of detail

- Peak of 480 million particles at render time

April 23, 2009
Conclusions

- Interesting, albeit difficult problem
- Models not perfect
 - Speed vs. scale/realism tradeoff
- Similar tradeoff in rendering
References

2. Particle-Based Simulations of Granular Materials – Bell et al., Eurographics ’05

3. Animating Sand as a Fluid – Zhu et al. SIGGRAPH ’05

4. Rigid Fluid: Animating the Interplay Between Rigid Bodies and Fluid – Carlson et al. SIGGRAPH ’04
References

5. Rendering Tons of Sand – Allen et al. Sony Pictures Imageworks
SIGGRAPH 2007 sketches

SIGGRAPH 2007

7. Animating Sand, Mud, and Snow – Sumner et al.
Eurographics 1999