Modeling of
Granular Materials

COMP 768 - Physically Based Simulation
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Motivation

Sbider aﬁ3 .
# Engineering design — grain silos

Avalanches, Landslides
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Overview

# What are Granular Materials?
# Simulation

# Rendering
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What are Granular Materials?

# A granular material is a conglomeration of disc
solid, macroscopic particles characterized by
of energy whenever the particles interact
(Wikipedia)

Size variation from 1pm to icebergs
Food grains, sand, coal etc.

owders — can be susper
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What are Granular materials?
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Can exist similar to various forms of matter

X Gas/Liquid — powders can be carried by velocity

* Sandstorms

% Liquid/Solid — similar to liquids embedde
multiple solid objects

#» Avalanches, landslides




Why the separate classification?

# Behavior not consistent with any one state of
matter

1. Can sustain small shear stresses — stable piles
#» Hydrostatic pressure achieves a maxim
.. Particle interactions lose energy

# Collisions approach inelastic

‘Infinite collisior
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Understanding the behavior - Stress

#* Stress o-—E
A

#* At equilibrium — matrix is symm
freedom |
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Stress

# Different matrix for different basis — need inva

X Pressure! -1

x Deviatoric invariants — Invariants based on
— 0

# Eigen values? —called principle stre
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Understanding the behavior

Why can sand sustain shear stress?

x Friction between particles

When does it yield? —yield surface/condi
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http://en.wikipedia.org/wiki/File:Drucker_Prager_Yield_Surface_3D.png

Yield surface

# Many surfaces — suitable for different material

# Mohr Coulomb surface with Von-Mises equive
stress —f(l,, J,)

tr (O')

3
# Condition for stability/rigidity:

V33, <1, sin®

IO:O-m:
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So why is it difficult to simulate?

# Scale - >10M particles
# Nonlinear behavior - yield surface

# Representation —discrete or continuum?
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Overview

# Simulation

April 23, 2009 13




Simulation

Depends on what scenario to simulate

% 2 dimensional —Animating Sand, Mud, and Sno
Sumner et al.

Discrete particles — Particle-Based Simul
Granular Materials, Bell et al.

Continuum — Animating Sand

April 23, 2009
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Animating Sand, Mud, and Snow

# Model deformations on a 2D height field surface
caused by rigid bodies

X Hash based grid — space saving
Model features
Material redistribution, compression

Particles that get stuck to rigi

&
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Animating Sand, Mud, and Snow

# Rigid body intersection check — ray casting

# [Extra material

\

¢ Displaced

¢ Compressed

Transferring extra material

% Construct distance field to n
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Redistribution of material
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Erosion

x Distribute material equally to all neighboring lower
height cells —if slope > threshold

Particle Generation e
¢ Material may get stuck to bottom of boc

¢ Seed particle system from each con
rigid body — volume = c * area c

P
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Particle-Based Simulation of Granular Materials
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Use a particle system with collision handling

Define objects in terms of spheres

¢ Need to define per sphere pair interaction fo

Collision system based on Molecular D

¢ Allow minor spatial overlap betv
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Sphere pair interaction

# Define overlap(§), relative velocity(V), contac
normal(N), normal and tangential velocities(
rate of change of overlap(V.N)

Normal forces
F=fN f +k, E%°E+ ksl

kq : dissipation during collision
stiffness

‘o "
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Sphere pair interaction
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Tangential forces

£ = —min(uf,, kt”\ZH)”\\;Tt”
t

These forces cannot stop motion —re

static friction

X Springs between parti

20




Solid bodies

Map mesh to structure built from spheres
Generate distance field from mesh
Choose offset from mesh to place spheres

Build iso-surface mesh (Marching Tetra

Sample spheres randomly on tri

Let them float to desi
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Solid bodies

VoV sV, o= ¥ k(-]

PeS\P

# K- interaction kernel, P — Position of particle,
velocity of particle, ® — distance field

Rigid body evolution

Overall force = X forces

Overall torque = 2 torques ¢
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Efficient collision detection
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Spatial hashing
% Grid size = 2 x Maximum particle radius
Need to look at 27 cells for each particle =0

Not good enough, insert each particle inta
27 cells =check only one cell for possib

Why better?

¢ Spatial coherence
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Advantages/Disadvantages

#* The Good
¢ Faithful to actual physical behavior
# The Bad and the Ugly
x Computationally intensive
# Small scale scenes

Scenes with some

April 23, 2009
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Animating Sand as a Fluid

Motivation

X Sand ~ viscous fluids in some cases
Continuum simulation

Bootstrap additions to existing fluid si

Why?

ulation independ
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Fluid simulation? what’s that?

Discretize 3D region into cuboidal grid

3 step process to solve Navier Stokes equatio
Advect
Add body forces

Incompressibility projection

>table and accurate
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Extending our fluid simulator

Extra things we need for sand
x Friction (internal, boundary)
% Rigid portions in sand

Recall

w Stress

ield condition
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Calculating stress
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Exact calculation infeasible
Smart approximations

Define strain rate — D = d/dt(strain)

D=(Vu+VuT) Di,j=%(a—j

Approximate stresses
PDAX?

ou, ou,
+ -
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The algorithm in a nutshell

# Calculate strain rate
#* Find rigid stress for cell

# Cell satisfies yield condition?
Yes —mark rigid, store rigid stress

No — mark fluid, store fluid stre

‘eachrigid conne
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Yield condition

# Recap

l, =0, =

tr O')
3

J3J, <1,sin®

# Can add a cohesive force for stic

33, < Igsin@
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Rigid components

All velocities must lie in allowed space of rigid
motion (D=0)

Find connected components — graph search |

Accumulate momentum and angular ma

M.V, = jpiadvi
R

.—solid region, u —velocit
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Friction in fluid cells

# Update cell velocity u+=At/pV .o}
# Boundary conditions
Normal velocity: u-n=>0

Tangential velocity: U, = max| 0,
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Representation
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Defining regions of sand
% Level sets
x Particles
# Allow improved advection

# Hybrid simulation

x PIC—Particle In
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Advection

Semi - Lagrangian advection

% Dissipative

¢ Relies on incompressibility — volume conse
Hybrid approach

% Use grids coupled with particle

Advect particles — na
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PIC and FLIP methods
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PIC —Particle in cell

¢ Particles support grid

x Particles take velocity from grid
FLIP — Fluid Implicit Particle

¢ Grid supports particles

Particles take accele
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PIC and FLIP methods

# No grid based advection
X Lesserdissipation
x Particle advection is simpler

No need for a level set

PIC, more dissipative — suited for
FLIP for inviscid flows
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Surface reconstruction

# Surface O(x) — define using all particles i

:Zilwixi r =ZW

/R)

itable choice of k
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Surface reconstruction

Issues
¢ Concave regions — centre might lie outside regic
#* Smoothing pass

Radii must be close approximation to di
surface ‘

# Non-trivial, constant particle
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Advantages/Disadvantages

Advantages
x Fast & stable

¢ Independent of number of particles — large s
scenes possible

Disadvantages

X Not completely true to actus:
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Overview

# Rendering
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Rendering

# Non-trivial due to scale and visual complexity

# Surface based rendering
Use volumetric textures

Texture advected by fluid velocity

#* Particle rendering
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icle Rendering

# Level of detail necessary
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Particle Rendering

Sand clouds

¢ Light Reflection Functions for Simulation of Clo
and Dusty Surfaces, Blinn

Defines lighting and scattering functions
materials

Suitable options for dust, clouds
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Rendering Tons of Sand

#* Surfaces with sand

X Generate particles on mesh at runtime with tempo
coherence

Sand particles

X Generate required number for visual detail
“control” particles

#* Rendering level of detail

gﬁn:]eerj Point Single
9 clusters points
patches xals
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Conclusions

Interesting, albeit difficult problem

Models not perfect

¢ Speed vs. scale/realism tradeoff

Similar tradeoff in rendering
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