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ABSTRACT
Rendering from images with depth (Image-Based Rendering by
Warping, IBRW) is an appealing 3D-computer-graphics
technique since it alleviates the modeling bottleneck and
promises photorealism at interactive rates. Current, and probably
near future silicon technology cannot produce single-chip IBRW
renderers that are powerful enough. Thus a high-level
parallelism scheme needs to be employed that divides the
rendering task among several nodes.

We show that sort-first is the technique best suited for parallel
IBRW since it takes advantage of the locality characteristic of
depth images. One can easily determine the output-image region
to which a contiguous set of depth samples warps. Thus the
nodes get the samples pertinent to their region which they fully
render independently, eliminating the need of very high
bandwidth node-to-node communication paths for sorting the
warped samples.

We previously presented the WarpEngine, a sort-first
architecture for IBRW. In this paper we will measure the
performance of sort-first by analyzing the efficiency of the
parallelization scheme, the communication costs, and the load
balancing for various system configurations and output-image
resolutions.

KEYWORDS: graphics hardware, parallel rendering, image-
based rendering, 3D image-warping.

1 INTRODUCTION
In recent years, numerous image-based rendering (IBR) methods
have been proposed. They are all aimed at reducing the
complexity of the modeling task associated with traditional
rendering. Another common goal was to produce photorealistic
renderings at high refresh rates.

One of the most promising IBR techniques enhances the images
with per pixel depth ([McMillan95]). Using the original camera
pose one can reproject (warp) the samples to the output (desired)
image. Image-based rendering by warping (IBRW) is a complete
rendering solution, in that it offers correct 3D views of the scene
from arbitrary locations. Also the memory and memory-
bandwidth requirements are manageable since the samples in the
depth images are reused efficiently. Moreover, advances in
rangefinding technology make it possible to reliably acquire
high-resolution high-precision depth images, eliminating most
of the modeling effort.

In the remainder of this section we will briefly describe IBRW,
and show that IBRW requires non-trivial amounts of
computation and framebuffer bandwidth. We then review the
sort-first, –middle and -last parallel rendering classification.
Section 2 argues that sort-first is the most appropriate
parallelization scheme for IBRW. Section 3 analyzes the
performance of sort-first parallelism using the simulator of our
proposed IBRW architecture, the WarpEngine [Popescu00a].

1.1 IBRW

The process of image-based rendering by warping consists of
three steps: warping, visibility determination, and
reconstruction. The scene is modeled with images that have
depth in addition to color at each pixel. We refer to these as the
reference images. In practice, we divide larger images into small
rectangular sections (tiles) in order to obtain more flexibility in
selecting samples, while retaining the coherence and regularity
of the image representation [McAllister99].

The warping equation presented by McMillan and Bishop
[McMillan95] is equivalent to a conventional transformation,
but is structured to be computed incrementally, thus taking
advantage of the regularity of the depth images. Correct
visibility can be computed either by z-buffering, or by traversing
the samples in occlusion-compatible order (back-to-front)
[McMillan95].

High-quality reconstruction to create the final image is a major
problem. Two methods are used: splatting [Westover90] or
representing connected samples as surfaces with a polygonal
mesh. Either of these two approaches must use a supersampled
framebuffer for high-quality, antialiased results.

1.2 Cost of IBRW

In order to estimate the cost of IBRW we estimate the number of
samples that need to be warped each second and the bandwidth
to the buffer that stores the warped samples (warpbuffer).

We assume that one needs as a working minimum two samples
per output image pixel. This figure obviously depends on how
the scene is modeled with depth images and on how efficiently
one chooses the samples needed for each frame. We will not
describe the current best solutions for these complex problems;
for the purpose at hand we believe it is sufficient to point out
various reasons why the ideal one sample per output pixel is
exceeded:

• Oversampling: some surfaces are better sampled in the
reference (input) image than in the desired image, which
leads to more than one warped sample per output pixel.

• Depth complexity: it is impossible to efficiently discard,
before warping, all samples that are not visible in the
current view.
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• Redundancy: some surfaces are sampled by more than one
reference image; not all such redundant samples are
discarded before warping.

The number of samples that need to be warped each second
(with the two samples per output pixel assumption) is:

Output resolution
VGA

0.3 Mpix

XVGA

1.0 Mpix

HDTV

2.0 Mpix

30 Hz 18 60 120
MWarps / s

60 Hz 36 120 240

Due to differences in depth, the warped samples move apart in
the warpbuffer. In order to prevent holes, sub-samples are
generated by interpolation between the neighboring warped
samples. Also, for quality antialiased output images, the
warpbuffer needs to have a higher resolution than the final
image. With 2x2 warpbuffer supersampling we found that every
sample generates between 8 and 16 subsamples that have to be
z-buffered in the warpbuffer. The figure depends on the scene
and on how it is modeled (number and placement of depth
images). Assuming 8 byte subsamples (color and z), a total
depth complexity of two1, and that 50% of the hidden
subsamples are initially visible, there will be on average 10 byte
warpbuffer accesses per subsample. This translates to the
following warpbuffer bandwidths (16 subsamples per sample):

Output resolution
VGA

0.3 Mpix

XVGA

1.0 Mpix

HDTV

2.0 Mpix

30 Hz 2.88 9.6 19.2
GB / s

60 Hz 5.76 19.2 38.4

At the present, a single ASIC can provide neither the warping
power nor the warpbuffer bandwidth required. Several ASICs
need to be used and thus the need for a high-level parallelization
scheme to distribute the work.

1.3 Sort-first, -middle and -last taxonomy

A useful taxonomy for describing parallel polygon-rendering
architectures is the sort-first, -middle and -last taxonomy
formalized in [Molnar94].

An architecture is said to be sort-first if the primitives
(polygons, higher order surfaces) are sorted before
transformation according to the screen region onto which they
map and are then assigned to renderers that completely render
their screen region. Sorting the primitives implies pre-
transformation computations, which are typically substantially
less expensive than fully transforming each primitive. Examples
of sorting techniques are computing screen-space bounding
boxes of objects composed of many polygons or coarse pre-
tessellation of higher order surfaces [Mueller97].

Sort-middle architectures sort fully transformed primitives. The
geometry processors, separated from the rasterizers, transform a
subset of the primitives and send them to the rasterizers that are
each responsible for a portion of the screen. The rasterizers
process only the primitives pertinent to their screen region.

Sort-last architectures are composed of several renderers that
fully process a subset of the primitives. The final image is

                                                                
1 Computed as the ratio between the number of subsamples and
the number of warpbuffer locations.

obtained by compositing the partial images built by the
individual renderers. Sorting occurs after rasterization, as
samples (subsamples) of the primitives are composited.

Considering the depth samples as the primitives, the taxonomy
can be readily applied to IBRW. Transforming the primitives
corresponds to warping the depth samples and rasterization is
replaced by interpolation between the warped samples. The next
section will investigate the suitability of all three types of
architectures for IBRW.

2 SORT-FIRST FOR IBRW

2.1 Why not sort-middle?

For polygon-rendering, a natural place to sort the primitives is
after they are transformed (UNC's Pixel-Planes 5 [Fuchs89],
SGI's RealityEngine [Akeley95] and InfiniteReality
[Montrym97]). The transformation burden can be equitably
distributed among the geometry processors and the transformed
primitives are usually small enough in screen space to map to
only one screen region, thus requiring processing by only one
rasterizer.

One problem with sort-middle is the high communication cost,
proportional to the number of visible primitives. Complex
scenes, finely modeled for high-quality renderings, imply a large
number of primitives, which in turn translates into large
communication costs. This disadvantage is accentuated in the
IBRW case when the number of primitives (samples) is at least
twice the number of output pixels.

Another problem traditionally associated with sort-middle is
poor load balancing among rasterizers. Some regions of the
screen may get a large number of primitives. Primitive clumping
is due to:

• poor or no visibility culling inside the view frustum
(rendering of objects (primitives) that are completely
occluded)

• inadequate levels of detail (LOD) (objects that rendered
with considerably fewer primitives would have produced
the same image)

• scene complexity variation (e.g. the walls of a room require
fewer primitives per pixel than a complex piece of
furniture).

Numerous efforts have been targeted at eliminating the first two
causes. The third cause of primitive clumping cannot be
eliminated. An architectural-level solution is to make the screen
regions smaller and improve the load balancing by dynamic (or
statically-interleaved) assignment of rasterizers to regions.

Translated into the IBRW context, primitive clumping is less of
an issue, although it cannot be ignored (Section 3.3). The depth
images were acquired from nearby locations so the LOD is well
adjusted and depth complexity is low. If all samples that project
in the view-frustum are used, they spread evenly in the
warpbuffer. If occlusion culling (extended to discarding
redundant samples of coincident surfaces) is used, the total
number of samples is low and there will be only a few samples
per output pixel. Thus, again, the primitives are likely to be well
distributed. Since the sampling resolution is constant throughout
the depth image (it doesn’t decrease as simpler surfaces are
encountered), one cannot talk about scene complexity variation
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since the modeling paradigm does not offer this flexibility to
begin with2.

In conclusion, the main challenge of a sort-middle IBRW
architecture is the high-bandwidth required for the
interconnection network that delivers the transformed primitives
(warped samples) to the rasterizers that interpolate between the
warped samples.

2.2 Why not sort-last?

Sort-last (PixelFlow, [Molnar92]) is appealing since the
renderers process sets of primitives, independently computing
partial solutions which are composited at a cost linear with the
number of renderers. Unlike sort-middle, the communication
cost does not depend directly on the number of primitives.
However this advantage is irrelevant for IBRW since the total
number of primitives is proportional to the number of output
image pixels anyway. When super-sampling is used for
antialiasing, compositing has to be done before the framebuffer
is filtered down to create the output image. Thus, in the case of
IBRW with a 2x2 super-sampled warpbuffer, the
communication cost is 4 times the number of output pixels times
the number of renderers used.

Pure sort-last architectures instantiate full framebuffers at each
renderer so they are less prone to load imbalance. However,
single-chip high-resolution super-sampled framebuffers cannot
be currently built because of silicon technology limitations, so
region-based rendering has to be employed.

2.3 Why sort-first?

Sort-first has the great advantage of exploiting the frame to
frame coherence associated with typical 3D-graphics
applications. The view changes little from one frame to the next,
so a renderer that is responsible for a certain screen region needs
only a few new primitives for the new frame.

To our knowledge no sort-first polygon-renderer has ever been
built. Such an architecture was proposed by [Mueller95]. There
are serious challenges associated with sort-first in the case of
polygon-renderers [Mueller97]. We will next show that these
can be overcome in the case of IBRW.

First, one needs to establish a pre-transformation operation to be
executed (by the nodes or host) that is inexpensive and
accurately predicts the screen location of primitives. In the case
of polygons, such an operation is hard to find. Mueller
[Mueller00] groups sets of primitives and transforms their
bounding box.

In the IBRW case, one can take advantage of the locality of
depth images, and inexpensively and accurately predict the
screen region to which a set of samples warps. This is easily
done for a rectangular subregion of a depth image (tile) by
computing the screen bounding box of a frustum that contains
all the depth samples of the subregion. Such a frustum is easy to
find, and we use the frustum defined by the four rays that go
through the corners of the tile and by the planes of minimum and
maximum depth in the tile (figure 1). Assuming that the hither
plane does not clip the frustum, the bounding box can be easily
found by warping the four corners of the tile once with
                                                                
2 An alternative to IBRW is to first use the depth images to
generate a geometric model of the scene and then render the
model on polygon-rendering hardware. Such models might
group nearly coplanar samples onto a single textured polygon.

minimum and once with maximum depth, and computing the
bounding box of the eight resulting points. If the frustum crosses
the hither plane, clipping has to be done first and the same
procedure can be applied to the clipped frustum.

An ideal primitive-group pre-transformation operation assigns a
certain group only to renderers that need it. That is at least one
of the primitives projects inside the screen region of the
renderer. The method described deviates from the optimal
behavior because:

• the bounding box is the axis-aligned rectangular superset of
the warpbuffer locations actually impacted by the frustum
projection;

• the frustum is a superset of the depth samples of the tile, as
if the tile had, at every location, samples with all possible
depths between the tile's minimum and maximum (fig. 1).

The first problem is not so severe. It could be eliminated by
projecting and scan-converting the frustum and choosing only
the renderers whose regions are impacted, but the gain is too
small to justify the scan-conversion of the 12 triangles.

The second problem is important, especially for tiles that cover
two or more objects at different depths. The resulting frustum is
large due to the large depth variation in the tile (figure 2). We
segment such tiles into several groups of similar depth, one for
each object sampled by the tile. In retained mode, when the
depth images are available beforehand, the tile segmentation can
be done as a preprocess. For immediate mode, when the depth
images are acquired in real time, the cost of segmenting the tiles
on the fly needs to be compared with the savings achieved.

We use 16x16 sample tiles and we found, as will become
apparent from the next section, that the pre-transformation
operation is very effective.

image
plane

sceneobject

F1

F2
F3

F4

I1 I2 I3I4

R

D

Figure 1. A single tile of the
reference image R is shown
(2D view). The grey area
corresponds to the F1F2F3F4

minimum and maximum
depth frustum used to
approximate the tile. All the
samples of the tile will warp
inside the desired-image (D)
projection of the frustum
I1I2I3I4. One can see that the
projection contains pixels to
which no tile sample will
warp.

F1

F2

F3

F4
R

D

image
plane

Figure 2. The tile shown
spans two objects in the
scene (rectangles) that are
far apart. The frustum
becomes big and its desired-
image-plane projection is
much larger than the actual
projection of the tile (shown
with thicker lines).
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Another problem imputed to sort-first architectures is the
difficulty in using hierarchical databases of primitives. Such
databases have tree like structures where the internal nodes are
modifiers of the objects obtained by aggregating the primitive
groups stored at the leaves. Problems arise especially with the
replication modifier, when the database needs complex editing.

For the first generation of IBRW hardware we do not target
rendering from hierarchical databases because of the problems it
introduces.

First, natural-light-source modeling from photographs and
image-based-object re-lighting are complex problems not yet
solved (research is underway [Yu98] and [Debevec98]). For
now we concentrate on prototyping hardware that renders,
interactively, complex natural scenes using the lighting
originally captured in the photographs.

Second, having all the instances of a replicated object in the
image-based representation of a scene has the advantage of
providing pre-computed appropriate level of detail for each
instance. Also the images provide a partial occlusion-culling
solution, which limits the number of samples that have to
warped at a frame. In the case of hierarchical databases this
advantage is lost and the number of primitives is unbounded,
like in polygon rendering.

We conclude that sort-first is well suited for IBRW when the
current frame is rendered from samples of a fixed number of
nearby depth images. We devised such an architecture, the
WarpEngine, which we presented in [Popescu00a]. In the next
section we will analyze the performance of sort-first parallelism
for IBRW using the WarpEngine simulator. For the reader's
convenience we will now briefly describe the WarpEngine
architecture.

2.4 WarpEngine

The WarpEngine is based on a forward reconstruction algorithm
that produces high-quality output images at a lower cost than the
mesh reconstruction method. The savings come from forward-
scan-converting the quads that connect the warped samples by
interpolation in continuous image coordinates as opposed to the
classic inverse mapping to pixel centers (or to supersampling
locations defined with respect to the pixel boundaries). The
locations of the sub-samples generated by interpolation are
recorded accurately with offsets that are used at the resampling
stage. Thus the inversion to the discrete image domain is done
efficiently after visibility is solved. See [Popescu00a] for more
details.

The WarpEngine architecture consists of one or more identical
Nodes (typically 4 to 32); each Node consists of an ASIC and a
Tile Cache. The ASIC contains:

• a 16x16 SIMD Warp Array, for warping and rasterizing
(interpolating) the samples of a tile;

• a Region Accumulator, which includes a double-buffered
warpbuffer for a 128x128 screen region and 4 sample
processors for resolving visibility;

• a Reconstruction Buffer, for computing final pixel values;

• a Network Interface, which connects the Nodes together
into a high-bandwidth ring, and provides a connection to
the host, a connection to each of the Warp Arrays, and to
each Tile Cache.

The Tile Cache is a commodity DRAM device; it is used for
caching both reference-image tiles and instructions. A double-
buffered Frame Buffer receives the final pixel values from the
Nodes for display.

The basic operation of the system (figure 3) is as follows:

• The host determines which reference-image tiles are to be
used to compute the destination image, and computes the
screen-space bounding box for each of these tiles. For each
screen region, the host maintains a bin; each bin contains
pointers to the tiles whose bounding boxes intersect that
screen region.

• For each screen region, the host assigns a Node to be
responsible for that screen region. The host sends each tile
in the region’s bin to the Node. (Tiles are cached in each
node’s Tile Cache. If a tile is resident in one of the caches,
the host instructs the Network Interface to forward it to the
appropriate Node.  If not, the host must send the tile data to
the Node).

• Each tile received by each Node is loaded into the Warp
Array, which performs the warping and interpolation
calculations for the tile, and forwards the subsamples to the
Region Accumulator.

• The Region Accumulator collects the subsamples into its
sub-pixel resolution warp buffer.

• After all tiles in the region’s bin have been processed, the
Region Accumulator swaps its buffers and initializes the
visibility buffer, in preparation for processing the next
screen region.

• Concurrently with processing the next screen region, the
Region Accumulator steals memory cycles to send the
previous region’s data to the Reconstruction Buffer.  The
Reconstruction Buffer computes the final pixel values for
the region and forwards them to the Frame Buffer.

• After all regions have been processed and the final pixel
values calculated and forwarded to the Frame Buffer, the
Frame Buffer swaps buffers.

Figure 3. Block diagram of the WarpEngine

Region Accumulator

Reconstruction Buffer

Frame Buffer

Tile
Cache

from host

Network Interface

Tile
Cache

Warp Array

Region Accumulator

Reconstruction Buffer

Network Interface

Warp Array
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The next section presents the performance of sort-first
parallelism for IBRW using the WarpEngine software simulator.

3 SORT-FIRST PERFORMANCE
We ran experiments on three scenes:

• Eurotown, a complex model of a city; the depth images are
placed on a regular grid and were rendered with a polygon-
renderer (see Color Figure 1);

• Kamov helicopter; eight depth images also generated from
a polygonal model are placed around the helicopter and one
samples it from above (see Color Figure 3);

• Reading Room; two depth panoramas of the reading room
of our department were acquired with the DeltaSphere
[Nyland99], our in-house laser rangefinder (see Color
Figure 2).

We measured the efficiency, communication costs, and load
balancing for various host-software modes:

• VFC: tile selection based on view-frustum culling only; all
tiles in the view-frustum are sorted and sent to the
appropriate node;

• VFCTS: tile selection based on view-frustum culling and
tile segmentation: tiles with depth discontinuities were
divided into up to eight segments; view-frustum culling and
sorting was done at the tile-segment level;

• OC: tile selection based on view-frustum and occlusion
culling, with tile segmentation. This is our most elaborate
host tile-selection algorithm [Popescu00b]. The tiles are
approximated by quads that are rendered into a low-
resolution buffer for occlusion culling. The coincident tiles
(same surface sampled in more than one depth image) are
arbitrated according to the sampling quality: the tiles that
have the sampling rate closest to the sampling rate required
by the desired image are chosen.

3.1 Efficiency

An important measure of the performance of the parallelization
scheme is efficiency, that is, the ratio between the useful and
total work. For the WarpEngine this translates into the overlap
factor, which is defined for a frame as the total number of tiles
in the region-bins over the number of distinct tiles. Here are the
average frame overlap factors for the various scenes and various
tile selection methods:

Scene
Tile-selection

method
Sel.

Tiles
Overlap

Error

(%)

VFC 17056 1.330 8.16

VFCTS 17022 1.283 4.92Eurotown

OC 4224 1.341 5.60

VFC 9121 2.650 50.50

VFCTS 9108 1.505 12.81Kamov

OC 2737 1.82 22.88

VFC 6246 1.219 5.73

VFCTS 6245 1.218 5.63
Reading

room
OC 4756 1.237 5.68

The screen resolution is 720x486, and the screen region size is
128x128 pixels, which is equivalent to 256x256 warpbuffer
locations. The tiles are 16x16 reference-image samples in size.
The animation paths used can be seen as a QuickTime clip at
http://www.cs.unc.edu/~popescu/paths.mov.

The selected-tiles column gives the average number of tiles that
are selected for a frame (before bucket sorting). The number of
selected tiles decreases slightly when segmentation is introduced
since some tiles conservatively ruled as visible by the VFC host-
mode are correctly detected as invisible by the VFCTS host-
mode. This happens when a whole tile frustum is visible but
none of the tile-segment frusta are.

The number of selected tiles decreases substantially when
occlusion culling is added. The overlap is reduced by tile
segmentation. The slight increase with occlusion culling is due
to the fact that the average screen-projection size of the tile
increases. (Tiles that sample too densely are eliminated in favor
of tiles that better match the desired-image sampling-rate.)

The last column gives the approximation error of the pre-
transformation operation used to bucket sort the tiles; it is
computed as the percentage of tiles that are unnecessarily
rendered at a region (from the total number of tiles rendered). In
our simulator such an error is detected when none of the samples
of a tile warps to the region to which the tile is allocated. In the
case of the helicopter with no tile segmentation the error is quite
important, because the tiles of the top image have large screen
projections. When tile segmentation is used, the error is not very
important and it doesn't justify a more expensive pre-
transformation operation.

The overlap does not depend on the number of nodes, it depends
only on the size of the regions. How does the overlap vary with
the output resolution? If the average screen-projection size of
the tile and the screen-region size remain the same, the overlap
factor should not change. Out of sampling considerations, the
tile screen-projection size has to remain the same. Increasing the
resolution of the output without increasing the resolution of the
input accordingly just increases the amount of interpolation
between the samples, which, of course, produces unsatisfactory
results. In all our experiments the resolution of the reference
images was the same as the resolution of the output image. The
following table3 shows the invariance of the overlap factor with
respect to output resolution (Eurotown scene).

Res
Tile-

selection
method

Sel.
Tiles

Tiles /
pixel

Overlap
Error

(%)

VFC 14031 0.0400 1.318 7.00

VFCTS 14002 0.0400 1.283 4.94

VGA

720 x
486 OC 4243 0.0121 1.324 5.53

VFC 49890 0.0380 1.345 7.04

VFCTS 49872 0.0380 1.316 4.97

XVGA

1280 x
1024 OC 12619 0.0096 1.334 5.96

VFC 74679 0.0373 1.431 11.56

VFCTS 74603 0.0373 1.364 7.14

HDTV

2000 x
1000 OC 21696 0.0109 1.377 7.94

                                                                
3 The VGA numbers are slightly different than in the previous
table since the path used for this table is different (shorter)
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The number of tiles increases close to linearly with the screen
area, as can be seen from the resolution-invariant tiles/pixel
figure.

We conclude that the overlap factors are small, which makes
sort-first an efficient parallelization scheme for IBRW, capable
of substantial speed-ups.

3.2 Communication costs

 Another crucial factor in determining the performance of the
parallelization scheme is the amount of communication required,
both between the host and the WarpEngine, and between the
nodes of the WarpEngine. Before a node can render a tile it
needs to have it in its local Tile Cache. The node can get a
missing tile either from another node, or, if no node has it, from
the host. The following graph (also see appendix 1) shows the
per-frame average and maximum communication requirements
measured in our experiments.

 The output resolution is VGA and the WarpEngine is
configured with 4 nodes to which the 6x4 regions are statically
assigned in an interleaved pattern. The size of a tile is 256
samples, which at 8 bytes per sample totals 2KB. The tile-caches
will probably be implemented with 256-Mbit SDRAM chips, so
each can store up to 16 Ktiles.

In computing the figures above it was assumed that a tile is
discarded from the Tile Cache if not used for a frame. This is
over-conservative since Tile Caches are large enough to store
tiles for several frames, which is useful when the path re-
explores parts of the scene. Even so the communication volumes
are manageable. A high-end PC can send at peak rate, assuming
30Hz frame rate, at most 8 Ktiles per frame through an AGP2x
533 MB/s interface. The Kamov scene requires the most
communication when no occlusion culling is used since the tiles
clump in the region to which the helicopter maps.

For Eurotown, the numbers given do not take into account the
transitions from one cell to the other, when about half of the tiles
are replaced with new tiles since 4 out of the 8 sampling
locations are new. For such cases we found that about 15 Ktiles
need to be sent from the host in VFC mode and 6 Ktiles in OC

mode. The projected AGP4x 1GB/s interface might provide
enough host bandwidth even for these extreme cases. For higher
output resolutions the host will have to predict the new cell and
amortize the high host-bandwidth requirement of cell transition
over several frames. Of course this limits the translational speed
of the camera for a certain cell size. Higher speeds can be
supported by increasing the size of the cell accordingly. High
rotational speeds of the camera also increase the communication
requirements. The following graph (also see appendix 2) shows
the per frame communication costs for various resolutions for a
typical path (typ in the graph) and also for the case of a 90
degrees / second rotation (rot).

The host bandwidth required can be supplied by the AGP
interface, as all maximum host-to-WarpEngine communication
volumes are below 4 Ktiles. The Network Interface that inter-
connects the nodes is not fully designed yet; from experience we
are confident that ring bandwidths of 8 to 64 Gb/s are attainable.
At 60Hz this translates into 8 to 64 Ktiles / frame which from
the above graph appears to be sufficient for the highest node-to-
node traffic.

A potential bottleneck is the bandwidth in and out of the Tile
Caches. Using 16-pin 133 MHz memory chips for the Tile
Caches provides 266 MB/s, which at 30 Hz (60 Hz) means about
2 (1) Ktiles / frame if half of the bandwidth is reserved for the
instructions for the Warp Array SIMD. For the worst case in the
graph (HDTV rot VFC), assuming a full-blown system with 32
nodes, the maximum number of new tiles a node needs at any
given frame is 8.6Ktiles4. Conservatively increasing the figure
by a factor of two, since a node has to provide tiles to other
nodes, we obtain about 16 Ktiles/frame maximum Tile Cache
accesses, which is considerably more than the 2 Ktiles computed
at 30 Hz. However, as it will become apparent from the next
subsection, in the VFC host mode only 8 fps can be achieved,
reducing the mismatch considerably. Conversely, 30 fps are
achieved in the OC host mode when there are considerably

                                                                
4 The figure was obtained from our simulations. If fewer nodes
are used, the figure goes up since a node is responsible for a
larger screen subset. However for HDTV, only a full blown
system of 32 nodes can provide enough performance.
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fewer tiles, thus fewer Tile Cache accesses. We will investigate
the Tile Cache access bottleneck further. An attractive solution
is to use 2 or 4 memory chips for each Tile Cache, which,
besides providing the required bandwidth, also has the
advantage of providing more storage room. The trade-off is a
higher number of pins for the rendering-node chip.

The host main-memory accesses are not a bottleneck since the
host communication volume is much less important.

3.3 Load balancing

Finally we investigated the load balancing of the WarpEngine
architecture. The following table (VGA output resolution) shows
the ratio between the number of tiles assigned to the busiest
node and the least busy node. The other measure of imbalance
given is the ratio between the time it takes the busiest node to
finish rendering and the time required by the least busy node.
The performance of the architecture is given by the performance
of the Warp Array, which warps and interpolates between the
warped samples. To process a tile it takes approximately 2000
cycles for warping and n * 256 cycles for outputting the n-per-
sample interpolated sub-samples.

Load Imbalance
Scene

Tile
Selection
Method

Nds
tiles time

Sust.

fps

4 1.315 1.358 12
VFC

9 3.09 2.52 20

4 1.36 1.15 47
Eurotown

OC
9 2.25 2.34 80

4 1.83 1.89 2
VFC

9 5.36 5.32 2

4 1.22 1.36 7

9 1.76 3.86 12

Kamov

OC

24 8.16 10.62 19

4 2.02 1.90 26
VFC

9 2.85 3.09 47

4 1.68 1.62 35

Reading
room

OC
9 2.34 3.62 70

The sustained frame rate is computed by finding the busiest
renderer at any of the frames of the animations. The Warp Array
clock-rate is 300 MHz. Load balancing is acceptable in the case
of the Eurotown and Reading Room scenes.  The two imbalance
figures are close since the tiles are interpolated with similar
interpolation factors. The regions do not divide evenly among
the nodes, and the extra region some of the nodes have causes
imbalance especially in the case of higher number of nodes. The
imbalance is moderate and a higher number of nodes provides
very high refresh rates.

For the Kamov scene some regions, thus some nodes, are
assigned a considerably higher number of tiles, and the
interpolation factors are also higher, due to the way the
reference images are placed. Even if each of the 24 regions has
its own node and even if the most efficient tile selection method
is used, the sustained frame rate is below interactivity. Modeling
the scene with regularly placed depth images has the advantage
we anticipated of better load distribution.

The following table presents the load-balancing measurements
for higher resolutions (obtained on the Eurotown scene).

Load Imbalance
Scene

Tile
Selection
Method

Nds
tiles time

Sust.

fps

16 2.33 2.75 9
VFC

30 7.34 8.34 14

16 2.73 3.24 42
XVGA

OC
30 6.35 5.85 65

16 1.50 1.83 6
VFC

32 1.76 2.75 8

16 2.18 1.96 23
HDTV

OC
32 2.76 4.68 29

A 32-node WarpEngine system is quite potent and can render in
OC mode at high resolutions at sustained interactive rates.

For systems with many nodes, load imbalance becomes an issue.
For the HDTV case, if each region has assigned a node (a
hypothetical 128 node-system), the sustained frame rate is 39 fps
for the OC case. This is the upper bound on the refresh rate
achievable by improving the regions-to-nodes assignment. The
static allocation has the advantage of low node-to-node
communication since it takes full advantage of the frame-to-
frame coherence. Once regions are assigned dynamically to the
nodes, one has to keep the node-to-node communication under
control. We experimented with a greedy allocation scheme that
assigned iteratively the hottest region to the least busy node.
When the greedy allocation scheme was utilized at every frame
for the Eurotown HDTV OC case, we obtained an almost perfect
1.031 worst rendering-time load-imbalancing with sustained 30
fps refresh rate for a 16-node system. A 32-node system
rendered at 38 fps with a time imbalance of 1.689.

Since the allocation tables differed substantially from one frame
to the next, the volume of node-to-node communication was
quite high (maximum 26,594 tiles per frame), but it did not
exceed the projected capacity of the ring network. One could
employ quasi-static allocation schemes that exploit the frame to
frame coherence and change the node allocation of a region only
rarely. Such schemes seem practical, especially since tiles are
not used for a very long time as the camera translates to another
cell and fresh tiles are downloaded from the host.

To attain even higher frame rates, one has to use smaller regions
in order to reduce the maximum rendering time spent at a
region. A WarpEngine node needs about 4 Kcycles to process a
tile (assuming 8 subsamples per sample), thus the 22 Ktiles per
frame for the OC HDTV Eurotown case could be rendered
theoretically (ideal parallelism) 110 times a second by 32 nodes
running at 300MHz. Thus there is room for improvement. The
overlap factors computed for the 128x128 regions are small,
which makes us believe that 128x64 regions will still yield
reasonable overlap factors. For the WarpEngine architecture, the
price of smaller regions is mainly wasting some of the
warpbuffer memory of the Sample Processors; it does not imply
processor underutilization. Moreover it is not necessary to use
smaller regions for the entire screen: one could subdivide only
the bottleneck regions.

4 CONCLUSIONS and FUTURE WORK
Sort-first is a very attractive parallelization scheme for IBRW.
The regular structure of depth images makes it possible to
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estimate accurately and inexpensively the screen projections of a
set of depth samples.

Some of the difficulties associated with rendering from polygons
are pushed upstream to the modeling stage. Partial solutions for
occlusion culling and level-of-detail adaptation are computed
inherently as the depth images are acquired and they are
successfully used for an entire viewing-volume subdivision cell.
The WarpEngine IBRW sort-first architecture is fairly simple
(one ASIC design) but promises high refresh rates.

For high output resolutions, more sophisticated tile-selection
host algorithms need to be employed than just choosing all the
tiles in the view frustum. The occlusion-culling partial solution
provided by the images acquired from the corners of the current
cell needs to be further refined to reduce the number of tiles. We
previously developed such an algorithm and are currently
investigating possible hardware acceleration to assist the CPU of
the host. An alternative path would be to enhance the
WarpEngine architecture such that it can implement the tile
selection algorithm, freeing the host of a considerable burden.

The load balancing and thus the performance can be improved
by perfecting the regions-to-node allocation scheme and by
splitting the regions into smaller regions where and when
necessary. The additional node-to-node traffic generated by
occasional region-to-node reallocations is small and can be
easily managed by a high-capacity ring network.
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APPENDIX 1

Host Avg Host Max NodesAvg Nodes
Max

Kamov VFC 920 1662 1116 2057

Kamov OC 182 207 209 254

Eurotown VFC 38 152 178 387

Eurotown OC 117 147 109 158

R. room VFC 14 21 124 171

R. room OC 39 53 92 137

APPENDIX 2

Host Avg Host Max Nodes
Avg

Nodes
Max

VGA typ VFC 38 152 178 387

VGA typ OC 117 147 109 158

VGA rot VFC 235 555 1629 2165

VGA rot OC 206 287 477 607

XVGA typ VFC 95 257 1638 3359

XVGA typ OC 275 342 592 864

XVGA rot VFC 761 1709 9952 11655

XVGA rot OC 500 725 2498 2879

HDTV typ VFC 127 381 2614 3607

HDTV typ OC 441 509 1121 1355

HDTV rot VFC 980 2489 23077 27325

HDTV rot OC 618 996 5458 5975
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Color Figure 1 (left). The image
shows an overview of Eurotown. The
pink cubes indicate the sampling
locations from which the depth and
color panoramas were acquired.  A
panorama consists of 6 depth images
with 90 degree horizontal and vertical
fields of view that correspond to the
faces of a cube. The depth images are
1K x 1K in the case of VGA output
(70 deg horizontal field of view) and
2.8K x 2.8K in the case of HDTV (70
deg FOV). The total space consumed
by all of the depth images is 4.33GB
and 26.06GB respectively, with
lossless RLA compression. The blue
lines define the cells that subdivide
the viewing volume.

Color Figure 2. The two images were rendered on the WarpEngine simulator using two spherical depth-panoramas of the reading room
acquired with the DeltaSphere, our laser rangefinder.

Color Figure 3. The left image shows the nine depth-images used to model the Kamov helicopter. The right image was rendered on the
WarpEngine simulator.


