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Abstract

Image-based rendering replaces the difficult physical simulation
problem of conventional computer graphics with a difficult recon-
struction problem. In this paper, we introduce efficient methods for
eliminating common reconstruction artifacts in 3D image warping.
These methods are suitable for hardware implementation. We
study the reconstruction problem in the context of the 3D warp’s
application to post-rendering warping. This application provides us
with perfectly controlled reference images and allows us to compare
generated images against a gold standard provided by conventional
rendering.

We characterize the reconstruction problem as one of reconstruct-
ing 2D manifolds (surfaces) in 3-space, followed by a projection,
resampling, and compositing of these surfaces. We present two
reconstruction and resampling algorithms. The first algorithm
is a general one. The second algorithm is an efficient micro-
polygon technique that uses flat-shaded, axis-aligned rectangles and
super-sampled anti-aliasing to avoid explicit interpolation between
re-projected samples. We also present an algorithm, based on
epipolar geometry, to estimate the color of any unknown areas of
the warped image. This algorithm’s work is strictly bounded by
the resolution of the warped output image. Finally, we discuss the
effectiveness of our post-rendering warping system.

1 Introduction

Image-based scene representations provide an alternative to con-
ventional geometrical representations for rendering. We are par-
ticularly interested in image-based representations consisting of
planar images with per-pixel depth or disparity values. These
depth images are compact and can be acquired using computer
vision techniques or active depth measuring devices. Conventional
rendering techniques that preserve the Z-buffer can also generate
depth images.

One can generate new views of a scene by re-projecting (“3D
warping”) the pixels from one or more depth images to a new
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viewpoint and view plane [20]. We refer to the original image as
a reference image, and the new image as a destination or derived
image. This paper examines the reconstruction and resampling
problem encountered in such 3D image warping, with a focus
on developing algorithms suitable for hardware implementation.
Conceptually, the reconstruction problem consists of projecting the
depth samples into 3-space, reconstructing the 3D world, and then
re-projecting and resampling this 3D world to create a new image.

Our work has been driven by the application of 3D warping to
post-rendering warping. Several characteristics of this application
make it ideal for studying the reconstruction problem. First, we
have a gold standard by which to judge our results: a conventionally
rendered image. Second, our reference samples are well-controlled
point samples, with accurate depth information. We can also
obtain additional accurate information, such as per-pixel surface
orientation. Finally, the distance between the reference and destina-
tion image viewpoints is relatively small, limiting the number and
severity of occlusion artifacts.

An earlier paper of ours [17] describes the basic concept of post-
rendering 3D image warping. We will summarize the important
ideas now.

1.1 Post-Rendering 3D Warping

The frames generated by interactive 3D graphics applications ex-
hibit enormous frame-to-frame coherence. This coherence can
be exploited to completely avoid conventional rendering of most
frames. Every Nth frame is conventionally rendered, and the in-
between frames are generated with an image warp that extrapolates
from the nearby conventionally rendered frames. This image warp
can also be used to compensate for latency in the conventional
rendering stage. Because the cost of an image warp is largely inde-
pendent of scene complexity, the technique provides a considerable
speedup for complex scenes.

Post-rendering image warping was first used in the form of
image shifting by Breglia et al. [3]., where it was used for latency
reduction. Hofmann [12], Regan and Pose [25] and Torborg and
Kajiya [27] used 2D perspective or affine image warps to increase
a rendering system’s frame rate. Because these 2D image warps
can not by themselves produce motion parallax, these systems must
segment the scene into different layers which are independently
rendered and warped.

By using a 3D warp, we eliminate the scene segmentation
problem imposed on software by the 2D post-rendering warping
systems. For scenes without moving objects or partially transparent
surfaces, our approach places almost no burden on the application
programmer. Moving objects and transparent surfaces require some
special treatment, but application-controlled scene segmentation
based on depth is still unnecessary.

The 3D warp can introduce visibility artifacts, if a portion of the
scene that should be visible in the derived frame is not visible in
the reference frame. We address this problem by always warping
two reference frames to produce each derived frame (Figure 1). If
the reference frames are properly chosen, this technique eliminates
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most visibility artifacts. Any regions of the derived frame which
are not visible in either reference frame are filled using an approxi-
mation technique. Throughout this paper, we refer to these regions
needing approximation as holes in the derived frame. Plate 1a
shows a frame output from our system.

Figure 1: Derived frames are computed by warping two reference
frames, one near a past position of the viewer, and one near a future
position of the viewer. For example, derived frame #5 is produced
by warping reference frames A and B. Ideally the reference frames
lie exactly on the viewpoint path. But if future viewpoint locations
are unknown, then motion prediction must be used to estimate them.
As a result, the reference frames do not fall exactly on the viewpoint
path (as shown here).

Figure 2 is a conceptual diagram of a 3D post-rendering warping
system. Although the figure shows two image warpers, an actual
system would use one warper to warp both reference frames.
Because the system must render reference frames at or near future
viewpoints, the reference-frame viewpoints are generated by a
motion predictor. Some prediction error is tolerable, since the 3D
warp compensates for both position and orientation changes.

2 Contribution

This paper concentrates on the problem of efficient and high-quality
reconstruction for the 3D image warp.

Much of the previous work in image-based rendering has focused
on obtaining real-time performance with existing hardware. Ex-
isting hardware places considerable constraints on the algorithms
that can be considered. We also believe that existing hardware will
not be able to simultaneously achieve the following three desirable
goals for arbitrary scenes:

1. High Quality: 640x480 or higher resolution, anti-aliased,
minimal artifacts.

2. Fast: 30–70 Hz frame rate.

3. Cheap: $1000 or less with today’s technology.

With these goals in mind, we have taken a different path in our
work. Rather than constraining ourselves to algorithms that can
achieve real-time performance with existing hardware, we have
explored algorithms that are suitable for implementation in new
hardware that is specifically designed to support image-based ren-
dering. We have designed our algorithms to use simple and efficient
reconstruction, and to minimize memory-bandwidth requirements.
We evaluate the image quality of these algorithms with a software
test-bed that produces frames off-line for transfer to videotape.

Although we do not provide a detailed design for hardware that
uses our algorithms, we do describe the type of hardware design
that we envision. We believe that the strategy we present will
be valuable to anyone considering a design of 3D image-based
rendering hardware.

The 3D warping algorithm described in our earlier paper [17] has
several important shortcomings that this paper addresses:

1. The technique for filling holes in the derived frame required
the rasterization of potentially very large triangles during the
reconstruction process. As a result, the work for the warp
was not strictly bounded by image size. The potentially large
triangles also precluded the use of a fixed-footprint rasterizer
for reconstruction.

This paper describes a new post-processing hole-filling tech-
nique that bounds the work for the warp and allows the use of
a 4x4 footprint rasterizer for reconstruction.

2. The reconstruction technique required expensive color- and
depth-interpolated triangles.

One of our new methods uses flat-shaded, axis-aligned rectan-
gles.

3. The reconstruction technique was prone to certain types of ar-
tifacts. In particular, one-pixel-wide features would disappear,
and pinholes would appear under certain circumstances.

The algorithms described here correctly reconstruct one-pixel-
wide features, and eliminate most instances of pinholes.

4. The algorithm for segmenting the reference images into dif-
ferent surfaces (“discontinuity detection”) was unreasonably
complicated and expensive.

The method described in this paper is extremely simple, yet
more effective at avoiding artifacts.

5. The super-sampling technique required a memory bandwidth
that scaled linearly with the number of super-samples per
pixel.

Here, we discuss an A-buffer algorithm to efficiently super-
sample.

This paper describes our algorithms and provides a theoretical
justification for them. In addition, this paper demonstrates post-
rendering 3D warping using a more faithful simulation of real-world
conditions than we have used previously. Our previous work relied
on simulated user motions and simulated motion-prediction error.
Our new system uses actual user motions acquired from a head
position tracker, and an actual motion-prediction algorithm.

Although we focus primarily on the application of our 3D warp-
ing techniques to single-layer post-rendering 3D image warping,
most of our techniques are applicable to other uses of 3D warping.
Examples include imposter/portal-type 3D image warping [24], and
warping of depth-images acquired from the real world using com-
puter vision techniques [21]. A simple taxonomy (Table 3) can be
used to organized image-based rendering applications. Applications
which are closest to post-rendering warping in this taxonomy will
benefit most from our techniques.

Figure 3: [TABLE] Image-based rendering applications can be
organized into a simple taxonomy based on the type of reference
images and whether or not the reference images change in real time.

2
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Figure 2: Conceptual diagram of a post-rendering 3D warping system. The frame rates are in simulated time for our test-bed.

3 Related Work

Blinn and Newell’s environment mapping [2] is an early example
of image-based rendering. Levoy and Whitted used points as an
intermediate representation when rendering surfaces [15]. Chen and
Williams [5] developed a hybrid 2D/3D image warp. McMillan
and Bishop describe the 3D warp for planar reference images [20]
and for cylindrical reference images [21]. McMillan’s dissertation
[19] introduces the reconstruction problem for 3D warping. Ward
developed a 3D warp algorithm for generating animations from a
few ray-traced images [28]. Max [18] and Gortler et al. [11] have
used depth images with multiple layers at each pixel for 3D warping.
Schaufler [26] describes an enhanced layered 2D perspective image
warp that uses depth values to resolve inter-layer occlusion. Darsa
et al. [8] render multiple adaptively-triangulated depth images to
produce new images.

Gortler et al. [10], and Levoy and Hanrahan [14] have de-
veloped a different type of image-based rendering and addressed
the reconstruction problem in that context. In the most general
sense, this light-field approach represents all possible light rays,
but their systems store only a discretized 4D subset of rays with
depth information used to aid in the reconstruction. Pulli et al. [23]
use what we would refer to as a type of 3D warp to combine and
blend multiple depth images, but develop their technique from the
light-field framework.

4 3D Warp Artifacts

Simple techniques for 3D warp resampling produce undesirable
artifacts. McMillan’s dissertation discusses some of these tech-
niques and their shortcomings [19]. The simplest technique is to
transform reference image samples to the destination image, and use
a one-pixel reconstruction kernel. This strategy results in pinholes
in any surfaces that are slightly under-sampled (Figure 4).

Figure 4: The simplest form of resampling uses a one pixel
reconstruction kernel for each reference pixel and causes holes to
appear in surfaces that are slightly under-sampled.

By using a larger (for example 3x3 pixel) fully-opaque recon-
struction kernel, most of the pinholes can be eliminated. But,
surface edges enlarge and become blocky, and some image detail is
lost. Also, the interaction of the large kernel with the traversal order
of the warp causes most image details to be incorrectly shifted by a
pixel or two in the image plane.

If a per-pixel normal vector is available, then a variable-sized
reconstruction kernel can be used. For image areas containing
planar surfaces, this approach works well, but for curved surfaces
the pinhole problem returns.

The same tradeoff between pinholes and loss of detail occurs
when using partially transparent splat-type reconstruction kernels,
as in [11]. However, in this case the pinholes are “fractional
pinholes”, in which the colors of background objects that should
be fully occluded are incorrectly blended with foreground object
colors. The fractional pinholes can be eliminated by enlarging
the opaque portion of the reconstruction kernel, but blocky and/or
blurry images result.

An alternative type of resampling assumes continuity between
neighboring samples. Color is linearly interpolated between the
transformed sample locations. In the images produced by this
mesh-like approach, the internal regions of surfaces in a scene are
reproduced well, without pinholes or blockiness. However, “rubber
sheets” appear between foreground and background objects (Figure
5).

Figure 5: Assuming continuity between all neighboring samples
causes “rubber sheets” to stretch between foreground and back-
ground objects. The right-side image shows these sheets, in a lighter
shade.

5 Reconstruction and Resampling
Strategy

By considering the 3D world that the reference and destination
images represent, we can improve the quality of the reconstruction
and resampling. The reference images depict the projection onto a
plane of a set of 2D manifolds (surfaces) which form the boundaries
of objects in the 3D world. We would like these same object
boundaries to be faithfully represented in the destination image.

3
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An ideal 3D warp would reconstruct these surfaces in 3-space
before attempting to re-project and resample them. The most im-
portant characteristic of such a reconstruction is the segmentation of
the reference image into sample sets representing different surfaces
in 3-space. Once this segmentation is complete, each surface
in 3-space is independently reconstructed. This reconstruction
strategy for 3D warping shares much in common with systems for
building models from laser range images [7].

Many reconstruction and resampling algorithms do not truly
perform a full reconstruction before resampling, and ours follows
this pattern. The reconstruction in 3-space is conceptual rather than
actual. Our 3D warping algorithm consists of the following steps:

1. Transform reference image samples into destination image
space, retaining depth (3D) information.

2. Conceptually reconstruct 2D manifolds (surfaces) in 3-space.

(a) Segment transformed samples into different surfaces.

(b) Reconstruct each surface. (Note: The actual computa-
tion is in destination-image space)

3. Resample the reconstructed surfaces at destination-image
pixel centers, producing candidate pixels.

4. Merge/Composite: At each destination-image pixel, compos-
ite the candidate pixels coming from different surfaces to
determine the final pixel content.

Because our goal is to develop an algorithm for inexpensive
real-time systems, we are restricted to working with one reference
image at a time. Thus, the steps above are performed for each
reference image in turn (and really for local neighborhoods of pixels
within each image in turn). The compositing step (#4) is therefore
incremental. In addition to compositing candidate pixels originat-
ing from different surfaces, this step must also arbitrate between
candidate pixels originating from the same surface represented in
different reference images.

By working with only one reference image at a time, we discard
some useful global information. In particular, step #2a can prof-
itably use this global information. In a 3D warping system which
works with pre-calculated or pre-acquired reference images, step
#2a should be at least partially performed in a preprocessing step
which works simultaneously with all reference images.

Our reconstruction and resampling approach is distinguished
from earlier algorithms primarily by step #2 above. Earlier ap-
proaches applied a uniform reconstruction strategy to all trans-
formed samples. We treat a neighborhood of samples differently
depending on whether the samples belong to a single surface in
3-space or to multiple surfaces in 3-space. Our earlier system’s
technique [17] can be cast into this framework, but it was not
as well-justified theoretically, and produced unnecessary artifacts.
Systems that adaptively triangulate depth images [8] can also be
considered to be using this framework.

6 Segmentation into Surfaces

Our reconstruction and resampling strategy requires that we con-
ceptually group the transformed reference-image samples into sets
corresponding to different 3-space surfaces. From a practical point
of view, we just need to answer a relatively simple question: For a
pair of samples which are adjacent in the reference image, do the
two samples represent the same surface? If the two samples do not
represent the same surface, then we say that there is a discontinuity
between the two samples.

Figure 6 shows two examples of sample pairs to be checked for
a discontinuity. In this figure, it is easy to distinguish between

the discontinuities and non-discontinuities, because we can see the
true (continuous-domain representation) of the surfaces as well as
the samples. However, in Figure 7a, which does not show the
true surfaces, it is more difficult to distinguish the discontinuities
from the non-discontinuities. The samples in Figure 7a could
belong to either the surface configuration shown in Figure 7b,
or the configuration shown in Figure 7c. In one case there is a
discontinuity between the middle pair of samples, and in the other
case there is not.

Figure 6: Samples A and B clearly represent the same surface.
Samples C and D clearly represent different surfaces.

Figure 7: Different surface configurations are possible with the
same set of samples. In every part of this figure, the reference-image
viewpoint is far to the right.

Unfortunately, there is no perfect solution to this problem. In
general, the surface segmentation problem is unsolvable with the
information we have available. We will briefly sketch out our
argument for this assertion, using signal theory.

If a signal is locally band-limited in most regions, then we can
consider a discontinuity to be a region of the signal with significant
energy above this band-limit. Thus, if we sample substantially
above the Nyquist rate for the band-limit, then we will be able to
detect these discontinuities. However, if we sample at or below the
Nyquist rate, then the discontinuities will be indistinguishable from
the rest of the signal.

In our case, the depth function that we are sampling can have
energy content at or above the Nyquist frequency even in regions
without discontinuities. Thus, we can not distinguish the disconti-
nuities from the rest of the signal.

Our earlier system [17] used first derivative information (sur-
face normals at sample points) as well as depth values to find
discontinuities. But, such first derivative information is still not
sufficient, since having this extra information is only equivalent to
doubling the sampling rate [13]. Even additional information such
as object-id numbers at each sample will not solve our problem,
unless all objects are convex and non-intersecting.

Despite this theoretically impossible situation, we can do quite
well in practice by picking an algorithm that satisfies two criteria.
First, it should work well for the common cases. In particular,

4
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when there is an ambiguity between an extremely under-sampled
surface and a discontinuity, the algorithm should categorize the
configuration as a discontinuity. Second, in borderline cases the
algorithm should make the decision that, if wrong, will produce the
smallest error in the perceptual sense.

To re-cap, the segmentation algorithm must determine, for each
pair of reference-image samples, whether or not the two samples
are likely to represent the same surface. The algorithm we use
is very simple. First, it projects the two reference-image samples
into the destination-image plane, using the 3D warp transformation.
If the image-plane distance between the two projected samples is
greater than a fixed threshold, then the two samples are considered
to represent different surfaces. Otherwise, they are considered to
represent the same surface.

This algorithm is dependent on the derived-frame viewpoint.
This dependence may seem inappropriate, but it is crucial to
satisfying the goal of minimizing perceived error. Plates 2a-c
illustrate this point using magnified images. Our old approach was
destination-view-independent, using reference image depths and
surface orientations to find discontinuities. This old approach deter-
mined that a discontinuity existed between the red foreground object
and the small, dark, middle-depth object in Plate 2a. As a result, the
light-colored background shows through the discontinuity gap. Our
new approach (Plate 2b) recognizes that the size of the (possible)
gap is so small that it should be ignored. In this case, the second
choice happened to be right (Plate 2c). But more importantly, the
perceptual consequences of incorrectly allowing a gap are much
greater than the perceptual consequences of incorrectly disallowing
a gap. In animation, an incorrect gap shows up as an extremely
disturbing flickering. An incorrect non-gap usually just delays the
opening of the gap by a few frames (until a new reference image is
available, or the image-space threshold is exceeded). The error is
usually completely imperceptible.

If a surface is sufficiently under-sampled, then our segmentation
algorithm will not recognize it as a single surface. Such an
under-sampled surface is one that is at a nearly grazing angle
to the view rays in the reference image but is at a non-grazing
angle to the view rays in the destination image. In making this
decision, our algorithm is getting the common case correct, since
such samples usually belong to two distinct surfaces rather than
a single under-sampled surface. Furthermore, if the samples do
represent an under-sampled surface, the surface will typically be
represented at a higher sampling density in another reference image,
so that no artifact at all will be visible.

Our algorithm works well with a wide range of values for
the destination-image plane distance threshold. This threshold
value is expressed as a percentage of the “expected” distance
(in pixels) between adjacent transformed samples. The expected
distance is defined as the distance between transformed samples
for a surface facing the reference image center of projection. We
have successfully used thresholds between 140% and 230% of the
expected distance. Higher values cause slight blurring at some
foreground/background edges; lower values occasionally allow
pinholes of the type shown in Plate 2a. Most of the videotape was
produced using a threshold of 230% of the expected distance, but
we came to the conclusion that this value was larger than necessary.
Most of the plates in the paper (except Plate 1) were produced using
a threshold of 140% of the expected distance.

Given the theoretical difficulty of segmenting a reference image
into different surfaces using only the information available in that
image, our simple algorithm works quite well. Systems which are
willing to use inter-image information to aid in the segmentation
could do considerably better. For example, the information from
an appropriately placed second reference image can disambiguate
the cases in Figure 7a and 7b. However, when the reference images
are generated in real-time, preprocessing is not a possibility, and

real-time inter-image analysis is expensive.

7 Two Algorithms for Reconstruction

We have developed two different approaches to surface recon-
struction. The first approach is generally applicable, but some-
what expensive. It relies on explicit interpolation between most
transformed samples. The second approach is designed for use
in conjunction with super-sampled anti-aliasing. It avoids explicit
interpolation by relying on the implicit interpolation performed by
the averaging of the super-samples prior to display.

7.1 Surface Reconstruction–General Algorithm

The first approach to reconstruction and resampling is our general
technique, which we use when we are not performing super-sampled
anti-aliasing. This technique is shown in Figure 8.

Figure 8: Our general reconstruction and resampling technique.
The top half of the figure is a top view of a scene. The bottom
half shows the corresponding reference and destination images.
The destination image depicts the transformed samples, the triangle
mesh used for reconstructing the interiors of surfaces, and the edge
splats used for reconstructing the edges of surfaces.

For interior regions of surfaces, we reconstruct by treating the
surface as a triangle mesh. The source-image samples form the
vertices of the mesh. These vertices are warped to destination image
coordinates, and the mesh is then rasterized and composited into the
destination image. Colors and depths are linearly interpolated in the
destination-image space.

Our earlier system reconstructed surfaces in essentially this same
manner. Unfortunately, this technique shaves 1=2 of a pixel off the
edge of all surfaces. The most extreme example is a one-pixel-wide
line, which disappears completely. Plate 3a illustrates this problem
in a magnified image, and Plate 3b illustrates our solution, which
performs extra reconstruction at surface edges.

This extra reconstruction treats pixels at the edge of a surface
specially. We define an edge pixel as one which has a discontinuity
between it and at least one of its neighbors. For edge pixels, we
perform a splat-like quadrilateral reconstruction. We compute the
corners of this edge splat using the sample’s location and surface
orientation, as described in the Appendix. Because the splat color
is not interpolated, we want to avoid overwriting the adjacent
mesh-reconstruction with the splat color. A bit at each pixel in the
destination image indicates whether the pixel originated from mesh

5
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or splat reconstruction. A splat pixel is never allowed to overwrite
a mesh pixel at the same depth (within a tolerance). Thus, the
edge splat only contributes to the portion of the surface outside the
meshed interior. Figure 8 shows edge splat contributions in dark
grey.

The introduction of edge splats can produce a new type of
undesirable artifact. If the same surface is represented in two or
more source images, but is extremely under-sampled in one of the
images, then we would like to reconstruct it using the best-sampled
source image. Normally, our compositing algorithm (discussed
later) takes care of this problem, by arbitrating between pixels from
different images based on their sampling density. However, an edge
splat from a poorly-sampled reference image can produce a rough
edge that will stick out further in the destination image than the same
edge from the better-sampled image. These samples will never have
the opportunity to “lose” to better samples, and will thus remain in
the final image.

We avoid this problem by suppressing an edge splat when both
of the following two conditions are met:

1. The surface is poorly sampled. We designate the surface as
poorly sampled if the density of transformed samples in the
destination image (determined from surface orientation) is less
than 1=2 of the typical 1.0 density.

2. Another source image will sample the surface better (this
assumes that the surface is visible in the other source image).

This algorithm always achieves the desired result, except when
the “better” image does not in fact sample the surface at all, due to
occlusion. In this instance, we effectively have fallen back to the
previous technique, in which 1=2 of a pixel is shaved off surface
edges. We could detect this case by back-projecting our poor sample
into the other source image to verify that the surface is actually
sampled by the other image. However, this back-projection would
be expensive in a hardware implementation, since it would require
the hardware to have access to all source images simultaneously.

7.2 Surface Reconstruction–For Anti-Aliasing

When performing super-sampled anti-aliasing with a 3D warp,
both the reference images and destination image should be at
super-sampled resolution. The warp works with the images at the
super-sampled resolution—final averaging of super-samples occurs
after the warp. In this section, when we refer to “pixels”, we are
actually discussing the super-samples.

If our source images and our destination image are super-
sampled, then we can greatly simplify our reconstruction algorithm.
Our approach in this case was inspired by the REYES system’s flat-
shaded micro-polygons [6]. Because we can rely on the averaging
of super-samples to implicitly perform our color interpolation, there
is no longer any need to explicitly interpolate colors. We can also
simplify the geometrical portion of the reconstruction—we use axis
aligned rectangles rather than triangles. This approach is designed
to be easily and cheaply implemented in hardware.

Although we no longer interpolate colors or depths between
adjacent samples, we do not completely ignore the mesh relation-
ship for connected surfaces. If we did ignore this relationship, by
independently splatting each source pixel into the destination image,
we would return to the tradeoff between loss of detail and creation
of pinholes.

We begin the reconstruction process by transforming each
source-image sample to determine its location in the destination
image (Figures 9a and b). The extent of the reconstruction kernel for
each sample is computed next. Initially, this reconstruction kernel is
a general quadrilateral (Figure 9c). For interior regions of a surface,
each corner of the quadrilateral is computed by averaging, in 2D

destination-image space, the coordinates of the four transformed
samples surrounding that corner. For example, in Figure 9c, corner
#1’s location is computed by averaging the coordinates of points
A, B, C, and D. Figure 9c shows only the reconstruction kernel for
sample D, but corner #1 is shared with the reconstruction kernels for
samples A, B, and C, thus guaranteeing that there are no cracks in the
mesh (Figure 9d). Finally, we convert the reconstruction kernel’s
extent from an arbitrary quadrilateral to an axis-aligned rectangle.
We perform this conversion by taking the arbitrary quadrilateral’s
axis-aligned bounding box as the reconstruction kernel (Figure 9e).
All pixel centers inside the axis-aligned kernel are filled with the
sample’s color and transformed 1/Z value.

Figure 9: Reconstruction technique used in conjunction with super-
sampled anti-aliasing. Part (a) shows the reference image, and
parts (b) through (e) show how the reconstruction kernel is formed
using the transformed reference-image samples.

For a corner of a reconstruction kernel that lies on the edge
of a surface, the above algorithm is modified. We say that a
corner of a reconstruction kernel lies on an edge when the four
reference-image samples surrounding the corner do not all belong
to the same surface. We make this same-surface test using our
discontinuity-detection algorithm. When a reconstruction-kernel
corner is on an edge, the corner’s location is computed using only
information from the sample to which the kernel belongs. The
computation is the same one used for computing a corner of an
edge splat in our first reconstruction technique. The formulas,
given in Appendix A, use the sample’s position, depth, and surface
orientation.

6
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We compute a kernel corner in this same manner in one other
instance. This other instance is when all four samples surrounding
a corner have passed the discontinuity test, but fall in a fold-over
configuration with respect to each other. Figure 10 illustrates this
case, which usually results at an occlusion boundary where the front
object has moved over the rear object, but not far enough to trigger
a failure of the discontinuity test. In a fold-over configuration,
calculating the kernel corner by averaging the four adjacent sample
values would result in a misshapen kernel. Such a misshapen kernel
might not even cover the transformed position of its own sample,
clearly an undesirable result. We detect a fold-over configuration
by examining the quadrilateral formed by the transformed positions
of the four samples surrounding the corner. The vertex connectivity
of this quadrilateral is defined by the relationship between the
samples in the source image. In the normal case, this quadrilateral
is front-facing and convex. In the fold-over case it will be either
non-convex or back-facing. The convexity/back-facing test that we
use is adapted from a Graphics Gem [9].

Figure 10: A fold-over configuration. Samples A and E are on the
“wrong” side of samples B and F.

The conversion of the kernel from an arbitrary quadrilateral to an
axis-aligned bounding box can result in slight overlap of adjacent
reconstruction kernels. Because rotations about the view direction
in a fraction of a second are generally very small, the overlap is
minimal in practice—it is rare for the center of a destination pixel to
fall in the overlapping region. We have not observed artifacts caused
by this occasional overlap. For post-rendering warping, the tradeoff
is worthwhile, since it is much cheaper to rasterize an axis-aligned
rectangle than it is to rasterize an arbitrary quadrilateral. In some
other 3D warping applications where more rotation occurs, it might
be necessary to rasterize the quadrilaterals.

8 Compositing

As surfaces are reconstructed and then re-sampled at destination-
image pixel centers, candidate pixels are produced. When warping
two or more reference images, more than one candidate pixel may
contend for the same pixel in the derived frame. Even when
warping only a single reference image, multiple candidate pixels
may contend for the same derived-frame pixel, if their original
surfaces are at different depths and one is folded over the other by
the 3D warp.

Our compositing algorithm must achieve two goals. First, it
must arbitrate between candidate pixels that are at different depths.
This goal is achieved by Z-buffering. Second, it must arbitrate
between candidate pixels that are at the same (or almost same)
depth. Such a pair of candidate pixels represents an instance in
which the same surface is visible in both reference images. The
compositing algorithm must determine which candidate pixel better
represents the surface.

Our compositing is performed incrementally, as part of the
warping process. In this sense, the compositing is very much like an
enhanced Z-buffer algorithm. As candidate pixels are produced by
the reconstruction and resampling algorithm, they are composited
with (candidate) pixels already stored in the destination image.

When each reference-image pixel is transformed, the warper
computes a bit-mask specifying which other reference images ought
to sample the same surface better. This determination is made

based on the surface orientation information carried with each
reference-image pixel. If the surface would be less oblique in
another reference image, then that image’s bit is set in the mask.
The algorithm for setting the bit-mask could also consider other
criteria, although we do not do so. One possible additional criterion
is the ratio between different reference-to-destination viewpoint
distances.

During compositing, the bit-mask is used to arbitrate between
candidate pixels with similar destination-image 1=Z-values. The
source-image number associated with a candidate pixel is stored
with it in the destination image. To arbitrate between a new candi-
date pixel and the candidate pixel already stored in the destination
image, the compositer checks the bit in the new candidate pixel’s bit-
mask that corresponds to the already-stored pixel’s source-image
number. (Full disclosure: The code used for the videotape differs
very slightly from this description, but we will be modifying the
code to use the above algorithm, which is functionally equivalent
to our current code but more memory efficient).

9 Hole Filling

When warping any fixed number of source images, some areas of
the scene that should be visible in the destination image may not be
visible in any source image. These holes in the destination image are
usually quite small, but it is crucial that they be filled in a manner
that minimizes their perceptual impact.

Typically the holes occur where a foreground object has moved
with respect to a background surface (Plate 4a). The most likely
“correct” way to fill the hole is thus to extend the background
surface into the hole.

Our previous system approached this problem by treating the
entire reference image as a triangle mesh. Elements of the mesh that
bridged discontinuities between two true surfaces were treated spe-
cially. They were designated as “low-confidence” mesh elements,
and would lose a composition test with any true surface. The color
of these mesh elements was not interpolated; instead, the color was
set to the color of the farthest-away vertex. Plate 4b shows the
results of this approach.

There were two problems with our old approach. First, and most
seriously, the low-confidence mesh elements could be quite large.
These mesh elements were always rasterized, even when the hole
between a foreground and background object was eventually filled
by another source image. As a result, the computational work for
the warp (measured in rasterized pixels) was no longer truly inde-
pendent of image complexity. The arbitrarily-large low-confidence
mesh elements also precluded the use of any type of inexpensive
fixed-footprint hardware rasterizer. We viewed this restriction as
a major obstacle to hardware implementation of a fast, low-cost
warper.

The second problem with our old approach was that it introduced
highly noticeable artifacts. The stretched-out low-confidence mesh
elements form parallel stripes across the gap that they bridge.
These stripes are clearly visible in Plate 4b. They are even more
pronounced when super-sampled anti-aliasing is not being used.

Our new approach, illustrated in Plate 4c, solves both of these
problems. Instead of filling holes during the warp itself using
special mesh elements, we fill holes in a post-process step. The
algorithm is based on the epipolar geometry of the 3D warp. Figure
11 illustrates this epipolar geometry for an example case.

From inside a hole region, we can find the background-object
pixels adjoining the hole by searching backwards along the epipolar
lines. But it is much more efficient to fill all holes in the destination
image with a single pass over destination image, like that depicted
in Figure 12. For each pixel of this traversal that is a hole pixel,
the algorithm looks backwards by one pixel along the epipolar
line. Because this backwards pixel has already been touched by the
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Figure 11: Epipolar geometry for a warp of one source image to
a destination image. In this particular case, the epipolar lines are
nearly parallel, indicating that the epipole is far away. The 3D warp
causes the foreground object to move relative to the background
object, opening up a “hole” in the destination image.

algorithm, it is either a true background pixel, or an already-filled
hole pixel. In either case, this backwards pixel contains the
background-object color that the algorithm needs to fill the current
hole pixel.

The traversal order just described is actually an inverse
occlusion-compatible traversal, in the destination image. In other
words, if we were to consider warping the destination image to the
source image, the inverse occlusion-compatible order for this warp
would be the same order we use for hole filling. McMillan and
Bishop introduced occlusion-compatible traversals for 3D warping
of planar reference images in [20]. Our filling algorithm actually
uses the eight-sheet variation their occlusion-compatible order that
is described in [16].

The hole filling algorithm that we’ve just described is equivalent
to filling every hole pixel with the nearest background object along
the pixel’s epipolar line. Unfortunately, this strategy produces the
same stripe artifacts as our old algorithm. The colors along the
edge of the background object propagate into the hole along epipolar
lines. If the colors along this edge vary, then stripes in the direction
of the epipolar lines will appear in the hole.

The solution to this problem is to blur the stripes together as
they reach further into the hole. Our algorithm blurs by averaging
several pixels to compute each new hole pixel, instead of copying a
single pixel (Figure 13). If the hole pixel is close to a background
surface, then three nearby pixels are averaged to compute the fill
color (Figure 13b). The blurring caused by averaging three close
pixels levels off as the distance from the true surface increases. So,
when the distance from the true surface becomes greater than four
pixels, two additional further away pixels are used in the averaging,
to broaden the spatial extent of the blurring (Figure 13c). This
blurring technique is not very sophisticated, but it is inexpensive
to implement and succeeds in greatly reducing the stripe effect, as
Plate 4c shows.

9.1 Hole filling for multiple source images

As described so far, the hole-filling algorithm is designed for
warping a single source image to produce a destination image.
When warping more than one source image, there is no single
epipolar direction to use for hole filling. Conceptually, we solve
this problem by warping each source image to its own destination
image, performing hole filling in this destination image, and then
compositing the individual destination images to form the final
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Figure 12: To fill the holes, the destination image is traversed in
the order indicated by the dark black lines. The background object
color is thus propagated into the hole, one pixel at a time. The result
is equivalent to that which would in theory obtained by traversing
each epipolar line (thin lines) and copying the background color, but
with fewer problems due to the discrete nature of the image.

output image. The compositing process always discards hole-filled
pixels in favor of non-hole-filled pixels. Thus, hole-filled pixels
only appear in the final output image where hole-fill pixels appeared
in all individual destination images. Ideally, all of these hole-fill
pixels at the same location would all have the same color, but that
is not always the case. So, the compositing averages the colors
of the contributing hole-fill pixels to form the final hole-fill pixel.
Each contribution is weighted by the reciprocal of that hole-pixel’s
distance (along its epipolar line) from a background pixel. This
weighting is motivated by the fact that the closer a hole-fill pixel is to
a background pixel, the more likely it is to have correctly estimated
the “true” color for the hole.

In our system, the hole filling algorithm is not actually im-
plemented by warping each source image to its own destination
image. Instead, the entire process is performed incrementally in
a single destination image that contains extra bit-planes for the
hole-fill colors and flags. Appendix B briefly describes these extra
bit-planes. This appendix also describes some additional details of
the hole-filling algorithm.

10 Hardware

Our primary goal in this work has been to develop 3D warping algo-
rithms that are suitable for implementation in inexpensive hardware.
Figure 14 is a sketch of the type of system design we envision for
anti-aliased post-rendering 3D warping. The 3D warper contains a
flat-shaded rasterizer which can rasterize rectangles up to 4x4 pixels
in size. Our rasterization algorithm guarantees that this size will not
be exceeded for a 1 : 1 ratio of source-to-destination angular pixel
density. The destination-image cache in this design is large enough
to hold the maximum-sized destination-image working set [16]. As
a result, portions of the destination image only enter and exit the
cache once during the warp of each source image. The hole-filling
algorithm runs on portions of the image as they exit the cache.
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Figure 13: Blurring techniques for hole filling. In (a), only a
single already-filled pixel is examined to determine the hole-fill
color of a new pixel. We do not use this approach, because it
results in stripes. If our hole-filling algorithm is filling a pixel near
a known background surface (b), then it averages three adjacent
already-filled pixels to calculate the newly-filled pixel’s color. If
the known background surface is far away (c), then the algorithm
averages five already-filled pixels, two of which are four pixels
away.

Figure 14: A sketch of the 3D post-rendering warping system we
envision. The 3D warper’s source- and destination-image caches
are entirely software managed. The destination-image cache is
large enough to hold the maximum-sized working set.

Traffic to and from the main graphics memory is in an efficient
A-buffer format [4], greatly reducing the memory bandwidth re-
quired for the anti-aliased warping. We allow a maximum of three
A-buffer fragments per pixel. If the renderer is a tiled renderer, then
it can easily output images to memory in this A-buffer format. If
not, then the 3D warper will have to convert each source image to
this format the first time it is warped, and write it back to memory
in the A-buffer format.

Our software test-bed includes code to demonstrate the visual
effect of A-buffering. The test-bed represents the reference and
destination frames in the A-buffer format in between the warp of
each reference frame. The frames are expanded into super-sampled
format for the actual warp. Our videotape and plates were produced
with this A-buffering turned on, using a maximum of three frag-
ments per pixel.

11 Post-Rendering Warp Testbed

We have evaluated our reconstruction, resampling, and hole-filling
algorithms in a post-rendering 3D warping software test-bed. This
test-bed conventionally renders reference frames at a (simulated)
frame rate of five frames per second. It warps two reference frames
to produce each derived frame. The derived-frame rate is 30 frames
per simulated-second.

We used two models to demonstrate our system. The first model
is a submarine’s auxiliary machine room. For our display of this
model we used a known spline-based path. Thus, reference image
viewpoints could be chosen to lie exactly on the motion path.
Even though this model is rendered using view-dependent per-pixel
lighting, we do not observe any lighting artifacts introduced by the
3D warp. Although the 3D warp implicitly assumes diffuse sur-
faces, in post-rendering warping the reference-image viewpoint and
derived-image viewpoint are generally close enough that artifacts
do not appear unless highly specular lighting is used.

Our second model is the kitchen of a house. The path through
this model was acquired by walking through a real-time display of
the kitchen while wearing a motion-tracked head-mounted display.
The motion tracker is an optical head tracker, with a Kalman filter
that estimates velocity as well as position. We saved the position
and velocity information in a file for our test-bed. Our test-bed
used the velocity information to predict future reference-image
viewpoints. The prediction interval is 400 msec [17]. The quality
of the predicted positions is not very good—a system that used
accelerometer data, such as [1], would be far superior. The poorly
chosen reference images cause a significant number of holes to
appear in the derived image, which our hole-filling algorithm must
fill.

In a post-rendering warping system, the reference frames must be
oversized to allow for change in the view direction. In the kitchen
model, our display was 47 degrees by 60 degrees, and our reference
frames were 68 degrees by 88 degrees, with a corresponding in-
crease in the number of image pixels. These fields of view could be
reduced somewhat with better-quality orientation prediction. The
auxiliary machine room walk-through used a field of view for the
reference frames of 52 degrees by 75 degrees, for the same display.

Our post-rendering warping test-bed does not currently support
moving objects. The simplest approach to handling a small number
of moving and partially transparent objects would be to convention-
ally render them into the derived frame after 3D warping has been
completed.

12 Discussion

In our discussions about sampling density, we have been primarily
concerned with the problem of under-sampling. It is also possible
for oversampling to occur, when surfaces are at a more oblique angle
in the destination image than in the reference image. In this case,
some samples will be effectively discarded in the reconstruction
process, as their reconstruction kernels map to the same destination-
image sub-pixel. In most circumstances this is roughly equivalent
to having sampled at a lower rate to begin with—it’s what you’d
get from conventional rendering from the new viewpoint. However,
when the reference-image samples are pre-filtered (i.e. they come
from rendering of MIP-mapped textures), discarding samples could
introduce artifacts that would otherwise be preventable by the pre-
filtering. The easiest solution to this problem, albeit an expensive
one, is to increase the super-sampling of the destination image so
that it is greater than that of the reference images. This problem
could also be reduced by increasing the conventional renderer’s tex-
ture filter kernel size slightly (changing the algorithm for choosing
MIP-map levels). When super-sampling is already being used, a
minor adjustment of this type would introduce very little blurring in
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the final image. Finally, the compositing algorithm’s technique for
arbitrating between competing samples of the same surface could be
modified to discriminate against excessive oversampling as well as
against under-sampling.

13 Conclusion

In this paper we have presented 3D image warping methods
appropriate for hardware implementation. When working with
super-sampled images, our algorithm performs reconstruction using
flat-shaded, axis-aligned rectangles. The algorithm is able to
enforce a maximum size on reconstruction kernel size, because
holes in the destination image are filled using a new post-processing
technique.

We have focused on the application of our techniques to post-
rendering image warping of two or more single-layered reference
images. In particular, we demonstrated for the first time the use
of post-rendering 3D warping with actual user motions (and user
motion predictions) collected from a head tracker. However, most
of our 3D warping algorithms are applicable to other systems
using 3D warping, including tele-presence systems and imposter or
multi-layer post-rendering image warping systems.
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A Splat Formulas

The following formulas are useful when independently splatting a
sample, as we do for our “edge splats”. We adopt the notation
and definitions used in McMillan and Bishop’s planar-to-planar
3D warping paper [20]. You will need to refer to that paper to
understand the following equations.

First, for any planar projection defined by ~o, ~u, and ~v, we can
calculate a scale factor, S, between disparity (�) and 1=Z. Thus,
the two can be used almost interchangeably, as can their partial
derivatives.

� �
S

Z
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�

=
~u� ~v

k~u� ~vk
� ~o (1)

We need to be able to calculate the extents of splats which will
exactly tile the destination image if the reference-image samples
represent a planar surface. The sample point itself (center of splat)
transforms to (x0; y0

). The four corners of such a splat are at:
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The partial derivatives are:
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As is usual for 3D warping, most of these computations are
much less expensive than they look, since they can be performed
incrementally.

In our system, the partial derivatives of � with respect to source-
image x and y are actually provided as partial derivatives of 1=Z
with respect to source-image x and y, and then scaled. These partial
derivatives represent surface orientation, in much the same way that
a normal vector does. In any new hardware design, it is reasonable
to expect that we can inexpensively obtain the partial derivatives of
1=Z, since these values are already maintained internally in almost
all conventional polygon rendering engines in order to interpolate
1=Z.

B Additional Hole-Fill Algorithm Details

This appendix provides some additional (although terse) details
about our hole-filling algorithm and its implementation.

B.1 Forward Edges

Our hole-fill algorithm as described earlier would not work well for
the case depicted in Figure 15. When the filling algorithm looks
in the inverse-occlusion compatible direction, it picks up the color
of the non-convex foreground object rather than the color of the
background object. But, a slight modification to the algorithm fixes
this problem.

First, let us define a forward edge of an object. We make this
definition in the source image, and with respect to the epipolar
direction arrows (thin lines) in our diagrams. A source image pixel
X is on a forward edge if the pixel, Y, that is adjacent to it in
direction of our arrows has greater depth than X has. More precisely,
the “direction of our arrows” is the inverse-occlusion compatible
direction for the source-to-destination warp. Figure 15 shows the
forward edges as thick lines.

During the warp, any pixel X on a forward edge is specially
tagged, and the color of its adjacent pixel Y is stored with X in an
auxiliary hole-fill color buffer associated with the destination image.
During the hole-filling process, the color in this auxiliary buffer
is used rather than the original color of the pixel. This algorithm
eliminates the problem illustrated in Figure 15. For a forward-edge
pixel, there is no need to ever use the original pixel color in the
fill algorithm, since forward edges never cause gaps themselves.
Instead, forward edges cause fold-over, which is correctly handled
during compositing by the Z-buffering.
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Figure 15: The simple version of our hole filling algorithm will in-
correctly fill some areas when the foreground object is non-convex.
The dotted region on the right side of this figure is an example of
such an instance. By recognizing and specially treating the forward
edges of an object, we overcome this problem.

B.2 Hole-Fill Bit-Planes

In our current implementation, the destination image has the follow-
ing values at each pixel while a warp is in progress:

1. Color (RGB)
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2. Destination-image 1=Z

3. @(1=Z)
@x

and @(1=Z)
@y

4. Source-image number that contributed color, 1=Z and deriva-
tives.

5. Flag: Is Color (field #1) from a hole-fill?

6. Hole-fill Color (RGB)

7. Flag: Is Hole-fill Color valid?

8. Hole-fill-distance (0 indicates true surface)

9. Hole-fill-weight

As each source image is warped, colors are written to both
the “Color” buffer, and the “Hole-fill Color” buffer. The special
forward edge colors discussed in the previous section are written
only to the “Hole-fill Color” buffer. After each source image warp
is completed, the hole-filling algorithm is run using the “Hole-fill”
buffers, with any filled values copied back into the “Color buffer”.
Fields #6, #7, and #8 do not need to be preserved after each
hole-fill pass is run (and thus need exist only in the cache). The
“Hole-fill-weight” is used for the weighted averaging of the hole-fill
contributions from different source images.
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