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Abstract

McMillan and Bishop’s 3D image warp can be efficiently imple-
mented by exploiting the coherency of its memory accesses. We
analyze this coherency, and present algorithms that take advan-
tage of it. These algorithms traverse the reference image in an
occlusion-compatible order, which is an order that can resolve
visibility using a painter’s algorithm. Required cache sizes are
calculated for several one-pass 3D warp algorithms, and we develop
a two-pass algorithm which requires a smaller cache size than any
of the practical one-pass algorithms. We also show that reference
image traversal orders that are occlusion-compatible for continuous
images are not always occlusion-compatible when applied to the
discrete images used in practice.

CR Categories and Subject Descriptors: I.3.3 [Computer Graph-
ics]: Picture/Image Generation – Display Algorithms; I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism – Vis-
ible line/surface algorithms; I.3.1 [Computer Graphics]: Hardware
Architecture – Graphics processors

Additional Keywords: image-based rendering, 3D image warp,
occlusion-compatible warp order.

1 Introduction

Image-based rendering produces realistic-looking 3D graphics at a
relatively low cost. The 3D image warp developed by McMillan and
Bishop [12, 13] is particularly appropriate for low-cost implemen-
tation, because it requires a relatively small input data set. The 3D
image warp has been used to explore natural scenes acquired using
cameras [13] and to accelerate the display of computer generated
imagery [5, 8, 9]. The alternative Lumigraph / Light Field approach
to image-based rendering [4, 6] may produce higher quality output,
but requires a very large input data set.

All implementations of the 3D warp to date have been software-
based, and none has been faster than a few frames per second for
640 x 480 images. In order to inexpensively achieve 60 Hz frame
rates in the near future while maintaining good image quality, the
3D warp will need to be supported by graphics hardware.
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In this paper, we take the first step towards hardware support
by analyzing the memory access patterns of the 3D warp. We
discuss the cache size requirements of several one-pass 3D warping
algorithms, and we present a new two-pass 3D warp algorithm
which requires a smaller cache than most of the one-pass algorithms.

2 3D Warp

The 3D warp re-projects an image using a new view position, com-
pensating for changes in both view direction and in view position.
In this paper we refer to the original image as a reference image,
and the computed image as an output image. The 3D warp requires
per-pixel depth information from the reference image, as well as
the usual color information. Simpler projective image warps do not
use per-pixel depth information, and thus for general images can
compensate only for changes in view direction, ignoring changes in
view position. Wolberg’s book [14] provides a good overview of
projective warps, and of image warping in general.

The view interpolation system developed by Chen and Williams
[3] used a 3D warp during pre-processing, but used a simpler
interpolation algorithm at run-time. McMillan and Bishop devel-
oped a real-time 3D warp [12, 13]. Their system uses incremental
evaluation of the 3D warp equations and an occlusion-compatible
image-traversal order to achieve real-time performance. The rest
of our presentation assumes that the reader understands this earlier
work.

The occlusion-compatible image-traversal order is an impor-
tant part of McMillan and Bishop’s work. Because a 3D warp
can map multiple reference-image pixels to a single output-image
pixel, some means of arbitrating between the pixels is needed.
Conventional Z-buffering can be employed, but it turns out to be
unnecessary. Instead, occlusion ambiguities can be resolved by
traversing the reference image in an appropriate order and using a
painter’s algorithm.

In addition to eliminating the need for Z-buffering, the occlu-
sion compatible order can be used to provide a front-to-back or
back-to-front order which allows for efficient anti-aliasing of the
3D warp. We have implemented Carpenter’s A-buffer algorithm
[1] in a software test-bed using a front-to-back order, providing
super-sampled quality with only one bit of storage per sub-pixel.
Gortler et al. [5] use a back-to-front order to composite pixels into
the output image using a splat footprint with fractional alpha values.

In order to maintain the occlusion compatible order, certain
restrictions must be followed in traversing the reference image.
McMillan’s dissertation [11] and papers [10, 12] discuss this point
in detail. We provide a quick summary of these results here.

The projection of the output-image view position onto the
reference-image plane defines a point, referred to in the computer vi-
sion literature as an epipole. There are two types of reference-image
epipoles, positive and negative. The epipole type is determined
by the relative positions of the reference-image view position, the
output-image view position, and the reference-image view plane.
If the epipole is negative, the back-to-front occlusion compatible
order warps the epipole first, and moves radially outward. For a
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positive epipole, the order moves inward from the edges of the
image, warping the epipole last (Figure 1).

More intuitively, if the output-image view position (the viewer)
moves away from the reference-image view position while facing
forward, objects will move away from the epipole. In this case, the
back-to-front occlusion-compatible order must move inward from
the edge of the reference image, towards the epipole.

Figure 1: The back-to-front occlusion compatible order moves
towards a positive epipole and away from a negative epipole.

The constraint on possible occlusions is even stronger than that
implied by the inward or outward moving occlusion-compatible
order just described. For a planar reference image, point A can only
occlude point B if they lie on the same epipolar line (The epipolar
lines are the lines radiating outward from the epipole). Thus, a
warping order is occlusion compatible as long as it preserves the
correct order along all epipolar lines.

This more flexible requirement allows occlusion-compatible or-
ders that traverse large areas of the reference image in scan-line
order. In the general case, the epipole divides the reference image
into four sheets which can be traversed in scan-line order (Figure 2).
If the epipole falls outside the borders of the reference image, then
only one or two sheets will result.

Figure 2: The reference image can be divided into four occlusion-
compatible sheets. Each sheet is traversed in a raster-like order.

Traversing the reference image in sheets is much simpler and
more efficient than trying to directly traverse the epipolar lines.
Other sheet-like traversal orders are possible, a point we will return
to later.

3 Coherency of 3D Warp

Unlike perspective and affine warps, the 3D warp’s mapping is not
inherently continuous. In a perspective image warp, the mapping
from the reference image to the output image varies continuously as
a function of reference-image location. For a 3D warp, this mapping
is not continuous, because it depends on the per-pixel disparity value
as well as the reference-image location. If these per-pixel disparity
values do not change smoothly, then the mapping does not change
smoothly either.

However, if we place bounds on disparity values and on the
distance between reference-image and output-image centers of
projection (the translation distance), then we can make the 3D
warp behave more like a perspective warp. Discontinuities in the
mapping are bounded in magnitude, so that a given reference-image
pixel can potentially map to only a small set of output-image
pixels. By characterizing this bound on discontinuity, we can design
algorithms with efficient memory access properties.

In an actual system, the bound on disparity values comes from
knowledge about the scene, and restrictions on the user’s travel in
the scene. Alternatively, one may think of the bound on disparity
as the equivalent of a near clip plane. The bound on translation
is determined in one of several different ways depending on the
application. When reference images are pre-stored, the translation
bound is calculated from the distance between reference images,
and possibly from restrictions on the user’s movement. In a post
rendering warping system [8], it comes from a bound on the user’s
speed.

3.1 Bounded discontinuities

The bound on discontinuity in the 3D warp can be mathematically
formulated in terms of the bounds on object distance and view-
position translation. We begin this mathematical formulation by
restating McMillan’s 3D warp equation [11]:

�x2
:
= �(�x1)P

�1

2 ( _C1 � _C2) +P
�1

2 P1�x1; (1)

where �x1 is the reference-image location, �x2 is the output-image
location, and �(�x1) is the generalized disparity associated with
the reference-image pixel. P and _C represent the pinhole camera
viewing parameters and center of projection respectively for the
images. When both P1 and P2 represent planar images, then P1

and P�1

2
are 3x3 matrices, �x1 and �x2 are represented in projective

coordinates, and
:
= indicates projective equivalence. A divide is

necessary to obtain 2D image coordinates from �x2.
The second term in Equation 1 is a pure projective warp. Points

�x1 at infinite distance have �(�x1) = 0, and thus are warped purely
projectively. For these points at infinity, a coherent traversal of the
reference image during warping will guarantee coherent accesses to
the output image.

The first term in Equation 1 expresses the 3D warp’s perturbation
from a projective warp—in other words, the translational compo-
nent of the 3D warp. It is this term that results in partially incoherent
accesses to the output image during the warp even though we are
coherently traversing the reference image. To examine this term
alone, we can re-express Equation 1 as follows:

�x2
:
= �(�x1)P

�1

2
( _C1 � _C2) + �x

0

2; (2)

where �x02 is the location of �x1 in the output image due to a pure
projective warp (�x02 = P

�1

2
P1�x1).

The perturbation to the pure projective warp is proportional
to both the generalized disparity �(�x1) and the magnitude of the
baseline,

 _C1 � _C2

. Thus, bounds on these factors will limit
the deviation from a projective warp. We would ultimately like to
determine the maximum deviation as a value p, expressed in units of

2
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output-image pixels. We define p = max(k�x2 � �x02k), where the
magnitude is taken in image space (after the homogeneous divide).
But first, we will determine a bound on the angle � between �x02
and �x2 interpreted in 3-space. Note that � is independent of the
projection manifolds P1 and P2, but p is not.

If T is the view-position translation distance (T =
 _C1 � _C2

),
and d is the distance from _C1 to the closest object in the scene, then
we can see from Figure 3 that

� = sin
�1

 
T sin(�)p

d2 + T 2 � 2dT cos(�)

!
: (3)

Figure 3: Angular object movement across the field-of-view is
a function of initial object distance and the distance between
reference-image and output-image view positions.

For a given d and T , � is maximized when  = 90�. In this worst
case we have the simpler expression

� = sin
�1

�
T

d

�
(4)

and therefore,

�max = sin
�1

�
Tmax

dmin

�
(5)

For a planar output image P2, the maximum translational dis-
tance in pixels, p, can be computed from �max if the worst-case
(largest) number of pixels per radian, amax , is known:

p = amax � �max : (6)

For on-center projections P2, this worst-case occurs at the corners
of the display. IfA represents the horizontal=vertical aspect ratio,
v represents the vertical field-of-view in radians, and V represents
the vertical pixel count, then

amax =
V

2
cot

�
v

2

���
A
2
+ 1
��1� cos(v)

1 + cos(v)

�
+ 1

�
; (7)

which as v ! 0, approaches V=v as expected.
In summary, we can calculate the worst-case screen-space move-

ment (p) of objects due to view-position translation from five
parameters. Three parameters, A, V , and v, describe the display
and its field-of-view. The fourth parameter, dmin, is the minimum
distance from the reference-image view position to the nearest
object. The final parameter, Tmax, is the maximum distance
between the reference-image view position and the output-image
view position. Table 1 shows calculated values of p for several
different sets of conditions, based on Equations 5 through 7 and the
use of square pixels.

3.2 Direction of pixel movement

We are interested in knowing the direction of pixel movement in the
output image as well as the magnitude of the movement. Equation
2 describes both the direction and magnitude of movement caused

Display vFOV Tmax dmin p
640 x 480 60� 0.5m 2.0m 202
640 x 480 60� 0.1m 1.0m 80

1280 x 1024 60� 0.1m 1.0m 165

Table 1: Worst-case screen-space movement of objects due to view-
position translation.

by view-position translation. If we define the output-image epipole
�eo in homogeneous coordinates as

�eo = P
�1

2 ( _C1 � _C2);

then the translational pixel movement can be expressed in terms of
�eo. The movement is always either directly towards or directly away
from eo, where eo represents �eo after the homogeneous divide. The
movement is towards eo if the z component of �eo is positive, and
away from eo if the z component is negative.

Figure 4 shows how the 3D warp maps reference-image points
of unknown depth to the output image. Each point in the reference
image has a corresponding point in the output image which would
result from a purely projective warp. This purely projective warp
is equivalent to a 3D warp on a point at infinite distance (� =
0). Extending from each of these points in the output image is a
line segment which shows the potential 3D warp mappings caused
by point-distances less than infinity (� > 0), but greater than
dmin. The line thus represents the 3D warp’s perturbation from
the projective warp. This perturbation is caused by view-position
translation, and is larger for points that are closer. Its maximum
magnitude anywhere in the output-image is p, as discussed earlier.
The output-image epipole depicted in Figure 4 is a positive epipole,
so the movement is towards this epipole.

The maximum output-image movement, p can only occur at few
locations in the output image. The possible locations occur where
� � 90�, i.e. when the pixel is far away in output-image space
from both output-image epipoles. For the maximum movement to
occur, the pixel must also be in a corner of the output image. For
illustration purposes, most of the figures in this paper show the
maximum movement distance of p even when these conditions do
not completely hold. We always use p in our cache size calculations
because we are interested in the worst-case cache size.

Figure 5 illustrates what happens when a 3D warp is applied to a
line in the reference image. The points on the reference-image line
can map to anywhere in an area in the output image. In our cache
size calculations, we use a worst-case rectangular estimate of this
area.

Note that Figures 4 and 5 (and the rest of the figures in this paper)
show an approximately 1-to-1 scaling between reference-image
pixels and output-image pixels. Because the fields of view and
resolutions of the reference and output images can be different,
other scalings are possible (with appropriate reconstruction). Our
equations make no assumptions about the scaling.

4 One-Pass 3D Warps

To implement the 3D warp inexpensively, we want to maintain an
occlusion compatible order, while achieving the following three
goals:

� A small working set size, and thus a small required cache size.

� A slowly changing working set, thus minimizing cache to
main memory traffic.

� A large size for each cache to main memory transfer (es-
pecially important for block-transfer oriented memories like
RAMBUS).

3
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Figure 4: 3D warp of points. A point in the reference image can map to anywhere on a line segment in the output image. The actual location
on the line depends on the point’s disparity value. The point at one end of these output-image line segments shows the mapping that would
result from a purely projective image warp.

Figure 5: 3D warp of a line. The points on a reference-image line can map to anywhere in an area in the output image. In our analysis, we
approximate this area with a worst-case rectangular region.

4
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If disparities and view-position translation are bounded (thus
bounding p), we would like to guarantee a minimum image warping
rate, for any reference images which conform to the bounds. In
order to provide such a performance guarantee, the bound p must
be sufficient to in turn imply a bound on the number of cache
misses and memory accesses. We determine this implied bound by
performing a worst-case analysis of the memory access patterns of
the 3D warp algorithms as a function of p.

One of the goals stated above is to keep the size of cache to
main memory transfers large. If we are to meet this goal while
still transferring only pixels that are needed, we can not use the
standard raster organization for storing the output image in main
memory. In any particular warp, the raster organization is inefficient
for those portions of the output image where the epipolar lines are
nearly perpendicular to the raster lines. In these portions of the
output image, a single reference pixel could map to any one of many
scattered memory locations. Therefore, we organize the output
image into square blocks, and store all pixels from each block in
adjacent locations in main memory (Figure 6). These blocks are
most naturally chosen to be same size as a cache block. Thus, two
pixels which are near each other in the 2D image are likely to reside
in the same cache block.

To improve clarity, most of the rest of our discussion does not
explicitly deal with the fact that cache blocks are greater than one
pixel in size. We do however implicitly assume this fact by arguing
that the entire area of the output image that is potentially touched
by pixels warped from a given portion of the reference image
must be considered to be actually touched in the worst case. For
cache blocks of one pixel, this assumption would not hold, since in
general not all potentially touched pixels can be actually touched in
any particular warp (there are more potentially touched pixels than
warped pixels). However, with block sizes larger than one pixel,
only one of the pixels in the block needs to be actually touched
in order to consider the entire block as touched. Rapidly varying
disparity values in the reference image can thus cause all potentially
touched blocks to contain at least one pixel that is actually touched.

Neglecting the size of cache blocks can also cause us to underes-
timate the amount of traffic between the cache and main memory.
The reason is that cache blocks are always transferred in their
entirety, even if only a few pixels in the block belong to the working
set. However, when an algorithm’s working set in the output
image is approximately square and p�

p
cacheblocksize , this

simplification has minimal impact on our memory-traffic analysis.
It is acceptable to make the assumption that p�

p
cacheblocksize ,

since reasonable values for these variables are p = 100
and

p
cacheblocksize =

p
256 bytes = 8 pixels. When these as-

sumptions are violated (in particular if the working set is very long
and thin), we will discuss the issue further.

Figure 6: Pixels belonging to 2D blocks of the output image are
stored contiguously in memory. A standard raster organization of
the output-image pixels in memory would result in poor utilization
of the cache.

4.1 Standard Order

The usual occlusion-compatible sheet-traversal order is a line-at-
a-time raster scan of the sheet [12]. For a worst-case reference
image that conforms to our pixel-movement bounds, this traversal
order requires a large cache to avoid thrashing. Figure 7 illustrates
this traversal order and its cache requirements. The cache must be
able to hold the entire region of the output image that is potentially
touched by the pixels from a single scan line of the reference-image
sheet. The reason for this requirement is that almost all of this
potentially touched region is revisited when the next scan line of
the sheet is warped. The area of this region, and thus the minimum
thrash-proof cache size, is sheetWidth �p pixels, where sheetWidth
is measured in the output image. Since a sheet can potentially
occupy the entire output image, the maximum sheet width is equal
to S, where S is the diagonal size of the output image. Therefore,
the required cache size is S � p pixels. With a cache of this size,
each pixel of the output image is transferred from main memory to
the cache and back no more than once.

4.2 Improved Order

We can reduce the cache size slightly by changing to a different
occlusion-compatible traversal order of the sheet. Figure 8a shows
this traversal order, and Figure 8b shows the resulting memory
access pattern in the output image. The cache must still hold the
region of the output image touched by a “line” from the reference
image, but these lines are now shorter, of width W . The required
cache size would seem to be (W + p) � p pixels. Unfortunately,
even this size isn’t sufficient to hold the overlap between adjacent
columns of the traversal pattern.

There are two alternatives to addressing this problem. One is to
simply pay the price of reloading the overlap region as we traverse
each column. IfW = p, then each output-image pixel is potentially
loaded and flushed from the cache an extra time. If W � p,
then most pixels are only loaded and flushed once, but the cache
size approaches that required for the standard pattern. The second
alternative is to increase the cache size to cover the entire overlap
region. The extra cache storage required is (sheetheight ) � p. In
summary, if we tolerate reloads, then the required cache size is
O(p2), and if not, then it is O(Sp), where S is diagonal size of the
output image.

4.3 Epipolar line traversal

In theory, we could use an output-pixel cache size of p if we
traversed the reference image along epipolar lines (Figure 9). In
practice, this strategy is very troublesome. In a discrete reference
image, all epipolar lines converge to a single pixel at the epipole.
Independently traversing all lines between pixels at the edge of the
image and the epipole would warp most pixels more than once. We
would need a complicated line drawing algorithm that determines
which pixels near the epipole belong to which of the discrete lines,
and thus only warps each pixel once.

More seriously, traversing epipolar lines one at a time in a
discrete image can actually introduce occlusion errors. Figure 10
illustrates how this type of error can occur. Pixels from later-drawn
lines can incorrectly overwrite pixels from earlier-drawn lines, due
to the compression of the epipolar lines near the positive epipole.
The problem is especially acute if a splat-type reconstruction al-
gorithm [5, 7] is used, which can expand one reference pixel into
several output pixels. This overwriting also indicates that a cache
size of p pixels is not in fact sufficient—the potentially overwritten
pixels need to be held in cache as well. To avoid repeated trips by
pixels to the cache, the cache would have to be somewhere between
p and S

p
2 + p pixels in size.

5
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Figure 7: Standard one-pass occlusion-compatible order. The potentially-written areas in the output image which are produced by different
reference-image scan lines overlap almost completely. We show these areas using their worst-case rectangular approximations, with one
corner cut off to allow the overlap to be more easily seen.

Figure 8: Revised one-pass occlusion-compatible order. The reference image is traversed one column at a time, with each column traversed
in a raster-like order. The overlapping potentially-written areas which correspond to the raster lines are shown superimposed on the output
image. Note that these areas overlap both within a column and between adjacent columns.

6
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Figure 9: Epipolar one-pass occlusion compatible order. The output image shows the potentially written areas (really just lines) corresponding
to the indicated reference-image points.

Figure 10: Warping by epipolar lines is occlusion compatible for
continuous images, but is not necessarily occlusion compatible for
discrete images. The 3D warp maps both point A and point B to
the grey pixel. If point A’s epipolar line is traversed after point B’s
epipolar line, then A will incorrectly occlude B.

This same type of occlusion error can also occur with the
conventional raster-scan traversal of discrete image sheets. Errors
can occur near the edge of the sheet where the minor traversal
direction becomes nearly parallel to the epipolar lines. But with
a raster-scan traversal, the problem is at least restricted to a small
portion of the reference image, instead of occurring everywhere. It
could be avoided almost entirely by dividing the image into eight
sheets instead of four sheets, so that the minor traversal direction is
always at least 45� degrees away from the epipolar direction (Figure
11). This change can be made to any of the 3D warp algorithms we
present in this paper, with the exception of the epipolar line traversal
algorithm.

An additional problem with the epipolar order is caused by the
fact that cache blocks are normally larger than one pixel. The
narrow lines through the output image would hit only a few of
the pixels in each accessed cache block. This problem could be
mitigated, at the expense of additional complexity, by traversing
several adjacent epipolar lines simultaneously—i.e. traversing
“wide” epipolar lines.

5 Two-pass 3D Warp

The problem with the one-pass occlusion compatible techniques
(except for the epipolar line technique) is that their working set
protrudes in a direction other than the direction of traversal. This
protruding portion of the working set has to be held in the cache until
the algorithm revisits that area of the image, or else has to be flushed
from the cache and then reloaded later. The first alternative results in

Figure 11: Dividing into eight sheets rather than four almost
entirely eliminates errors in the occlusion-compatible order due to
image discretization.

a large cache size, and the second results in increased main memory
traffic.

A solution to this dilemma is to use a two-pass technique, in
which the first pass partially sorts pixels in one of the dimensions.
We perform the partial sort by grouping pixels into bins. The
first pass of our algorithm bin-sorts pixels by their post-translation,
pre-rotation X-coordinate. This X-coordinate can be thought of as
the reference image X-coordinate, but after translation has occurred.
Each sort bin is b pixels wide. This first pass of the algorithm is
described by Equation 8 and Figure 12. The choice of pre-rotation
rather than post-rotation X-coordinates minimizes the rate at which
the working set of bins changes during the first pass.

The first pass of the algorithm also evaluates Equation 1 for each
reference-image pixel to obtain �x2, but does not move the pixel
accordingly. The value of �x2 (after the homogeneous division) is
stored with each pixel for use during the second pass.

bin =

�
�x1 + �(�x1)P

�1

2
( _C1 � _C2)

b

�
(8)
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Occlusion Cache size Example cache Mem BW Example Mem
Algorithm Problems? (Bytes) Cache size O() sizes (KB) (Bytes/pixel) BW’s (MB/sec)

Standard one-pass n 4Sp O(Sp) � O(p2) 257, 1100 12 221, 944
By-columns one-pass (A) n 4 � 2p2 O(p2) 51, 217 20 369, 1600
By-columns one-pass (B) n 4Sp O(Sp) � O(p2) 257, 1100 12 221, 944
Epipolar lines one-pass y 4p, at best O(p), at best 0.3, 0.7 12 221, 944

Two-pass n 4bp+ Y p=b+ 2Y O(p) 7, 14 24 442, 1900

Table 2: Comparison of cache sizes and main-memory bandwidth for warping algorithms. The variable S is the diagonal size of the output
image in pixels. The variable p is the maximum pixel movement due to view-position translation. Typically S � p. Two versions of the
one-pass “by-columns” algorithm are listed. Version A uses a small cache, but requires two cache visits for each output pixel. Version B uses
a larger cache which requires only one cache load for each output pixel. The table provides numerical cache sizes and memory bandwidths
for two example output image sizes. The first entry in the example columns corresponds to a 640 x 480 output image, and the second entry
corresponds to a 1280 x 1024 output image. For both example sizes, we set Tmax=dmin = 0:1, the vertical field-of-view to 60�, b = 16
pixels, and Y = 256 bytes.

The second pass of the algorithm completes the 3D warp by
moving each pixel to the previously computed location �x2. The
pixel bins from the first pass are read one at a time and warped into
the output image (Figure 13). The pixels in each bin are warped
in the same order that they were placed into the bin originally, so
that the occlusion compatible order of the first pass traversal is
maintained.

Our two pass algorithm was inspired by earlier two pass image-
warping techniques. Catmull and Smith [2] developed a 2-pass
technique for several classes of image warp, including planar-to-
planar perspective warps. Many other researchers have extended
this work; Wolberg’s book [14] provides a good overview. Our
two-pass technique differs from this earlier work in two ways. First,
our algorithm is designed for the 3D warp rather than a projective
warp. Second, the output of our first pass is a set of bins, rather than
a complete image.

In our algorithm, each bin from the first pass can contain contri-
butions from several of the raster-scanned reference image columns.
The contributions from each such column are grouped together in
the bin. Unfortunately, this grouping means that during the second
pass of the algorithm, several traversals are made through the stripe
in the output image corresponding to the bin. To avoid repeated trips
by each output-image pixel to and from the cache, the cache would
have to be big enough to hold an entire stripe of the output image.

If we require that W � p+ b, then no more than two traversals
are made though each stripe in the destination image. With a
slight modification to our algorithm, we can perform both of these
traversals simultaneously. During the first pass, we mark the point
in the bin at which we start writing pixels from a second column
into the bin. In the second pass, we simultaneously traverse the
first and second portions of the bin. The occlusion-compatible
order is maintained by requiring that the second-portion traversal
always stay slightly behind the first-portion traversal (in output
image space).

With this modification, the output-image cache need only be b �p
pixels in size, and output pixels only enter and exit this cache once.
For this two-pass algorithm, we also need to consider the first pass
cache size. There will be p=b active bins at any one time. If the
cache block size is Y bytes, then the required cache size is (p=b) �Y
bytes.

Additional cache memory of 2 � Y bytes is required by the input
to the second pass of the algorithm. This cache memory holds the
two active cache blocks of the bin which is being processed.

If b = O(1) and Y = O(1), then the first-pass cache size is
O(p), and the second-pass cache size is also O(p). Thus, the cache
sizes for the two-pass technique are asymptotically better than the
O(p2) cache sizes required by most of the one-pass techniques.

Although the cache size is smaller, we pay a penalty in the cache
to main-memory bandwidth. The additional expense is that of
writing the bins produced by pass one, and reading these bins during

pass two. Note that it would be possible to use an entirely separate
memory for these bins, which might be cheaper than trying to double
the bandwidth of a single main memory that also holds the output
image. The linear access to the bins makes it feasible to entropy
encode their contents. However, a worst-case analysis must assume
that this encoding is only moderately successful (some redundancy
is expected in the output-image coordinates even in the worst case,
due to the partial coherence of the warp).

We have yet to discuss how to choose the value of b, the bin
widths, except to state that b = O(1), rather than O(p). If b is
too small, then the bin’s stripe in the output image is narrow, so
that the discretization of the output image into cache blocks causes
problems. In this case, most of the cache blocks that are touched by
the thin stripe are only partially covered by it. Additionally, when a
splat-type reconstruction is used that can map one reference pixel to
several output-image pixels, excessively narrow bins require storing
a large percentage of pixels into two bins.

If b is too large, then the second pass’s cache size for the output-
image pixels becomes too large. The appropriate tradeoff depends
on variables such as the size of a cache block.

6 Algorithm Comparison

Table 2 summarizes the worst-case cache sizes and memory band-
widths required by the different occlusion compatible algorithms we
have examined. The epipolar line one-pass traversal has the best
combination of cache-size and memory bandwidth requirements,
but is difficult to implement and in practice does not always
correctly maintain an occlusion-compatible order. Our two-pass
algorithm is the only other choice which allows an O(p) cache
size, but this small size comes at the expense of a higher memory
bandwidth requirement, and a more complicated algorithm.

The preferred algorithm in any given instance will depend on
a variety of parameters, including the relative expense of cache
memory versus main-memory bandwidth.

Note that Table 2 makes a number of estimates and assumptions
in calculating its numerical results. First, we assume a warping
rate of 60 frames/sec. Second, we use a one-to-one scaling of
input-image pixels to output-image pixels. Third, we make as-
sumptions about the number of bytes required to store input and
output pixels. Input-image pixels are eight bytes (RGB and depth)
and output-image pixels are four bytes (RGBA). The intermediate
“pixels” stored between the first and second passes of the two-pass
warp are six bytes (RGB, and compressed �x2). These pixel sizes
are used to determine the bytes of memory bandwidth per pixel per
warp (“Mem BW (Bytes/pixel)”).

We make two additional assumptions in calculating Table 2.
First, in calculating the numerical memory bandwidth values we
assume that the reference image is perfectly clipped (only pixels that
will be visible are read), and that the output image is completely
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Figure 12: First pass of the two-pass warp. Reference-image pixels are sorted into bins based on their post-translation, pre-rotation X-
coordinate. (a) shows the reference image, (b) shows the regions of potential translation superimposed on the reference image, and (c) shows
the bins which are filled during the first pass.

Figure 13: Second pass of the two-pass warp. (a) shows the entire warp in output-image space. (b) shows just the second pass of the warp in
output-image space. In the second pass, the bins from the first pass are traversed one at a time, and the pixels from the bins are written into
the output image.
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filled. Second, we neglect memory-bandwidth and cache inefficien-
cies caused by the fact that output-image cache blocks are normally
greater than one pixel in size. Part of this second assumption is
that for all algorithms except version A of the one-pass by-columns
algorithm, output-image pixels are never loaded into the cache from
main memory—they need only be written, since we know that they
were previously untouched.

The main point of Table 2 is not to give precise numerical results,
but to show that at reasonable resolutions, the O() differences in
cache sizes between the different algorithms are in fact important.
We also want to convey a sense for the order-of-magnitude of
required cache sizes and memory bandwidths.

7 Discussion and Conclusions

Before trying to design hardware to implement an algorithm, it is
important to understand the algorithm as completely as possible.
Our goal in conducting this work has been to better understand the
memory access properties of the 3D warp, and to explore some
possible implementation-oriented algorithms. More analysis would
be required before designing hardware for any of these strategies,
but we have provided a framework for conducting this analysis.

Although we have focused on occlusion-compatible orders be-
cause they avoid Z-buffering and allow inexpensive anti-aliasing,
many of the ideas developed in this paper apply to non-occlusion-
compatible orders as well. The analysis of memory access patterns
is also important for parallelizing the 3D warp and for developing
inverse-mapped implementations of the 3D warp.

We have conducted this analysis in the context of the planar-to-
planar 3D warp, but most of the ideas could be easily extended to the
cylindrical-to-planar 3D warp. Our analysis has avoided extensive
discussion of the reconstruction problem, but it could be easily
adjusted to account for different reconstruction strategies, since the
underlying warp equation remains the same.

We have concentrated on a worst-case analysis, so that given
some a priori bounds, hardware can be designed that will guarantee
a desired performance. Because most scenes have much greater
local coherence than that implied by the overall bounds, the worst
case is not the typical case. If guaranteed performance is not
important, then analysis of typical scenes for a given application
could be used to determine cache sizes smaller than those specified
here.

The guarantees that our analysis provides do have an additional
benefit. They enable the use of a simple software-managed cache,
rather than a hardware-managed cache. Our analysis provides
the information needed to load the software-managed cache with
exactly the right cache blocks at the appropriate time.

We consider the major contributions of this paper to be the
following:

� Development of a framework for analyzing cache require-
ments of 3D warps based on bounds on disparity and transla-
tion.

� Actual analysis of several 3D warping algorithms.

� Development of a new 2-pass 3D warp algorithm.

� Discussion of errors that can occur when theoretically
occlusion-compatible warping algorithms are applied to
actual discrete images, and presentation of a new 8-sheet
division of the reference image that almost entirely eliminates
these errors.
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