
COMP 768 - Physically Based Simulation

Homework 2 - Collision Detection Between Rigid

Bodies

Abhinav Golas

March 17, 2009

1 Part A - Assumptions and Algorithm

It is given that the objects are sphere like, i.e. the variance of points is similar
along each and every axis. This makes it clear that cubical or spherical bounding
boxes would be ideal choices. Also, it is clear that the bounding box would
not need to be refitted at every step, since even under rotation, the existing
bounding box would suffice due to the objects having the same aspect ratio in
all axes. We can use a 2 step algorithm for doing collision testing. For this
we maintain 2 copies of the scene, one containing full resolution objects, with
their bounding boxes (S1), and the other containing simple axis-aligned cubical
bounding boxes (S2). The reason for this partition is to take advantage of the
fact that bounding boxes need not be updated. To utilize this advantage, the
scene S2 is not given rotation matrix updates, only translation updates. Also,
S1 is only updated whenever there is a collision detected in S2, and even then,
only those pairs are checked which show the possibility of a collision.

However, when we look at the relative expense of an axis aligned bounding
box update versus the time taken for collision check stage, the difference is of
nearly 2 orders of magnitude, which makes this algorithm not worth the effort,
since we would only be reducing a very small portion of the time taken, while
the bulk of the time taken would remain the same. A detailed basis for this is
given in the analysis section.

I am using the SWIFT++ collision detection software as the base source.

2 Modifications for Part C

For part C, we are given the additional constraint on the scene that every object
is of the same size. Considering the algorithm described in the previous section,
there is an indication that we can improve the collision detection for scene S2,
since there is a basic unit of measurement for the scene, dmax, which is the
extent of any object along any axis in the scene. That considered, the use of a

1



grid for speeding up adjacency queries presents itself. We can define a grid of
size n × n × n where n = D

dmax
, D being the edge length of the cubical scene.

Then, instead of tracking m objects, we need to track m points, each point
representing the location of the centroid of the cubical bounding box of each
object. Then, if object A lies in cell (i,j,k), then we only need to check any
objects lying in the adjacent 27 cells for possible collisions. This is because that
when the 2 objects intersect, the distance between their centroids must be less
than dmax, which implies that points representing these objects can only lie in
adjacent cells in this grid. Even in that case, the only check we need to do is
to see whether the distance between the centroids is less than dmax. Also, for
exact collision detection, we can avoid sorting all objects, instead sorting only
the objects in consideration. The SWIFT toolkit offers an option of Local sort,
which can be utilized for this step.

3 Analysis and Comparison

Now we present the analysis and comparison for the above algorithms.

3.1 Number of objects

First we analyze the growth of collision query time when the number of objects
is increased. For this test we used objects of bounding box radius 1, mesh detail
being a uniform distribution with mean 3, standard deviation 1. The impor-

Table 1: Collision query behavior vs. number of objects
No. of Time per No. of Time per No. of Update
objects collision query calls positive query positive calls time

1 0.000167 1338 0.000142 19 0.000024
5 0.000734 1558 0.000713 151 0.000053
10 0.001611 1252 0.001734 243 0.000076
15 0.002131 1493 0.00202 836 0.000083
20 0.003234 2120 0.003306 0.000111
25 0.003894 1780 0.00382 748 0.000115
30 0.00501 2309 0.005103 1412 0.000126
35 0.005783 2121 0.00579 1027 0.000117
40 0.006812 1055 0.006774 643 0.000131
45 0.007558 2168 0.007552 1988 0.00014
50 0.008915 1823 0.008895 1525 0.000149

tant data in this test is the time per collision query. As expected, the collision
time is the same irrespective of whether there are any collisions or not. This
distinction has been denoted as positive and negative queries, positive queries
being the ones in which collisions actually took place. The graph shows that the
collision query time grows linearly with the number of objects (Figure 1). This
conclusion can be tested with a loglog plot, i.e. a plot of log(x) vs. log(y). We

2



Figure 1: Growth of collision query time

3



Figure 2: Loglog plot of collision query time

4



plot the loglog plot of x=y as a comparison. Since the slope of both curves is
the same, we can conclude that the growth is linear (Figure 2). A miscellaneous
observation which is expected, is that the percentage of positive queries in the
collision queries grows linearly as well.

We now look at the possible reasons for this behavior. It can be expected
that the sweep and prune step will reject many possible pairs. Since the as-
pect ratio of the objects is same along all axes, it is expected that the cubical
bounding box utilized by SWIFT will fit the objects tightly, and thus reduce
the chances of false positives, i.e. the BVH test for a pair of objects will be more
likely to give the answer to the exact collision test. Also, a weaker extension
of the tightness claim should also extend to the BVH hierarchy, which would
result in performance improvements, and thus the near linear growth that we
observe for the next part.

3.2 Complexity of objects

Table 2: Collision query behavior vs. complexity of objects
Mesh Time per No. of Time per No. of Update
detail collision query calls positive query positive calls time

2 0.002932 2681 0.002991 1096 0.0001
5 0.003699 2671 0.003608 886 0.000107
10 0.004375 2847 0.00453 679 0.000098
15 0.005002 2932 0.005025 2078 0.000085
20 0.005067 2060 0.005057 1317 0.000081
25 0.005475 1878 0.005428 252 0.000075
35 0.007121 1175 0.007502 568 0.00012

The graph shows that the growth of collision query time vs. polygon count
is approximately linear, though the curve is not a perfect fit. It seems that the
behavior is somewhere between linear and quadratic. This behavior is expected
as the worst case performance of collision checking is O(n2), in which case we
check every polygon with each other. To explain this, we can extend from the
argument from the previous section. The tightness of the bounding boxes due
to aspect ratios being similar along all axes reduce the number of object pairs
that we need to test. Hence, even though we may use O(n2) overlap tests for an
object pair, these set of tests will not need to be applied for all pairs of objects.
So, on an average, the performance will not be quadratic, but near linear, since
the number of object pairs for which we run the overlap tests is reduced.

3.3 Size of objects

With the increase in object radius, the bounding cube in which the scene is
contained, is bound to get more packed. As this happens, the bounding boxes

5



Figure 3: Growth of collision query time with polygon count

Table 3: Collision query behavior vs. size of objects
Radius Time per No. of Time per No. of Update

collision query calls positive query positive calls time
0.5 0.003012 1485 0.002831 309 0.0001
1 0.003164 989 0.003171 250 0.000099
2 0.00319 710 0.00319 710 0.00009
3 0.003215 659 0.003215 659 0.000095
5 0.003324 979 0.003324 979 0.0001

6



Figure 4: Growth of collision query time with object radii

7



of each object in the scene are more likely to intersect, and so this pre-processing
step will quickly become less and less useful. But as the scene moves towards
saturation, i.e. perfect packing, the increase in time will start to plateau as the
exact collision detection step will start to dominate, and the sweep and prune
step will give almost the entire object set as possible collision pairs. This is also
seen in the graph, and the curve fit reflects that the data is expected to plateau.

3.4 Comparison of new algorithm in Part C with Part A
algorithm

Table 4: Comparison of both algorithms
Time per No. of Time per No. of Update

collision query calls positive query positive calls time
Part A 0.003164 989 0.003171 250 0.000099
Part C 0.000527 291 0.000525 147 0.065

As we can see from the above table, the modifications proposed, result in
drastic improvements in the collision query times. However, there is a corre-
sponding increase in the time taken to update the scene. The problem can be
traced back to the fact that if the radius is small, the grid we constructed for
speeding up neighbor queries will be very large, e.g. 403 for our given case. At
each step we will need to clear and update this grid, which results in the increase
in time consumed. We can avoid this by using a more efficient representation
for the grid, storing only those cells which contain objects. I experimented with
a hash based storage for the grid, but could not make a functional prototype in
time. That would reduce the clearing loop from 403 to n, where n is the number
of objects. The update step is linear in number of objects and hence is not a
bottleneck.

The fixed size condition is also utilized in a pre-process step, we check
whether the centers of mass of the 2 objects under consideration are more than
dmax apart, in which case they cannot intersect. This is analogous to having a
spherical bounding box around the object. Using a pruned neighborhood using
the grid, and the simple distance based pruning, the performance of the col-
lision query is improved. If the update performance can be improved by the
modifications recommended above, we can achieve much better performance.

In conclusion, we can achieve good performance for collision checking on large
numbers of objects, if the objects have similar aspect ratios and sizes.

8


