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Abstract

A new approach to telepresence is presented in which

a multitude of stationary cameras are used to acquire

both photometric and depth information. A virtual

environment is constructed by displaying the acquired

data from the remote site in accordance with the head

position and orientation of a local participant. Shown

are preliminary results of a depth image of a human

subject calculated from 11 closely spaced video camera

positions. A user wearing a head-mounted display

walks around this 3D data that has been inserted

into a 3D model of a simple room. Future systems

based on this approach may exhibit more natural and

intuitive interaction among participants than current 2D

teleconferencing systems.

1 Introduction

In the near future, immersive stereo displays, three-

dimensional sound, and tactile feedback will be

increasingly capable of providing a sensation of presence

in a virtual environment [Sutherland, 1968; Bishop et al.,

1992]. When this technology is applied for use in long-

range communication, the goal is to provide a sense of

telepresence to the participant.

The true promise of telepresence lies in its potential

for enhanced interactivity and increased exibility

when compared to alternative technologies, such as

conventional teleconferencing. Telepresence should not

merely allow the viewing of remote participants, but it

should also allow us to participate in the same space with
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them. This experience includes the ability to glance in

the direction that a speaker points, or look at the other

participants, or even stare at the ceiling.

Applications for telepresence are far-reaching. They

include such tasks as remote medical diagnosis,

instruction, and entertainment.

In this paper we present an approach to telepresence

that uses stereo correlation techniques to extract a

dense 3D description of a remote scene for presentation

to the user. We discuss alternative approaches that

other researchers have taken and compare both their

approaches and design goals with our own. We present

preliminary results of our e�orts and conclude with a

discussion of open issues and directions for future work.

Figure 1: Concept sketch of a medical tele-consultation

scenario.

2 Our Approach

We want to achieve a telepresence capability with



� natural, intuitive interaction for each of the

participants with little or no training requirements,

� non-intrusive system sensors and displays,

� independent control of gaze for each participant,

� support for multiple independent participants at

each site and multiple (2 or more) sites.

These considerations lead us to systems in which

each participant wears a head-mounted display to look

around a remote environment whose surface geometries

are continuously sensed by a multitude of video cameras

mounted along the walls and ceiling, from which depth

maps are extracted through cross-correlation stereo

techniques [Fuchs and Neumann, 1993].

Views acquired from several cameras can then be

processed and displayed on a head-mounted display with

an integrated tracking system to provide images of the

remote environment. In this model the cameras perform

two functions: they individually provide photometric

images, or textures, from di�erent viewpoints within the

scene, and, in combination, they are used to extract

depth information.

The extraction of depth information from a set of two

or more images is a well known problem in robotic vision

[Barnard and Fischler, 1982; Dhond and Aggarwal,

1989]. In the traditional application one or two cameras

mounted to a mobile platform are used to acquire depth

information at each pixel within the overlapping region

of the sensor arrays as the robot moves through the

environment. This same basic approach has also been

applied to computer graphics as a technique for static

model generation [Koch, 1993]. Our approach di�ers in

that a multitude of permanently mounted cameras are

used to acquire dynamic, or more accurately throw-away,

models of a scene.

In contrast to other applications of computer vision,

for telepresence we desire precise and dense depth

information in order to provide high visual �delity in the

resulting display, and are not concerned with recognizing

or constructing models of the objects in the scene or

with gathering information for navigation and collision-

avoidance for autonomous vehicles.

We feel that the passive \sea-of-cameras" approach

to telepresence has a number of advantages over other

methods, and is very nearly feasible with current or

soon-to-be-available technology. One of the advantages

of the approach is that we need not generate a model

for objects that are not seen at a given time, because

we can generate the scene description from the point

of view of the remote camera whose line of sight most

nearly matches that of the participant.

3 Previous Work

Previous approaches to telepresence tend to fall into one

of the following categories: (1) a remote system provides

incremental updates to a locally maintained model

[Caudell et al., 1993; Ohya et al., 1993; Terzopoulos and

Waters, 1993], (2) dynamic textures are mapped onto an

essentially static model [Hirose et al., 1993], (3) images

from a multicamera conference room are projected onto

a large �eld-of-view display, and (4) a boom mounted

stereo camera pair is controlled by the movement of a

remote observer wearing a head-mounted display.

The �rst two approaches assume that the remote

geometry is largely static or constrained to move along

prede�ned paths. Both approaches require a high-

level understanding of the scene's composition, and

they require that the scene be broken down into its

constituent parts. For instance, each individual person

and object in the scene must be modeled. The use of

these techniques has been practically limited to human

models and simple objects and environments that have

been previously digitized.

The third and fourth approaches allow for both dy-

namic and unconstrained remote environments. A multi-

camera wide-angle teleconference allows for limited gaze

redirection, but it does not provide strong depth cues

nor does it allow for freedom of movement within the

environment. We believe that the types and ranges

of interaction are greatly reduced by these limitations.

Boom-mounted cameras, on the other hand, are perhaps

the closest approximation to an ideal telepresence set-up.

They provide for both stereoscopic and motion parallax

depth cues and require little auxiliary processing of the

acquired images. The disadvantages of using boom-

mounted cameras are related to mechanical limitations

of the system; the boom should have nearly the same

range of motion as an actual observer, and the motion

of the boom-mounted cameras is intrusive and perhaps

even dangerous for the applications we envision. In

our proposed approach, there is no remote camera

positioning system that attempts to mimic the local

participant's head movements. In e�ect there are only

\virtual cameras" that correspond to the participant's

eye positions in the environment.

4 Depth Acquisition

4.1 Overview

The major steps in recovering depth information from

a pair or sequence of images are: (1) preprocessing,

(2) matching, and (3) recovering depth (see [Dhond and

Aggarwal, 1989] for a review of stereo algorithms). The

preprocessing stage generally consists of a recti�cation

step that accounts for lens distortion and non-parallel

axis camera geometry [Tsai, 1987; Weng et al., 1992b].

The process of matching is the most important and

di�cult stage in most stereo algorithms. The matching

process determines correspondence between \features"

that are projections of the same physical entity in each

view. Matching strategies may be categorized by the



primitives used for matching (e.g. features or intensity)

and the imaging geometry (e.g. parallel or non-

parallel optical axis). Once the correspondence between

\features" has been established, calculating the depth is

usually a straightforward computation dependent on the

camera con�guration and optics.

One of the most common stereo reconstruction

paradigms is matching image features from two parallel

axis views (see [Weng et al., 1992a] for a review). This

method provides a disparity value d for matched pairs

of points for each point in either the left or right image.

The depth z can then be recovered by the well known

equation: z = fb

d
, where f is the focal length of the pin-

hole camera model and the baseline b is the distance

between the focal points of the two cameras. This

approach to recovering stereo is attractive because of

its simplicity; however, recovering an accurate, dense

3D depth map with this procedure has proven to be a

formidable task.

Two standard parameters that most stereo algorithms

vary are the baseline, and the mask size over which

correlation is performed. Varying these parameters

a�ects di�erent properties of the recovered depth map.

In particular, a large mask size will result in a high

density depth map (i.e. good recovery in the absence

of \features") but poor localization of features in the

`x' and `y' dimension. A large baseline allows for

high resolution in the `z' dimension, but increases the

likelihood of errors due to occluding boundaries and

repetitive patterns in the scene.

A stereo algorithm is presented that attempts to

exploit, maximally, the bene�ts of small and large

baselines and mask sizes. In particular, a multi-

baseline, coarse-to-�ne approach to stereo is adopted

[Okutomi and Kanade, 1993; Kanade, 1993; Farid et

al., 1994], where several closely spaced views are taken

(multi-baseline) and matching across these views is

done for several di�erent mask sizes (coarse-to-�ne).

The use of several views and mask sizes introduces a

need for more sophisticated matching and combination

strategies. Several such control strategies are introduced

for matching across the multi-baseline which greatly

reduce errors due to repetitive patterns and false

matches that arise from specularity and occluding

boundaries. Control strategies are also introduced for

combining information across varying mask sizes which

lead to dense, high resolution depth maps.

The following sections describe the details of the

method we have used to achieve our preliminary results

presented in Section 6.2.

4.2 Intensity Matching

In order to recover dense depth maps, intensity

matching, as opposed to feature matching, is used in the

stereo algorithm presented in this section. In particular,

matching correlation error is given as the sum of absolute

value of di�erences of intensities over a samplingwindow:

nX

x=1

nX

y=1

j I(x; y) � Î(x; y) j

n2
(1)

where I and Î are the intensity values in the images being

matched and n is the dimension of the square mask size

over which correlation is performed.

4.3 Wide-Baseline Stereo

In order to take advantage of the bene�ts of using a small

and large baseline, matching may be performed over a

sequence of images. There are several strategies that

may be adopted for matching across such a sequence of

images; below, we present one such approach.

Whereas the original multi-baseline stereo algorithms

[Okutomi and Kanade, 1993; Kanade, 1993] perform

correlation to the left- or right-most image in a sequence

of images, the algorithm described here correlates to the

center image in the sequence. Correlating to the center

view, in e�ect, reduces the baseline by a factor of two

thus making errors due to occlusion, etc. less likely. The

bene�t of the full baseline is partially recovered later, as

will be described below.

Consider for the moment the right half of a

seven image sequence (L1; L2; L3; C;R1; R2; R3), that is,

images C through R3. The matching point of a point P0
in image C can be determined in image R1 by searching

along an epi-polar line. Let the point P1 be the matching

point in image R1. The matching point for P1 in image

R2 can then be determined by searching about an epi-

polar line centered at the projection of P1 in image R2.

Finally, the matching point for P2 in image R3 can be

determined by searching about a epi-polar line centered

at the projection of P2 in imageR3. The disparity for P0
is then simply P x

3 �P x
0 , where P

x
i is the x component of

the point Pi.
1 In order to avoid errors due to occlusion,

if the correlation error of a point in image Pi is above

a pre-de�ned threshold, then the previously matched

point Pi�1 is directly projected into the last image in

the sequence.

The projection of points is trivial given a known

distance between neighboring images in the sequence.

Given an image sequence with n images, a point Pi in

image i is projected into image i+ 1 as follows:

Pi+1 = Pi � ((i + 1)�
n

2
)=(i� n) (2)

Errors in the projection can be compensated for by

increasing the search neighborhood about the projection

point.

The process of computing disparity for a single point

is repeated for each point in image C, resulting in a

disparity map relating points in image C to those in

image R3. The process is then repeated to compute a

1This assumes parallel axis camera geometry.



disparity map relating points in image C to those in

image L3.

In order to take advantage of the full baseline (image

L3 to R3), it is necessary to \combine" the left and

right disparity maps. In an ideal world these maps

would be identical and simply adding them would

su�ce. However, due to occlusions, noise, intensity

variations, false matches, etc. this approach is unrealistic

and results in a large number of errors. Hence a

simple \combination rule" to combine the left and right

disparity map is adopted on a per-pixel basis:

if (jDL �DRj < "D and jCL � CRj < "C ) then

DF = (DL +DR)

else if (CL < CR ) then DF = 2�DL

else DF = 2�DR

where, DL and DR corresponds to the left and right

disparity maps, respectively, CL and CR correspond to

the left and right correlation errors, respectively and DF

corresponds to the �nal disparity value. "D and "C are

pre-de�ned thresholds set to a value of 1 in the results

presented in Section 6.2. These two thresholds dictate

the error tolerance between the left and right disparity

maps.

To this point correlation has been performed only

over a single mask size. In order to bene�t from the

properties of correlating over a large and small mask

size, disparity maps are computed for a number of mask

sizes. In particular, using the process described in the

previous section, disparity maps are computed for mask

sizes ranging from 3 � 3 to 15 � 15. Associated with

each of these disparity maps is a correlation map, which

associates a correlation value with each point in the

image. The �nal disparity map is computed by initially

setting all disparity values to be that of the coarsest map

(15 � 15 mask). Each point in the �nal disparity map

is then updated through the smaller mask sizes as long

as the correlation error of a smaller mask is less than or

equal to the correlation error of a larger mask.

5 Display

After computing a depth map, we desire to use this

information along with the captured images to provide

an e�ective 3D presentation to the user.

Individual depth maps may be displayed in the

conventional manner as 3D height �elds with the

corresponding image texture mapped onto the geometry.

For a given camera view, we create a polygonal model

that will look correct when viewed from that camera

position or nearby, and the view will degrade as the

user moves farther away from the correct position. The

program is capable of switching to a better camera

view (and corresponding depth map) as the user walks

about the room. Future work will investigate combining

multiple depth maps to create a larger model that is

more consistent for a wider range of views.

6 Preliminary Results

We have conducted two di�erent experiments in an

attempt to test the sea-of-cameras approach.

6.1 Geometry from Synthetic Cameras

In the �rst experiment a ray tracing program was used

as a synthetic camera. The ray tracing program was

modi�ed to output the depth information as well as

the reected color at each pixel. Using these synthetic

camera models, we were able to construct the geometry

of an environment using only the depth information

available from a single camera's point of view.

Figures 3 to 5 show images of an operating room

scene containing high resolution scanned human models

obtained from Cyberware, and a user walking around

this scene and wearing a head-mounted display. The

dimensions of the ray-traced images are 240 � 320.

Ideal depth information from the ray tracer was used

along with four synthetic camera views to display the

environment. At any particular time, the geometry

corresponding to a single camera's view is displayed and

the camera view chosen depends on the user's position

and orientation as he walks about the room.

6.2 Depth from Acquired Images

In the second experiment we employed the multi-baseline

stereo method described earlier on a series of images

of a human subject. In order to obtain a sequence

of images while insuring parallel axis motion, a CCD

camera (Sony XC-77RR, 25mm lens) is mounted on the

end e�ector of a PUMA 560. An image sequence is

then obtained by repeatedly moving the PUMA a �xed

distance horizontally in front of an object, and digitizing

an image at each step.

An 11-image sequence of the upper torso of a human

subject was taken. The camera was translated 3 cm

between successive views, giving a full baseline of

30 cm. The subject was approximately 1 m from the

camera. The stereo reconstruction algorithm described

in Section 4 was run on the subsampled 256� 256 images

(images were originally 512 � 512). The resulting depth

map was postprocessed using a 15 � 15 Gaussian �lter

for smoothing. Figure 2 shows three images from the

sequence and the resulting depth map.

For display, a 3D polygonal mesh was created by

texture-mapping the image from the center camera's

view onto a height map. Figures 6 to 8 show scenes of a

user walking around this reconstructed model within a

virtual room of predetermined geometry.



Figure 2: Subset of image sequence (top row) and depth

map.

7 Discussion

Although we believe our preliminary results show the

promise in our approach to telepresence, there are a

number of problems and uncertainties that remain to

be addressed.

One concern is whether it will be possible with

multi-baseline stereo (or other) methods to construct

depth maps of high enough accuracy and resolution for

applications requiring high visual �delity. Furthermore,

having �xed cameras in the environment will make the

method susceptible to obscuration of important parts of

the scene by objects or people. These problems may be

alleviated somewhat by the use of a movable array of

cameras attached to a work light that can be positioned

to provide accurate and unoccluded data for a particular

region of interest.

The extra time required to acquire and process

the captured images imposes signi�cant demands that

exceed those of conventional video teleconferencing

or conventional computer graphics and virtual reality

applications. To address this, one of the authors is

directing an e�ort at Carnegie Mellon University to

develop a video-rate (30 frames per second) stereo

machine that can take up to 6 camera inputs [Kanade,

1993].

We believe that these issues can be resolved over time,

and that the cost of the technology will fall, eventually

making the proposed system practical for real use.

8 Conclusions

Our initial experiments show promise for the sea-of-

cameras approach to virtual space teleconferencing.

We are hopeful that su�cient computational resources

may be acquired in the next few years to achieve

an interactive-rate system. Such a system would

qualitatively alter the presentation and mode of

interaction in telepresence applications and would

stand in stark contrast to today's conventional 2D

teleconferencing. Among the variety of applications are

also ones that don't require real-time depth extraction

{ movies and training \�lms" in which 3D dynamic

environments can be extracted o�-line for later \walk-

around" visualization. We are excited at the prospect

that once someone will have experienced this new

approach, he or she will not willingly go back to a

conventional 2D system.
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Figure 3: Simulated operating room scene, with head

data courtesy of Cyberware and modelled body data.

Figure 4: Split-screen still frame from video footage of

a user walking around the above scene. This shows the

user (lower portion) and his view for one eye.

Figure 5: View of the same synthetic camera scene, but

the user has moved forward in the room.

Figure 6: Scene containing depth map extracted from 11

camera views.

Figure 7: An o�-axis view of the scene.

Figure 8: A closer view showing the resolution of the

extracted geometry.


