
Nailboards: A Rendering Primitive
for Image Caching in Dynamic Scenes

Gernot Schaufler

GUP, Johannes Kepler Universität Linz
Altenbergerstr. 69, A - 4040 Linz, Austria / EUROPE

schaufler@gup.uni-linz.ac.at

Abstract. This paper proposes a simple augmentation to texture mapping hard-
ware which produces the correct depth buffer content and hence correct visibil-
ity when replacing complex objects by partially transparent textured polygons.
Rendering such polygons exploits frame-to-frame coherence in image sequences
of dynamic scenes.
Correct depth values are obtained by keeping a small depth delta for every texel
which represents the texel’s deviation from the textured polygon. The polygon’s
depth values are modified at every pixel to match the depicted object’s geometry.

1 Introduction and Motivation
Rendering acceleration in three-dimensional computer graphics is usually achieved
with dedicated graphics hardware. Available accelerators generate up to sixty frames
per second of moderately complex scenes. Their major limitation is that every frame is
rendered from scratch even though smooth frame sequences contain a great amount of
coherence. Nevertheless depth-buffered scan conversion of polygons enjoys great pop-
ularity because visibility is correctly resolved for any point of view and any rendering
sequence of the primitives.

In contrast image-based rendering uses pre-generated or recently generated images to
obtain the final view. The rendering cost depends on the number of pixels in the final
image and not on the scene complexity. In smooth animation sequences object images

Fig. 1: Left and Middle: Incorrect visibility due to interpenetrating polygons when individual
objects are replaced by partially-transparent textures.

Right: Incorrect visibility due to layering of object images.

correct
images

incorrect
visibility

correct image

chair over table:

table over chair:

incorrect visibility

incorrect visibility

are not rendered directly into the final image but into dedicated buffers. Texture map-
ping and image layering have been used to merge this image data into the final frames
to be displayed. Image data can be re-used as long as the geometric and photometric
errors remain below a given threshold. Approximations to these errors allow to quickly
determine if image data can be reused or must be refreshed.

While visibility is correctly resolved on individual texture maps and within single
image layers, assigning depth priorities to different layers does not correctly resolve
visibility in general (see figure 1). Only one object can be in front of the other. Replac-
ing complex objects by partially transparent textured polygons also produces visibility
errors because polygons mutually intersect or intersect other geometry (see figure 1).

In static scenes grouping close or interpenetrating objects into one texture or image
layer avoids visibility problems at the cost of losing the convenience to render objects
in any sequence. In dynamic scenes such a static grouping is not possible as the spatial
relations among objects change over time.

So far mainly independent polygons have proven general and efficient enough to
generate smooth animations of dynamic scenes with considerable complexity in real-
time. In order to also exploit coherence in dynamic scenes, a new more powerful ren-
dering primitive instead of the textured polygon is needed. Such a primitive must fit
into the well-established context of depth-buffered rendering so that highly dynamic
objects exhibiting little or no coherence can still be rendered efficiently as polygonal
geometry.

2 Related Work
Correct visibility of arbitrary surfaces on rastered images is often achieved with the
depth buffer algorithm [3]. Efficient implementations work incrementally in screen
space as perspective projections preserve lines and planes. However, this projection is
not affine but requires the “perspective division” [6].

A number of such images can be composited with correct visibility by making use
of each image’s depth buffer contents: the pixel visible in the final image is the one
with the smallest depth value [5]. Regan et al. [11] have designed a custom video hard-
ware which performs such depth composition of multiple images during video signal
generation. After grouping the objects in the scene by their distance to the viewer,
more distant objects are rendered less frequently as their images change slower. The
incurred cost is the multiplication of frame and depth buffer memory requirements.

With texture mapping hardware (e.g. [1]) image data can be incorporated into
object space and not only into image space. A number of interesting shading effects
are possible requiring multi-pass rendering [15] and perspective-correct texture map-
ping [7]. In particular real-time shadows require that depth values are calculated both
in eye and lightsource coordinates.

Maciel et al. [8] incorporate pre-rendered image data into the rendering process for
walk-throughs of static environments. The object images are mapped onto transparent
polygons which are positioned and oriented properly with respect to the point of view
in order to closely mimic the appearance of the objects.

Schaufler introduced the concept of dynamically generated impostors [12]. Object
images are not pre-generated but retained from previous frames and re-used as long as
possible [13]. In some cases visibility errors occur because a flat polygon does not cap-
ture the actual geometry of an object. Rendering the polygon instead of the geometry
does not produce the same depth values and visibility errors result, if objects are too
close or interpenetrating (see figure 1).

Shade et al. [16] and Schaufler et al. [14] independently developed a solution to this
visibility problem for static scenes. Scene sub-volumes are replaced by impostors
instead of replacing individual objects. Correct visibility is guaranteed by using a spa-
tial hierarchy to depth-sort impostors.

Image caching is simple enough to be efficiently implemented in low-cost hard-
ware: the Talisman system [17] generates the final image from warped image layers
(similar to impostors) during video signal generation. The authors state that “indepen-
dent prioritized layers” replace “non-interpenetrating objects”. No solution is given for
the problem depicted in figure 1. Open questions are what is to be considered an inde-
pendent object (what about very large objects such as terrain?) and when to change the
priority of a layer.

The next section introduces a new trade-off between geometric modeling and
image-based modeling. The proposed way of writing texture mapped polygons into the
frame and depth buffers avoids the visibility problems of dynamically generated
impostors. The major advantage is that impostors, hierarchical image caches and tradi-
tional geometry can be rendered in any desired sequence or mixture because the depth
buffer values are correct at every pixel. This mixture allows image caching to be done
for dynamic scenes as will be shown in section 7.

3 Nailboards
Nailboards are polygons onto which an RGB∆ texture is mapped to mimic the appear-
ance of a complex object. For every pixel in the texture (texel) the additional compo-
nent ∆ measures how far the object’s point depicted on this texel deviates from the
polygon. The object’s image and∆ values are generated on demand and are reused
over several frames as long as the geometric and photometric errors remain below a
certain threshold.

When the texture of the nailboard is generated from object geometry, the∆ values
are taken from the depth buffer and are stored in the texture together with the RGB val-
ues of the image. When the nailboard is rendered, the∆ values are used to change the
polygon’s depth values into the depth values for the object depicted on the nailboard.
Figure 2 shows the four coordinate spaces involved in the correction of depth values:
texture space (denoted by superscriptt), nailboard space (n), eye space (e) andscreen
space (s).
The viewing frustum used to render the object image is defined innailboard space. It
contains the nailboard polygon which is normal to thez-axis of nailboard space. The
extent of the frustum is determined from a bounding volume (e.g. a bounding box)
known to contain the object. The eye is at the origin.

After rendering the object to obtain RGB and∆ values the depth buffer contains
depth values intexture space which is related to nailboard space by the perspective
projection matrix followed by the perspective divide [10]:

x
t

y
t

z
t

w
t

2n
r l–
---------- 0

r l+
r l–
---------- 0

0
2n

t b–
---------- t b+

t b–
----------- 0

0 0
f n+
f n–
------------ 

 –
2 fn–

f n–

0 0 1– 0

x
n

y
n

z
n

1

⋅= (1)and X
t

x
t

w
t

y
t

w
t

z
t

w
t

=

where (xn,yn,zn,1)T is a point in nailboard space,Xt=(xt/wt,yt/wt,zt/wt)T is the same
point in texture space,n is the distance to the near clipping plane (which is also the
image plane for generating the texture),f is the distance to the far clipping plane,l and
r delimit the horizontal extent of the image,t andb delimit its vertical extent as shown
in figure 3 (looking down the negativez-axis in a right-handed coordinate system):

In equation (1) division by zero only occurs for degenerate image extents asl andb are
signed values and usually negative. Equation (1) maps the viewing frustum onto a cube
centered around the origin. The general form of the function relatingzn in nailboard
space tozt/wt in texture space is

Please note that this function only depends on the near and far distances: all points on
planes parallel to the image plane have the same depth value. In texture space the nail-
board polygon corresponds to one such plane parallel to the near plane.

The third space shown in figure 2 iseye space. In both eye space and nailboard

Fig. 2: Viewing the original object and it’s nailboard:
nailboard space is embedded into eye space to obtain correct depth values.

Fig. 3: Parameters of the viewing frustum.

eye space

eye
ze

zn

nailboard space

nailboard
polygon

texture space
perspective

transformation

nailboard
polygon

screen space
perspective

transformation

∆

nailboard
polygon

im
ag

e
pl

an
e

eye

z

l r

t

bn
f

image plane

λ f n+
f n–
------------= (2)

zt

wt
----- λ µ

zn
----+= µ 2 fn

f n–
------------=with and

space the eye is at the origin of the coordinate system. When rendering the final image,
points (xe,ye,ze,1)T in eye space are mapped to (xs/ws,ys/ws,zs/ws)T in screen space by
the same matrix equation as above (equation (1) for a different frustum) followed again
by the perspective divide. After resolving visibility,zs/ws is discarded to obtain coordi-
nates (xs/ws,ys/ws)T on screen (in the final image).

The depth buffer of the final image contains depth valueszs/ws in screen space.
Therefore, using depth values from one perspective projection (texture space) to cor-
rect depth values in another space (screen space) requires reversing the perspective
divide, transforming to the second space and performing the perspective division for
this space.

With this mathematical background a nailboard implementation is possible (actu-
ally a first reference and prototype implementation worked in this way). The nailboard
is rendered into the color buffer as the usual textured polygon. However, the depth val-
ues of the nailboard polygon are ignored because they do not match the geometry of
the object depicted on the nailboard. As the object’s depth values were obtained in tex-
ture space they must be taken to screen space via nailboard space and eye space. This
requires inverting the perspective projection, transforming to eye space and performing
the perspective projection to obtain the object’s depth values in screen space. These
numerical operations include two divisions and a full matrix multiplication and are
required at every pixel. Keeping depth values with 32 bit resolution roughly doubles
the memory requirements compared to RGB textures. All this should be avoided.

4 Efficiency Improvements
The proposed efficient implementation of nailboards is based on the fact that the depth
values of the textured polygon are computed during span interpolation on graphics
accelerators. These depth values provide a reference in screen space which is then cor-
rected by a small depth∆ to arrive at the depth values matching the depicted object.

The nailboard polygon’s depth values have a number of desirable properties: First,
the object’s depth deviations from the polygon are small compared to the depth extent
of the whole viewing frustum. Second, the position and orientation of the polygon in
eye space is determined by the transformation relating nailboard space and eye space.
Applying the depth∆ relative to the depth of the polygon accounts for most of the
effects of the transformation from nailboard space to eye space (one additional term
must be considered, as will be explained in section 4.2) as depth correction only works
along one line of sight changing the pixel’s depth value and not it’s position on screen.

Efficient correction of depth values must work in screen space. It must use depth
values from texture space as these are available in the depth buffer. Moreover, correc-
tion without divisions is desirable for a hardware implementation.

This section introduces two simplifications to allow efficient implementation of
nailboards: one determines the number of bits actually required to store the∆ compo-
nent of the texture; the other removes the two divisions per pixel and approximates the
transformation from texture space to screen space.

4.1 Cutting Down Memory Requirements

Accurate depth buffering requires between twenty and thirty-two bits per pixel because
after the perspective division of equation (2) the relationship between depth values and
the distance from the viewer is no longer a linear but a rational function [6]. Two plots
of this relationship are shown in figure 4 for different ratios of near to far plane dis-
tances (please note the different scales on the axes). The mapping of the rational func-

tion wastes a lot of accuracy in the back of the frustum. For example at a near/far ratio
of 1/1000 all distances exceeding 200 are mapped onto values between 0.99 and 1 in
the depth buffer (see figure 4 (b)).

This is not the case when a tight frustum is used around a single object. Then the
ratio of near/far approaches one and the mapping of distance to depth values becomes
more and more linear (see figure 4 (a)). So significantly less bits suffice to represent
the different distances between the near and the far plane.

The implementation described in the next section uses only eight bits to represent
∆. A visual comparison of the results1 obtained with two, four, six, eight and sixteen
bits is shown in figure 5.

The zigzag lines between the wall and the other solids in the first three images result
from the intersection of the wall with the parallel planes defined by discrete∆ values.
Only minor artifacts are visible with six bits∆ and artifacts are unnoticeable with eight
bits. Both the images generated with eight and sixteen bits cannot be distinguished
from the image rendered from original geometry with 32 bit z-buffering.

On a single nailboard aliasing artifacts of this kind do not occur because for gener-
ating the texture the full depth buffer resolution is used. However, only the most signif-

1. These images have been rendered using also the approximations described in the next section 4.2.

Fig. 4: Depth value as a function of distance to the viewer for different near/far ratios (near=1).

Fig. 5: Comparison of depth accuracy with different numbers of bits used to store∆ values.

1.2 1.4 1.6 1.8 2

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

0.8

0.85

0.9

0.95

1

(b) near/far = 1/1000

zs/ws

ze

n f

zs/ws

ze

n f
(a) near/far = 1/2

8 bits∆ 16 bits∆ geometry

2 bits∆ 4 bits∆ 6 bits∆

icant eight bits of the usual thirty-two bits are stored in the RGB∆ texture.
Impostors described previously [12][14][16] use theα channel for the transparent parts
of the texture. With nailboardsα bits are avoided by reserving one depth value for the
transparent portions of the texture (e.g. the initial far distance value).

4.2 Approximating the Divisions and the Transformation

Figure 6 shows a special case setup of the nailboard frustum with respect to the current
viewing frustum in eye space (both texture space and screen space are unit cubes and
would coincide). The eye point is at the origin for both frustums and thez-axes coin-
cide. This situation occurs for a nailboard directly in front of the viewer (in the center
of the final image) when the eye has not moved yet from the point for which the nail-
board was generated. Nailboard space and eye space are then the same, only the near
and far distances of the two frustums differ. (Typically the nailboard frustum is much
smaller than the viewing frustum).

In this case depth valueszt/wt from texture space are linearly related tozs/ws in
screen space because they have both been obtained by the same type of rational for-
mula (recall equation (2)):

wherez is the point’s depth value in the identical nailboard and eye spaces,κ andδ are
the parameters of the linear transformation from depth values in texture space to depth
values in screen space.

When nailboards are reused over several frames, the position of nailboard space
relative to eye space can be more general in two ways: first a translation of either the
eye or the object translates nailboard space along thez-axis of eye space. As rational
functions are involved compensating for this translation by a linear transformation as
above introduces an error. Second, when looking around, the direction of view rotates
away from the center of the nailboard. In this case the parallel planes defined by dis-
crete depth values in nailboard space become tilted with respect to the image plane.

Figure 7 shows this general setup of nailboard space with respect to eye space.
Please note that only a two-dimensional cross-section is shown while the rotation of
nailboard space is arbitrary around the eye. A possible small translation of the eye has
been neglected in the figure for clarity.

Depth is only a one-dimensional value. Along individual lines of view the depth
interval spanned by the nailboard’s frustum is scaled and moved along thez-axis when

Fig. 6: Simplest case setup between current viewing frustum and nailboard’s frustum:
same z-axes and identical point of view.

current viewing frustum
nailboard’s frustum
nailboard polygon

eye

ze=zn

zF
ezQ

ezN
e

zt

wt
----- λ µ

z
---+= zs

ws
------ λ′ µ′

z
-----+= and therefore,

δ λ′ µ′
µ
-----a–=

zs

ws
------ κ zt

wt
----- δ+= with andκ µ′

µ
-----= (3)

going from nailboard space to eye space. This linear relationship is exact, as nailboard
space and eye space are related by the matrix equation (1).

The relationship between texture space and screen space can only be approximated
by a linear relationship because of the perspective divide. For one line of sight let the
interval of the nailboard’s depth values be delimited byzN

s andzF
s in screen space (fig-

ure 7 only shows nailboard space and eye space). These are the depth values of the
pointsN andF on the near and far planes of the nailboard’s frustum for the current line
of sight. The linear formula

takes a depth∆ stored in the texture. It moves and scales this∆ along thez-axis of
screen space to obtainz∆

s. z∆
s approximates the depth correction for the visible pointP

on the object along the current line of sight. By addingz∆
s to the depth valuezQ

s of the
point Q (the point on the nailboard’s polygon) the depth value for this pixel is
obtained. It reflects the distance of the visible pointP on the object from the eye.

By observing that rotations move the interval [zN
s; zF

s] more than the maximum
allowable translation of the eye which does not trigger a re-generation of the texture it
follows that this approximation introduces a relative error which is largest when the
nailboard is maximally tilted with respect to the image plane and also directly behind
the image plane (where depth values are small and depth buffer accuracy is highest).
With a field of view of sixty degrees the maximum tilt is thirty degrees. It translates
and scales the interval from [zN

s; zF
s] to [zN

s cos 30;zF
s cos 30].

Figure 8 shows the plots of the relative error occurring throughout this interval
immediately behind the image plane (a) and at a moderate distance d=150 (b). The
error is calculated as the difference between accurate depth values obtained as
described in section 3 and depth values obtained by the approximating equation (4) in
percent of the accurate value. The near to far ratio used is 1/100 (n=10, f=1000). The
shown relative error is insensitive to the far distance which only changes the magnitude
of the involved values but the relative error remains the same. In both cases the extent
of the nailboard frustum (zF

e-zN
e) was assumed not to exceed the object’s distance

from the eye. Typically the extent of the nailboard frustum is only a fraction of the eye-
object distance because only then image coherence is high for the object.

The further the nailboard is from the viewer, the smaller the relative error, because
depth accuracy diminishes rapidly with distance from the viewer (see figure 4). Note
how an error of 0.6% is never exceeded even directly behind the image plane.

To obtain (zF
s-zN

s) and (zN
s-zQ

s) for every pixel covered by the nailboard, the two

Fig. 7: Relationship between the depth values stored in the RGB∆ texture and the termz∆
required to obtain correct depth values atP.

current viewing frustum

nailboard polygon

eye

∆
P

z∆
s

N
F

Q
ze

zF
ezQ

ezN
e zP

e

zn
nailboard’s frustum

line of
sight

z∆
s

zF
s zN

s–()∆ zN
s zQ

s–()+= (4)

values are calculated for the vertices of the nailboard’s polygon. (zN
s-zQ

s) is immedi-
ately added to the depth values of the polygon vertices so that the term is already
included in the depth value interpolated across scanlines. The scaling factor (zF

s-zN
s)

must be added to the interpolated parameter list for the polygon. It gives the depth
extent of the nailboard’s frustum at every pixel. Both interpolations are exact in screen
space.

In summary, both the depth value of the near plane and the depth extent of the nail-
board’s frustum are interpolated across scanlines. For every pixel the depth∆ is
fetched from the texture, scaled by (zN

s-zF
s) and added to the depth of the nailboard’s

near plane. This gives the depth values of the depicted object with a maximum error of
0.6% as shown in figure 8 (a). The closer to the center of the screen and the further
away from the viewer the nailboard is, the smaller the error. This behavior is desirable
as distant objects exhibit more coherence and are preferably replaced by nailboards.
Usually the user is considered to look at the center of the screen (requiring highest
accuracy).

5 A Software Implementation
Although a hardware implementation is highly desirable, so far only a software imple-
mentation was done on top of the OpenGL graphics library as a proof of concept.
OpenGL [10] does support rendering texture-mapped polygons but does not produce
correct depth values, if objects are replaced by textured polygons.

Fig. 8: Error introduced by a linear approximation to the accurate depth correction after rotating
the viewing direction by 30 degrees: (a) nailboard directly behind the image plane (n=10,

f=1000), (b) nailboard at moderate distance (n=10, f=1000)

Fig. 9: Re-sampled depth∆ generated by the OpenGL implementation for figure 1.

18 20 22 24

0.1

0.2

0.3

0.4

0.5

0.6

zs error (%)

ze

zN
ecos30 zF

ecos30
180 200 220 240

0.005

0.01

0.015

0.02

0.025

0.03
zs error (%)

ze

(a) (b)

zN
ecos30 zF

ecos30

bounding box of pixels
covered by nailboard on screen

nailboard polygon

Correct depth values are obtained by a method similar to z-composition of multiple
RGBz images [2]. First both the depth values of the polygon and the depth∆ at each
pixel are needed. Both data is obtained with one rendering pass: the polygon is drawn
with a texture containing the∆ values in one of the color channels. Both the depth
buffer and this color channel are read into main memory and the correct depth values
are calculated for every pixel by applying equation (4).

These depth values are written into the depth buffer with the outcome of the depth
comparison recorded in the stencil planes. Now the correct depth values are in the
depth buffer. Finally the depth test is disabled and the textured polygon is drawn into
all the pixels for which the depth comparison succeeded using the stencil test. This
establishes the correct visibility of the nailboard in the final image.

Unfortunately using the stencil buffer and copying pixel from and into the frame
buffer does not yield truly interactive frame rates for complex scenes, but the correct-
ness of visibility even for complex scenes is demonstrated. Figure 9 shows the depth∆
values rendered as a texture in the first rendering pass. Figure 10 summarizes the algo-
rithm as pseudocode.

6 A Hardware Implementation

Traditional graphics hardware architectures are easily adapted to support nailboards.
(zF

s-zN
s) must be added to the interpolated parameter list (which already includes color

and/or normal components, depth and texture parameters for textured polygons). Fig-
ure 11 shows the additional components required to add the RGB∆ texture functional-
ity to the pixel pipeline. Before the polygon’s depth values are fed into the depth
comparison the properly scaled depth∆ from the texture is added to them. For the
transparent portion of the texture (∆=0xFF) the depth comparison is disabled so that

Fig. 10:Pseudocode for software implementation of nailboards.

Fig. 11:Components to implement the additional functionality of RGB∆ textures in hardware.

DrawNailboard()
define a texture with depth ∆ in red channel
draw nailboard polygon with this texture
copy both depth and ∆ values into memory
correct depth values using equation (4)
write depth values into depth buffer
keep result of depth test in stencil plane
enable stencil test and disable depth test
draw RGB textured nailboard polygon

mul

add
32 32

3232

texture∆

from depth
interpolator

from (zF
s-zN

s)

to depth
comparison

interpolator

&8 depth
comparison

disable

1

the respective pixels are left unchanged:
Even the new hardware architecture called Talisman [17] would benefit from avail-

able support of RGB∆ textures. In the description of the architecture the authors state
that “independent image layers will generally be used for each non-interpenetrating
object in the scene”.

7 Applications
The new graphics primitive improves a number of rendering algorithms: nailboards
can replace impostors to avoid the artifacts from interpenetrating impostors shown in
figure 1. Objects too close to each other or interpenetrating objects can now be safely
replaced by individual nailboards without visibility problems. With impostors close
objects must be grouped before being replaced by impostors. Whenever one object in
the group needs re-rendering the whole group must be re-rendered. Therefore, coher-
ence is not fully exploited. With nailboards no such restrictions apply.

Nailboards are also advantageous in the context of hierarchical image caching for
dynamic scenes. Image caching as described by Schaufler et al. [14] and Shade et al.
[16] only works for walk-throughs of static scenes because a spatial hierarchy is built
on top of the scene during initialization. Updating such a hierarchy for dynamic scenes
is not feasible because of the high computational overhead. One dynamic object
destroys all the coherence for the scene parts the object moves through.

Nailboards allow to arbitrarily mix image caching, nailboards and polygonal ren-
dering because they fully integrate into depth buffered rendering. As a result the fol-
lowing advantageous partitioning of a dynamic scene is possible:

For the static scene parts a spatial hierarchy is built and the part’s images are reused
over several frames from a hierarchical image cache. Dynamic objects are individually
replaced by nailboards or rendered as polygonal geometry depending on the complex-
ity of the objects and the expected time of validity of their images. Without nailboards
such a deliberate mixing of rendering methods leads to severe visibility errors. The
depth ordering of dynamic objects changes constantly with respect to the textured
polygons in the hierarchical image cache. Moreover polygonal geometry makes the flat
nature of both the images on impostors and in the image cache apparent whenever they
interpenetrate.

Figure 12 (see Appendix) shows a frame of an animation sequence of cars moving
over a bridge: note how some of the cars disappear behind the bridge as impostors
occlude each other (a). With nailboards these problems go away (b) and the image is
indistinguishable from the one generated from original geometry (c). In (d) outlines
around nailboards indicate which objects and parts of the static bridge have been
replaced by nailboards. The outlines correctly disappear into the depicted geometry
(e.g. the ground) which also demonstrates the correct combination of different drawing
primitives in one image.

8 Conclusions and Future Work
This paper introduced nailboards for rendering arbitrarily complex objects. By storing
every texel’s deviation from the nailboard polygon correct depth values can be calcu-
lated and hence visibility is resolved correctly even for touching, interpenetrating and
moving objects. The additional computation necessary to arrive at correct depth values
is simple enough to be implemented directly in graphics accelerators. For practical
scenes eight bits are sufficient to store the depth offsets so that texture memory require-
ments are not bigger than for RGBα textures used for impostors so far.

In the future investigation of additional trade-offs between the validity duration of
generated image data and the effort necessary to extract the final image will be pur-
sued. Re-projecting pixels, view interpolation, rendering trees from pre-computed z-
buffer views [9] and RGB∆ textures already demonstrate four such trade-offs but oth-
ers may be possible.

The technique may be extendible to model objects using several nailboards and
interpolate between them to more closely mimic the appearance of the object similar to
view-dependent textures [4]. A planned cooperation with a computer graphics hard-
ware manufacturer should result in a hardware implementation of nailboards to fully
realize their potential.

References
[1] Akeley, Kurt, “RealityEngine Graphics”, Computer Graphics (SIGGRAPH ‘93) (August

1993) pp 109-116.
[2] Blythe, David and Tom McReynolds,“Programming with OpenGL: Advanced Render-

ing” , SIGGRAPH ‘96 Course.
[3] Catmull E.,“Computer Graphics Display of curved surfaces”, IEEE Conference on Com-

puter Graphics, Pattern Recognition and Data Structures, May 1975, reprinted in Tutorial
and Selected Readings in Interactive Computer Graphics, H. Freeman (ed.), IEEE, 1980,
pp. 309-315.

[4] Debevec, Paul E., Camillo J. Taylor and Jitendra Malik,“Modeling and Rendering Archi-
tecture from Photographs: A Hybrid Geometry- and Image-Based Approach”, Computer
Graphics (SIGGRAPH ‘96) (August 1996) pp 11-20.

[5] Duff, Tom, “Compositing 3-D Rendered Images”, Computer Graphics (SIGGRAPH ‘85)
19 3 (July 1985) pp 155-162.

[6] Foley, J.D., A. van Dam, S.K. Feiner and J.F. Hughes,“Computer Graphics: Principles
and Practice”, Second Ed. Addison-Wesley, Reading, MA, 1990 pp 274-302, 554-556.

[7] Heckbert, Paul S. and Henry P. Moreton,“Interpolation for Polygon Texture Mapping and
Shading”, State of the Art in Computer Graphics: Visualization and Modelling, David F.
Rogers and Rae A. Earnshaw, eds., Springer Verlag, New York, 1991, pp. 101-111.

[8] Maciel, Paulo W. and Peter Shirley, “Visual Navigation of Large Environments Using Tex-
tured Clusters”, Symposium on Interactive 3D Graphics (April 1995) pp 95-102.

[9] Max, Nelson and Keiichi Ohsaki,“Rendering Trees from Precomputed Z-Buffer Views”,
Proceedings of the 6th Eurographics Workshop on Rendering, (June 1995) pp 45-52.

[10] Neider, Jackie, Tom Davis and Mason Woo,“Open GL Programming Guide”, Addison-
Wesley Publishing Company 1993, Silicon Graphics Inc., ISBN 0-201-63274-8.

[11] Regan, Matthew and Ronald Post,“Priority Rendering with a Virtual Reality Address
Recalculation Pipeline”, Computer Graphics (SIGGRAPH ‘94) (July 1994) pp 155-162.

[12] Schaufler, Gernot,“Dynamically Generated Impostors”, MVD’95 Workshop “Modeling -
Virtual Worlds - Distributed Graphics” (Nov. 95) D. W. Fellner (ed.) Infix pp 129-136.

[13] Schaufler, Gernot,“Exploiting Frame to Frame Coherence in a Virtual Reality System”,
VRAIS ‘96, Santa Cruz, California (April 1996) pp 95-102.

[14] Schaufler, Gernot and Wolfgang Stürzlinger,“A Three-Dimensional Image Cache for Vir-
tual Reality”, EUROGRAPHICS ‘96, (August 1996), 15 3, pp 227-236.

[15] Segal, Mark, Carl Korobkin, Rolf van Widenfelt, Jim Foran and Paul Haeberli,“Fast Shad-
ows and Lighting Effects Using Texture Mapping”, Computer Graphics (SIGGRAPH ‘92),
26 (July 1992) pp 249-252.

[16] Shade, Jonathan, Dani Lischinski, David H. Salesin, Tony DeRose and John Snyder,“Hier-
archical Image Caching for Accelerated Walkthroughs of Complex Environments”, Com-
puter Graphics (SIGGRAPH ‘96), (August 1996) pp 75-82.

[17] Torborg, Jay and James T. Kajiya,“Talisman: Commodity Real-time 3D Graphics for the
PC” , Computer Graphics (SIGGRAPH ‘96), (August 1996) pp 353-363.

