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ABSTRACT

While discriminative visual element mining has been in-
troduced before, in this paper we present an approach that
requires minimal annotation in both training and test time.
Given only a bounding box localization of the foreground ob-
jects, our approach automatically transforms the input images
into a roughly-aligned pose space and discovers the most
discriminative visual fragments for each category. These
fragments are then used to learn robust classifiers that dis-
criminate between very similar categories under challenging
conditions such as large variations in pose or habitats. The
minimal required input, is a critical characteristic that enables
our approach to generalize over visual domains where expert
knowledge is not readily available. Moreover, our approach
takes advantage of deep networks that are targeted towards
fine-grained classification. It learns mid-level representations
that are specific to a category and generalize well across the
category instances at the same time. Our evaluations demon-
strate that the automatically learned representation based on
discriminative fragments, significantly outperforms globally
extracted deep features in classification accuracy.

Index Terms— Fine-grained, mid-level representation,
deep learning, classification

1. INTRODUCTION
Fine-grained recognition takes the problem of generic object
categorization to the next level where the goal is to discrim-
inate between categories of very similar appearance, e.g.
bird species [1]. Due to the subtle differences between the
subordinate categories, several works have relied on domain
experts for detailed labeling of discriminative attributes [2]
or key point locations [3, 4, 5, 6, 7]. Typically, human-
labeled key-point annotations are used to identify the object
pose or perform some kind of alignment as a pre-processing
step [4, 6, 3, 8]. There are two major disadvantages in relying
on human labeling. First, manual annotation acquisition can
be extremely expensive and requires strong domain knowl-
edge. Second, while animals or airplanes have well-defined
key points, many other categories (e.g. food) lack such
precisely defined feature points. Hence, automatic deriv-
ing approaches for fine-grained categorization have drawn
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Fig. 1. (a) Original (b) GrabCut Mask (c) Best Rectangle (d)
Oriented rectangle (e) Oriented mask. Note that often, even
for bad mask, the alignment by the best oriented rectangle is
acceptable.

a lot of attention recently [9, 10, 11, 12, 13, 8]. Localizing
discriminative elements of each category remains the main
bottle-neck of fine-grained classification approaches. Our
approach requires minimal annotation in both training and
test time and automatically discovers the most discriminative
fragments of each category. In particular, we propose an
alignment-based method that only requires a bounding box
which roughly contains the foreground object. This alignment
is then used for extracting local discriminative fragments and
creating mid-level image descriptors.

Identifying discriminative mid-level visual elements has
recently attracted a lot of attention [14, 15, 13, 16]. Inspired
by the visual mining of discriminative blocks for scene clas-
sification [16], which uses HOG features to find and encode
groups of visually similar patterns, we explore a large set of
potentially discriminative regions. However, unlike [16] that
uses hand-crafted features to categorize generic categories,
we learn high-level representations to build robust mid-level
visual models. These models are trained to detect a specific
discriminative pattern within a category.

Recent success of deep learning methods in image clas-



sification [17] and object detection [18], suggests the high
capacity of convolutional neural networks for many com-
puter vision problems such as fine-grained classification.
Recently, Branson et al. [6] used deep activations in a pose
aligned space of bird categories and achieved a significant
boost in classification and part localization accuracy. Gir-
shick et al. [5] proposed a joint object detection and part
localization system that deploys deep features along with
domain-specific geometric priors to localize parts. However
in both of these methods, part annotations are required for
training part detectors. Our approach takes advantage of the
powerful representation provided by deep networks that are
fine-tuned to our specific task, without relying on any sort of
part annotation.

The rest of the paper is organized as follows: Section 2
describes all the steps in our approach: alignment, mining
fragment proposals, feature extraction, building and ranking
fragment sets. Next we introduce our image-level representa-
tion based on the discovered discriminative fragments. Sec-
tion 3 explains the experimental framework and discusses the
effect of various factors including number of discriminative
fragments and fine-tuning deep networks. Finally, Section 4
concludes with directions for future work.

2. MINE THE FINE

2.1. Discovering Fine-Grained Fragments

2.1.1. Semi-Supervised Alignment

Our method builds on top of the popular GrabCut segmenta-
tion [19] to roughly align the foreground objects. To extract
the foreground mask, we assume that a bounding box con-
taining the full extent of the foreground object is given. We
initialize the GrabCut by setting the area outside of the box
as background and inside as probably foreground. We also
set the center of the bounding box as foreground which leads
to considerably better foreground masks which in return help
in the ultimate goal of fine-grained classification. Next, we
locate the convex hull of the output foreground mask and fit
a rotated rectangle of the minimum area enclosing the hull.
We call this rectangle, the aligned bounding box. An aligned
bounding box is constrained to enclose the foreground region
as tightly as possible and also has degrees of freedom to ro-
tate and scale to roughly align with the pose of the bird. There
are three major advantages in using aligned bounding boxes.
First, they bring the focus to the relevant regions for fine-
grained classification (foreground) by reducing the effects of
background significantly. Secondly, they allow us to trans-
form the original image space of birds with huge variations in
aspect and orientation to a more pose-consistent space. This
space allows more comparability for corresponding locations
in bounding boxes. Lastly, they can be computed very fast.
We call our alignment framework semi-supervised as it does
not require the ground-truth or detected part locations. Fig-
ure 1 shows examples of aligned bounding boxes.
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Fig. 2. Oriole: Examples of top mined fragments with the
least area under the entropy-rank curves.

2.1.2. Generating Fragment Proposals

We use selective search [20] to generate a large set of region
proposals that are potentially discriminative. Although our
approach can be used with any method of generating candi-
date regions, using selective search has a major benefit: It
can circumvent the need for searching over the space of all
possible positions, scales and aspect ratios. Selective search
computes multiple hierarchical graph-based image segmen-
tation [21] over different color spaces and returns a set of
bounding boxes to which we refer as fragments. We first
augment the training set with horizontally flipped images and
use “fast” diversification strategy of selective search, i.e. two
color spaces: HSV and Lab and two similarity measures: Col-
orTextureSizeFill and TextureSizeFill and prune out any re-
gion with a side length less than 30 pixels. This set of frag-
ments is diverse and provides good coverage across object
instances. For efficiency, we select a random subset of the ex-
tracted fragments and measure their discriminative power in
the next steps.

2.1.3. Feature Extraction

We use the prevalent deep learning tool, Caffe [22] with the
architecture of Krizhevsky et al. [17] pre-trained on ImageNet
which achieved state-of-the-art performance in ILSVRC 2012
classification challenge. Additionally, in order to improve
the network’s discriminative capability in our specific fine-
grained classification, we fine-tune the model to classify the
bird categories in the our dataset. In particular, we replace
the last layer of 1000 units with a new layer of 200 units, one
for each bird category. We continue tuning for 500 iterations
with the base learning rate, momentum and weight decay as
0.001, 0.9 and 0.0005 respectively. Throughout the paper, we
represent every input image as the activations of the fully con-
nected layer fc-6 (4096 dimensions). Recent study by Bran-
son et al. [6] indicates that the later fully connected layers
of this CNN architecture significantly outperform earlier lay-



Table 1. Average group accuracy before and after fine-tuning the CNN for selected groups
Group Indices fg bbox fg bbox + vert.

fragments Finetuned CNN? unnorm. max norm. max fg bbox + unnorm. max fg bbox + norm.
max Top 50 Fragments

Gull 61:66 68.24 62.35
N 77.06 76.47 78.24 80.59 -
Y 71.76 77.65 70.59 80.00 100.00

Kingfisher 79:83 84.67 86.67
N 91.33 92.00 92.00 94.67 -
Y 92.00 93.33 92.00 93.33 100.00

Oriole 95:98 75.63 86.55
N 90.76 93.28 91.60 95.80 -
Y 93.28 93.28 94.12 97.48 96.52

Sparrow 113:133 53.67 55.37
N 70.62 74.58 72.88 75.71 -
Y 83.05 82.49 80.23 81.92 100.00

Swallow 135:138 65.83 73.33
N 89.17 91.67 89.17 91.67 -
Y 96.67 96.67 95.83 95.83 77.78

Tern 141:147 43.54 48.80
N 66.03 67.94 62.20 68.90 -
Y 71.77 73.68 72.73 74.64 98.77

Vireo 151:157 59.30 60.80
N 71.86 72.86 73.37 73.87 -
Y 77.39 78.39 78.39 77.39 72.22

Warbler 158:182 66.89 66.89
N - - - - -
Y 69.73 68.78 69.59 71.22 98.78

Woodpecker 187:192 94.67 95.27
N 92.31 91.72 92.31 95.86 -
Y 93.49 94.08 93.49 96.45 95.83

Wren 193:199 68.57 60.95
N 70.95 67.62 70.48 71.43 -
Y 73.81 73.81 72.86 76.67 99.17

Average 68.10 69.70
N 72.01 72.81 72.22 74.85 -
Y 82.29 83.22 81.98 84.49 93.91

ers in classification. In order to extract the deep activations,
each input image is warped to 256 × 256 and central crop
of size 227 × 227 is picked as the fixed-sized input to the
first layer. In order to account for the effects of warping and
cropping, prior to feature calculation, every input fragment is
extracted at a larger height and width proportional to its size
such that the final central patch used for feature calculation,
exactly corresponds the the originally extracted fragment.

2.1.4. Building Fragment Sets
Having a large pool of fragments in hand, our goal is to learn
visual models that can 1) detect highly discriminative regions
across categories and 2) generalize over different instances
within a category. We tackle this problem by generating train-
ing sets formed within categories: Starting from every frag-
ment we iteratively expand the set by adding more fragments
from distinct training instances of the same category. This is a
critical step in order to assure generalization. Given a set of n
categories, for each of the extracted fragments in the training
set, we train a one-vs-all classifier that discriminates between
the category from which the fragments are extracted and all
other n−1 categories. We iteratively refine the trained model
in two steps: 1) We train the model on all fragments in the set
including the newly added training fragments and 2) we apply
the model to other candidate fragments, sort them based on
the confidence of belonging to the same category and add the
top m scoring fragments as new training samples to the set.
In this process, we enforce two constrains: First, we make
sure that the new added fragments do not already exist in the
training set and 2) each of the new fragments must be from
a different image. These constrains ensure that the trained
model does not overfit to learning a particular instance of the
category and guarantees to increase diversity in each iteration.
We continue this process for t iterations. We heuristically set
m and t to be 10 and 5 respectively.

In order to accelerate the learning process, we use the ef-

ficient LDA classifiers with closed-form updates which by-
passes the need for extensive hard-negative mining [23]. In
particular, given a set of n target categories, we need to com-
pute the sample mean µ− of the negative examples and sam-
ple covariance matrix S of the entire training set only once.
For a binary LDA we assume the classes have a shared covari-
ance matrix S, and only need to update µ+ in each iteration.
The resulting LDA classifier for the positive class is obtained
as follows [24]:

w ∝ S−1(µ+ − µ−) (1)

2.1.5. Ranking Fragment Sets

In order to identify the most discriminative sets, we adopt the
measure based on Entropy-Rank curve introduced in [16]. We
take the final models trained on all fragment sets and perform
a binary classification on the fragments in the validation set.
The fragments are sorted based on their score, and the top k
ranking ones are selected. Then the entropy H(y|k) is com-
puted as follows:

H(Y |k) =
n∑

y=1

p(y|k) log2 p(y|k) (2)

Where n is the number of target categories and p(y = yi|k) is
the fraction of the top scoring k fragments that have the label
yi.

Next, we compute the area under the curve (AUC) of the
entropy-rank curves which is analogous to average precision
calculated from Precision-Recall curves. For an ideal classi-
fier, the entropy starts at zero and remains zero up to a very
high number of retrieved fragments. It then starts to increase
due to the fragments that are returned from classes other than
the target class. For each bird category, we pick the r frag-
ment sets with the lowest AUC values. Therefore, for all n
categories we obtain n × r detectors of the most discrimina-
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Fig. 3. Classification accuracy vs. number of parts.

tive visual elements in total. Some examples of fine-mined
fragments are also shown in Figure 2.

2.2. Representation and Classification
Given an image, a set of fragments is extracted as described in
2.1.2 with their descriptors as in 2.1.3. We apply each detector
to all fragments of the image and concatenate the maximum
scores found to build our image-level descriptor. In order to
build more robust features, we also add an optional normal-
ization step to our max-pooled fragment descriptors which
maps the feature vector to real values in [0, 1]. Finally a n-
class SVM classifier is trained using liblinear [25].

3. EXPERIMENTAL RESULTS
3.1. Experimental Framework
We evaluate our approach on the CUB-200-2011 [1] dataset
consisting of 200 bird categories. A wide range of challenges
for categorization are presented in this dataset, from pose
variations and various bird habitats to very similar species
(e.g. 25 kinds of warblers, 21 types of sparrows, etc.). Birds
within each group share higher similarity and are more dif-
ficult to discriminate. Therefore, we form a new setting, in
which we focus on building models to classify within 24
manually defined groups of similar species, grouped based
their name convention and visual similarity. Table 1 lists 10
selected groups. We have included the numerical indices of
the merged categories in CUB dataset. We use the standard
train/test split and the provided bounding boxes in the dataset.

3.2. Comparing the Proposed Method with Baseline
Baseline 1: FG-BBOX: We use the provided foreground
bounding box information to extract deep features. The fea-
ture dimension is 4096.
Baseline 2: FG-BBOX + Ver. Fragments: We further di-
vide the aligned bounding box area into 4 vertical regions and
concatenate their CNN features with the foreground bbox.

The final dimension is 4096 + 4 ∗ 4096. Table 1 shows the
results on the selected groups compared to baseline using pre-
trained and fine-tuned CNN features. The last column lists
the results by just using the top 50 fragment detectors. The
proposed method significantly outperforms the baseline. Par-
ticularly, we notice that for most of the hard groups, e.g. gull,
oriole, etc., the proposed method boosts accuracy between
10% to 20%. For sparrow and wabbler, we still gain less
significant improvement (1% to 3%). One exception is the
easy group woodpecker, where we achieved similar accuracy.
This makes sense as improving an already well-performing
classification is much harder.
Advantage of using FG Bounding Box: Adding FG bbox
helps the max pooled feature. This is mainly due to the
complimentary nature of CNN feature extracted from the FG
(global structure, shape, color) and fragments (local details).
Also FG CNN feature helps to bring some useful context
information when necessary, e.g. the birds habitat.
Fine-tuning: We gain slight improvements by using the fine-
tuned CNN features. This is possibly due to the fact that the
fine-tuning is conducted over 200-classes rather than species
in each group. However, fine-tuned features shows more im-
provements for hard groups as compared to easy groups, for
example, tern vs. woodpecker.
Different Number of Fragments: Figure 2.2 shows the
classification accuracy vs. the number of top fragment detec-
tors. The x-axis shows the number of selected top detectors
for each class within the group, varying from 5 to 100. Some
examples of fine-mined fragments are shown in Figure 2. Fig-
ure 2.2 also plots the averaged accuracy over all 24 groups.
It can be seen from Figure 2.2 that classification accuracy
increases very fast in the beginning, and becomes stabilized
around 20 fragment-detector. This means that using quite a
few fragment detectors, our proposed algorithm can already
achieve good results. Given few detectors, the final feature
dimension of the proposed algorithm is also much less than
the baseline approach. Comparing results using just the top
50 fragment detectors with other results in Table 1, which
do not sort nor select the best fragment detectors, we found
the results are better using just the top detectors. This is
reasonable as some of the detectors may not have valuable or
discriminated information, and including them can introduce
noisy values into the representation.

4. CONCLUSIONS

We proposed a fine-grained categorization framework that
only relies on weak foreground localizations to align and
discover the discriminative elements of each category. Em-
powering mid-level representations with task-specific learned
representations, we can outperform the current CNN feature
baselines. Future work includes reducing redundancy in the
visual models and improving candidate fragments generation.
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