Sand Simulation

COMP 768 Project Proposal

Abhinav Golas
Motivation

- Simulation of granular materials like sand
- Per-particle simulation expensive – Billions to trillions of particles in medium sized scenes
- Complex behavior – between solids, liquids and gases due to multi particle interaction
- Applicability to multiple types of natural scenarios
 - Sand
 - Avalanches
 - Granular materials
State-of-the-art

- **Particle-Based Simulation of Granular Materials** – Bell et al. (2005)
 - Approximate all objects as sphere agglomerates
 - Visually accurate behavior
 - Few hundred thousand particles only for at least 3min/frame

- **Animating Sand as a Fluid** – Zhu & Bridson (2005)
 - Modify commodity fluid simulator for sand
 - Macro-level behavior – no concept of separate grains, approximation
 - 6 seconds per frame for 100^3 grid
Desired Tasks

Short term
- Accurate physical model for sand simulation
 - Model all behavior – Pressure capped to a maxima
- Hybrid model with multiple LOD
 - Fluid
 - Particles
- Rendering improvements

Long Term
- Generalization to Granular material simulation w. multiple particle sizes
Ideas

- Use fluid model to begin with
- Better stress model
 - Handle pressure capping
- Look at unilateral incompressibility and LCP for modeling various behaviors $\rho \leq \rho_{\text{max}}$
 - Sparse sand
 - Solid contact
Timeline

- April 7, 2009
 - Complete physical simulator with unilaterally incompressible sand and stress/friction model
 - Basic renderer (OpenGL/Blender/POV-Ray/Renderman)

- May 6, 2009
 - Add LCP based contact handling
 - LOD for sand – Hybrid between fluids and particles
 - Improved renderer with better lighting
References

- **Animating Sand as a Fluid**, Zhu et al. (SIGGRAPH 2005)
- **Particle Based Simulation of Granular Materials**, Bell et al. (Eurographics 2005)
- **Granular solids, liquids, and gases**, Jaeger & Nagel (Reviews of Modern Physics, '96)
- Instability in the Evolution Equations Describing Granular Flow, **Schaeffer** (1985)
- **Two dimensional Lagrangian particle finite-difference method for modeling large soil deformations**, Konagai & Johannson (Structural Eng./Earthquake Eng, 2001)
- Mechanics of Materials, Third Edition, Gere & Timoshenko (For basic physics reference)