Modeling of Granular Materials

Abhinav Golas

COMP 768 - Physically Based Simulation

Motivation

Movies, games

Spiderman 3 Engineering design – grain silos

Avalanches, Landslides

www.stheoutlawtorn.com

The Mummy

Overview

- What are Granular Materials?
- Simulation
- Rendering

Overview

What are Granular Materials?

- Simulation
- Rendering

What are Granular Materials?

- A granular material is a conglomeration of discrete solid, macroscopic particles characterized by a loss of energy whenever the particles interact (Wikipedia)
- Size variation from 1µm to icebergs
- Food grains, sand, coal etc.
- Powders can be suspended in gas

What are Granular materials?

- Can exist similar to various forms of matter
 - ✗ Gas/Liquid powders can be carried by velocity fields
 - Sandstorms
 - Liquid/Solid similar to liquids embedded with multiple solid objects
 - Avalanches, landslides
 - Hourglass
- Similar to viscous liquids

Why the separate classification?

- Behavior not consistent with any one state of matter
 - 1. Can sustain small shear stresses stable piles
 - Hydrostatic pressure achieves a maximum
 - 2. Particle interactions lose energy
 - Collisions approach inelastic
 - Infinite collisions in finite time inelastic collapse
 - 3. Inhomogeneous and anisotropic
 - Particle shape and size inhomogeneous

Granular solids, liquids, and gases – Jaeger et al.

Understanding the behavior - Stress

Stress
$$\sigma = \frac{F}{A}$$

 $\sigma = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix}$

Normal

- At equilibrium matrix is symmetric 6 degrees of freedom
- Pressure for fluids tr(σ)/ 3

Stress

- Different matrix for different basis need invariants
 - ℜ Pressure! I₀
 - st Deviatoric invariants Invariants based on $\sigma I_0 \delta$ $\Rightarrow J_1, J_2$
- Eigen values? called principle stresses

Understanding the behavior

Why can sand sustain shear stress?

℁ Friction between particles

When does it yield? – yield surface/condition

Yield surface

- Many surfaces suitable for different materials
- * Mohr Coulomb surface with Von-Mises equivalent stress – $f(I_0, J_1)$

$$I_0 = \sigma_m = \frac{m(\sigma)}{3}$$

$$J_1 = \overline{\sigma} = \frac{\left\| \sigma - \sigma_m \delta \right\|_F}{\sqrt{2}}$$

- Condition for stability/rigidity: $\sqrt{3}J_1 < I_0 \sin \Phi$
- sinΦ coefficient of friction

So why is it difficult to simulate?

- Scale >10M particles
- Nonlinear behavior yield surface
- Representation discrete or continuum?

Overview

What are Granular Materials?

Simulation

Rendering

Simulation

- Depends on what scenario to simulate
 - 2 dimensional Animating Sand, Mud, and Snow, Sumner et al.
 - Discrete particles Particle-Based Simulation of Granular Materials, Bell et al.
 - ✗ Continuum Animating Sand as a Fluid, Zhu et al.

Animating Sand, Mud, and Snow

- Model deformations on a 2D height field surface caused by rigid bodies
 - 💥 Hash based grid space saving
- Model features
 - ✗ Material redistribution, compression
 - ℜ Particles that get stuck to rigid body

Animating Sand, Mud, and Snow

- Rigid body intersection check ray casting
- Extra material
 - ✗ Displaced
 - ✗ Compressed
- Transferring extra material
 - ✗ Construct distance field to nearest clear cell
 - ℜ Transfer material to that cell

_															
_								_	0	0	0	0	0	0	
_							0	0	♪	ł	1	1		0	
_						0	9	7	1	2	2	2	1	p	
_					0	Ŷ	1	2	2	3	3	2	1	þ	
				0	0	1	2	3	3	4	3	2	4	0	
				0		2	3	3	3	3	2	1	0	0	
		0	0	y	1	2	3	2	2	2	1	1	0		
	0	0	X	1	2	2	2	1	4	ł	0	0			
0	0	1	2	2	2	1	X	0	0	0	0				
0	1	2	3	2	1	ß	0	0							
0	1	2	3	2	Y	0									
0	~	2	2	V	0	0									
0	0	ł	ł	0	0										
	0	0	0	0											

Redistribution of material

Erosion

- Distribute material equally to all neighboring lower height cells – if slope > threshold
- Particle Generation
 - ☆ Material may get stuck to bottom of body
 - Seed particle system from each contact triangle on rigid body – volume = c * area of triangle
 - Volume lost per time step exponential decay

Particle-Based Simulation of Granular Materials

- Use a particle system with collision handling
- Define objects in terms of spheres
 - ✗ Need to define per sphere pair interaction forces
- Collision system based on Molecular Dynamics
 - ✗ Allow minor spatial overlap between objects

Sphere pair interaction

- Define overlap(ξ), relative velocity(V), contact normal(N), normal and tangential velocities(V_n, V_t), rate of change of overlap(V.N)
- Normal forces

$$\vec{F}_n = f_n \vec{N} \qquad f_n + k_d \xi^{\alpha} \dot{\xi} + k_r \xi^{\beta} = 0$$

- k_d: dissipation during collisions, k_r: particle stiffness
- Best choice of coefficients: $\alpha = 1/2$, $\beta = 3/2$
- Given coefficient of restitution ε, and time of contact t_c, we can determine k_d and k_r

Sphere pair interaction

Tangential forces $\vec{F}_t = -\min\left(\mu f_n, k_t \| \vec{V}_t \|\right) \frac{\vec{V}_t}{\| \vec{V}_t \|}$

- These forces cannot stop motion require true static friction
 - ✗ Springs between particles with persistent contact?
 - ℜ Non-spherical objects

Solid bodies

- Map mesh to structure built from spheres
 - ✗ Generate distance field from mesh
 - ℜ Choose offset from mesh to place spheres
 - ✗ Build iso-surface mesh (Marching Tetrahedra)
 - ✗ Sample spheres randomly on triangles
 - ✗ Let them float to desired iso-surface by repulsion forces
- D=sphere density, A=triangle area, R=particle radius, place $\left\lfloor \frac{DA}{\pi r^2} \right\rfloor$ particles, 1 more with fractional probability

Solid bodies

$$\vec{V} = \vec{V}_F + \vec{V}_R \qquad V_F = -\Phi(\vec{P})\vec{N} \qquad \vec{V}_R = \sum_{P_i \in S \setminus P} K(\|\vec{P} - \vec{P}_i\|) \frac{P - P_i}{\|\vec{P} - \vec{P}_i\|}$$

- K interaction kernel, P Position of particle, V velocity of particle, Φ – distance field
- Rigid body evolution
 - \approx Overall force = Σ forces
 - \approx Overall torque = Σ torques around center of mass

Efficient collision detection

- Spatial hashing
 - ℅ Grid size = 2 x Maximum particle radius
- Need to look at 27 cells for each particle \implies O(n)
- Not good enough, insert each particle into not 1, but
 27 cells ⇒check only one cell for possible collisions
- Why better?
 - ℁ Spatial coherence
 - Particles moving to next grid cell, rare (inelastic collapse)
 - ✗ Wonderful for stagnant regions

Advantages/Disadvantages

The Good

- 🔀 Faithful to actual physical behavior
- The Bad and the Ugly
 - ✗ Computationally intensive
 - Small scale scenes
 - Scenes with some "control" particles

Animating Sand as a Fluid

Motivation

Sand ~ viscous fluids in some cases

- Continuum simulation
- Bootstrap additions to existing fluid simulator
- Why?
 - ℜ Simulation independent of number of particles
 - ✗ Better numerical stability than rigid body simulators

Fluid simulation? what's that?

- Discretize 3D region into cuboidal grid
- 3 step process to solve Navier Stokes equations
 - ℅ Advect
 - ℜ Add body forces
 - Incompressibility projection
- Stable and accurate under CFL condition

Extending our fluid simulator

- Extra things we need for sand
 - ℁ Friction (internal, boundary)
 - 💥 Rigid portions in sand
- Recall
 - ℅ Stress
 - ℜ Yield condition

Calculating stress

- Exact calculation infeasible
- Smart approximations
- Define strain rate D = d/dt(strain) $D = \left(\nabla u + \nabla u^T\right) \qquad D_{i,j} = \frac{1}{2} \left(\frac{\partial u_i}{\partial j} + \frac{\partial u_j}{\partial i}\right)$
- Approximate stresses
 - × Rigid $\sigma_{rigid} = -\frac{\rho D \Delta x^2}{\Delta t}$ × Fluid $\sigma_f = -p \sin \phi \frac{D}{\sqrt{1/3} |D|_F}$

The algorithm in a nutshell

- Calculate strain rate
- Find rigid stress for cell
- Cell satisfies yield condition?
 - ✗ Yes − mark rigid, store rigid stress
 - ℵ No mark fluid, store fluid stress
- For each rigid connected component
 - ✗ Accumulate forces and torques
- For fluid cells, subtract friction force

Yield condition

Recap

$$I_0 = \sigma_m = \frac{tr(\sigma)}{3}$$
$$\sqrt{3}J_1 < I_0 \sin \Phi$$

$$J_1 = \overline{\sigma} = \frac{\left\| \sigma - \sigma_m \delta \right\|_F}{\sqrt{2}}$$

* Can add a cohesive force for sticky materials $\sqrt{3}J_1 < I_0 \sin \Phi + c$

Rigid components

- All velocities must lie in allowed space of rigid motion (D=0)
- Find connected components graph search
- Accumulate momentum and angular momentum

$$M_{i}\hat{v}_{i} = \int_{R_{i}} \rho_{i}\hat{u}dV_{i} \qquad I_{i}\omega_{i} = \int_{R_{i}} r_{i} \times \rho_{i}\hat{u}dV_{i}$$

$$R_{i} - \text{solid region, } \upsilon - \text{velocity, } \rho - \text{density, } I - \text{moment of inertia}$$

Rigid Fluid: Animating the Interplay Between Rigid Bodies and Fluid, Carlson et al.

Friction in fluid cells

- Update cell velocity $u + = \Delta t / \rho \nabla \cdot \sigma_f$
- Boundary conditions
 - \approx Normal velocity: u

$$u \cdot n \ge 0$$
$$u_T = \max\left(0, 1 - \frac{\mu |u \cdot n|}{|u_T|}\right) u_T$$

Representation

- Defining regions of sand
 - ℅ Level sets
 - ☆ Particles
 - Allow improved advection
 - Hybrid simulation
 - ℜ PIC Particle In Cell
 - ℅ FLIP FLuid Implicit Particle

Advection

- Semi Lagrangian advection
 - ✗ Dissipative
 - ℜ Relies on incompressibility volume conservation
- Hybrid approach
 - ✗ Use grids coupled with particles
 - ☆ Advect particles no averaging losses!

PIC and FLIP methods

- PIC Particle in cell
 - ℜ Particles support grid
 - 🔀 Particles take velocity from grid
- FLIP Fluid Implicit Particle
 - ℁ Grid supports particles
 - 💥 Particles take acceleration from grid

PIC and FLIP methods

- No grid based advection
 - ℁ Lesser dissipation
 - ☆ Particle advection is simpler
- No need for a level set
- PIC, more dissipative suited for viscous flows,
 FLIP for inviscid flows
- Surface reconstruction?

Surface reconstruction

Surface Φ(x) – define using all particles i

$$\Phi(x) = |x - \overline{x}| - \overline{r} \qquad \overline{x} = \sum_{i} w_{i} x_{i} \qquad \overline{r} = \sum_{i} w_{i} r_{i}$$
$$w_{i} = \frac{k(|x - x_{i}| / R)}{\sum_{i} k(|x - x_{j}| / R)}$$

- k(s) kernel function, R 2 x average particle spacing,
 x position, r radius, w_i weight for particle
- Suitable choice of kernel?

✗ Must provide flat surfaces for what should be flat

% k(s) =max(0,(1-s²)³)

Surface reconstruction

Issues

✗ Concave regions − centre might lie outside region

- Smoothing pass
- Radii must be close approximation to distance from surface
 - Non-trivial, constant particle radius assumed
- Advantages
 - 💥 Fast
 - ℜ No temporal interdependence

Advantages/Disadvantages

Advantages

- 💥 Fast & stable
- Independent of number of particles large scale scenes possible
- Disadvantages
 - 🔀 Not completely true to actual behavior
 - Detail issues smoothing in simulation, surface reconstruction

Overview

- What are Granular Materials?
- Simulation
- Rendering

Rendering

- Non-trivial due to scale and visual complexity
- Surface based rendering
 - ✗ Use volumetric textures
 - ℜ Texture advected by fluid velocity
- Particle rendering

Particle Rendering

Level of detail necessary

Rendering Tons of Sand, Sony Pictures Imageworks

Different approaches for different levels

Particle Rendering

Sand clouds

- Light Reflection Functions for Simulation of Clouds and Dusty Surfaces, Blinn
- Defines lighting and scattering functions for such materials
- ℁ Suitable options for dust, clouds

Rendering Tons of Sand

- Surfaces with sand
 - Generate particles on mesh at runtime with temporal coherence
- Sand particles
 - Senerate required number for visual detail from base "control" particles
- Rendering level of detail

Peak of 480 million particles at render time

Conclusions

- Interesting, albeit difficult problem
- Models not perfect
 - ℁ Speed vs. scale/realism tradeoff
- Similar tradeoff in rendering

References

- 1. Granular Solids, Liquids, and Gases Jaeger et al. Review of Modern Physics '96
- 2. Particle-Based Simulations of Granular Materials Bell et al., Eurographics '05
- 3. Animating Sand as a Fluid Zhu et al. SIGGRAPH '05
- 4. Rigid Fluid: Animating the Interplay Between Rigid Bodies and Fluid – Carlson et al. SIGGRAPH '04

References

- 5. Rendering Tons of Sand Allen et al. Sony Pictures Imageworks SIGGRAPH 2007 sketches
- A Fast Variational Framework for Accurate Solid-Fluid Coupling – Batty et al.
 SIGGRAPH 2007
- 7. Animating Sand, Mud, and Snow Sumner et al. Eurographics 1999