
STREAMING COMPRESSION OF TRIANGLE MESHES

additional review material for “Streaming Meshes” (papers 0371)

Abstract

Standard schemes for compressing polygonal meshes
first construct an explicit representation of the mesh con-
nectivity and then traverse it with some deterministic strat-
egy. This implicitly assumes that the compressor is allowed
to reorder the mesh triangles as it sees fit. Hence, current
mesh compressors take the entire mesh as input, construct
temporary data structures in the size of the mesh, and pro-
duce a completely reordered compressed mesh.

In this report we describe a compression scheme that can
preserve the original triangle order of a mesh. It incremen-
tally constructs mesh connectivity as triangles are input and
immediately compresses them. This compression scheme is
mainly intended for meshes in streaming formats, which in-
terleave vertices and triangles and finalize vertices that are
no longer used. The availability of this scheme enables us
to compress such meshes on-the-fly without ever having the
entire mesh in memory and without ever having to reload
parts of the mesh as required by current alternatives.

We can often significantly improve compression rates by
employing a small delay buffer within which the compressor
is allowed to locally reorder triangles. The memory require-
ments of the compressor are proportional to the width of the
streaming mesh and the size of the delay buffer.

1 Introduction

Traditional indexed formats for storing 3D triangle
meshes use an array of floats triplets to specify the vertex
positions (i.e. the geometry) and an array of integers triplets
that index into the vertex array to specify the triangles (i.e.
the connectivity). The cost for storing mesh connectivity in
this format increases super-linearly with the number of ver-
tices v as the number of bits required for each index is at
least log2(v). Because vertices are indexed an average of
six times, the overall storage costs for indexed connectiv-
ity is around 6 log2(v) bits per vertex. In contrast, current
connectivity coders [10, 5, 9] can encode mesh connectivity
with a constant 1 to 4 bits per vertex.

An indexed format not only specifies the connectivity but
also the particular order in which vertices and triangle ap-
pear in their respective array. For a mesh with t triangles
and v vertices there are t! possible ways in which the trian-

gles can be arranged and v! possible ways to permute the
vertex array. Any triangle arrangement can be combined
with any vertex permutation leading to t! · v! different de-
scriptions for the same mesh. The log-factor in the storage
costs comes from specifying one of these descriptions.

Connectivity compression schemes [10, 5, 9] completely
disregard the original triangle and vertex order of the mesh
they compress. They encode the triangles in an order that
is derived from systematically traversing the connectivity of
the mesh and they encode the 3D positions that are associ-
ated with the vertices in the order they are first encountered
during this traversal. This means that the element ordering
of a compressed mesh is dictated by the particular compres-
sion scheme used. This is usually acceptable as the order
with which triangles and vertices are listed makes no differ-
ence to the geometric shape that the mesh describes. How-
ever, in some applications such as rendering and streaming
it is necessary to keep the triangles in their original order.

Modern graphics cards keep a few recently processed
vertices in a local cache to reduce the number of times that
a vertex needs to be fetched from memory. A mesh can be
rendered more efficient when triangles frequently use ver-
tices from the cache. Several heuristics for reordering the
triangles to maximize the efficiency of the cache have been
proposed [4, 7]. To compress meshes without affecting ren-
dering efficiency we need a compressor that can compress
the mesh triangles in their particular cache-efficient order

Streaming formats [2] provide simultaneous access to
vertices and triangles and “finalize” vertices that are no
longer used by subsequent triangles. This information al-
lows efficient parsing and processing of large meshes that
can not be entirely loaded into memory as one can safely
complete operations on finalized vertices and deallocate
their associated data structure. Because we want to com-
press streaming meshes on-the-fly we need a compression
scheme that can process the mesh triangle in stream order.

In this report we describe a streaming compression
scheme that is fundamentally different from all previously
proposed schemes. On one hand it can encode the trian-
gles of a mesh in whatever order they happen to be in. But
more importantly, it can do this without any preprocessing
and while using only minimal memory resources if the in-
put mesh is either stored in a streaming format or produced
in a streaming fashion. We have implemented a stream-

1



ing mesh writer and a corresponding reader through which
compressed streaming meshes can be written and read in
increments of single vertices and triangles.

The main advantage of our streaming compression
scheme over previous approaches is the elimination of the
need of first having to create a mesh representation that
provides full access to the mesh. This is especially bene-
ficial for compression large meshes. Previous approaches
spend significant amounts of main memory, temporary disk
space, CPU time, and file IO on either cutting the mesh in
smaller pieces, as suggested by Ho et al. [6] or with con-
structing complex external memory data structures, as pro-
posed by Isenburg and Gumhold [8] before the compression
process can even start. Our streaming mesh writers and
reader make the compression and decompression of even
the largest meshes basically transparent to the user.

The main disadvantage is that the achieved connectivity
compression is no longer guaranteed to be linear in the num-
ber of vertices. The log-factor of the indexed format gets in-
troduced by the fact that our streaming compressor can en-
code triangles in any order. The achieved compression rates
vary drastically with different triangle orders and “random”
orderings give result poor result. To strictly follow the orig-
inal triangle order prevents our compressor from using any
kind of determinism to improve compression rates.

However, since all previous compression schemes are al-
lowed to completely reorder the triangles of the mesh, it
seems only fair if we allow our compressor at least to do
some local reordering. We give our compressor a small de-
lay buffer within which it can perform triangle reorderings
that do not affect the overall stream quality. This can sig-
nificantly improves the compression rates—bringing them
close to those reported by other coders.

2 Efficient Indexing

Even without compression, streaming mesh formats al-
low more efficient storage of indexed connectivity than
standard indexed formats. Finalization of vertices tells us
that they are no longer referenced by subsequent triangles,
which effectively frees up their indices to be used again. In-
stead of using a unique absolute index for every vertex of
the mesh we only need to assure that every active vertex
has a unique index. This lowers the number of indices be-
tween which we need to distinguish and thereby reduces the
number of bits needed to represent them.

Relative Indexing references a vertex as the difference
of the currently highest index to the absolute index of that
vertex. Each index can then be stored with log2(span) bits
since the maximal index difference equals the span of the
streaming mesh. But we can also use the current instead of
the maximal span, which can easily be kept track of. Then
the total storage costs for all indices is an integral of the
span’s logarithm over the stream. Especially for low-span

mesh bits per index largest index range
(ordering) abs rel opt rel (span) opt (width)

armadillo
(vcompact) 17.4 17.4 16.1 172,715 51,951

(spectral) 17.4 10.6 9.3 4,405 638
(geometric) 17.4 11.0 10.0 3,796 1,042

(breadth) 17.4 10.2 10.1 1,197 1,129
(depth) 17.4 16.9 10.3 171,845 1,457

dragon
(vcompact) 18.7 15.4 12.5 54,825 4,586

(spectral) 18.7 11.7 9.5 11,617 668
(geometric) 18.7 12.9 10.7 9,243 1,274

(breadth) 18.7 11.1 10.8 1,994 1,671
(depth) 18.7 18.4 12.8 436,834 8,587

lucy
(vcompact) 23.7 23.3 18.4 13,500,197 255,446

(spectral) 23.7 16.1 12.8 200,237 5,841
(geometric) 23.7 13.6 12.8 20,362 4,985

(breadth) 23.7 13.0 12.9 6,572 5,921
(depth) 23.7 23.2 13.6 12,428,107 12,914

david1mm

(vcompact) 24.7 23.8 14.8 15,821,388 26,383
(spectral) 24.7 17.2 13.2 752,345 7,862

(geometric) 24.7 13.5 13.1 36,421 8,919
st. matthew
(vcompact) 27.5 25.2 15.2 29,189,836 31,931

(spectral) 27.5 20.7 15.6 3,850,470 33,029
(geometric) 27.5 15.2 14.8 157,920 33,207

ppm
(vcompact) 27.8 19.1 18.6 462,634 311,280

(spectral) 27.8 21.4 14.4 27,019,863 56,179
(geometric) 27.8 17.7 17.2 290,591 114,593

Table 1. Average number of bits per index required for

absolute, relative, and optimal indexing in differently

ordered streaming meshes. Absolute indexing always

uses a fixed log2(v) bits for meshes with v vertices.

Relative and optimal indexing use a varying log2(s(ti))
and log2(w(ti)) bits for the indices of triangle ti with

s(ti) and w(ti) being the span and width at moment i.
Also reported are the largest index ranges for relative and

optimal indexing, which correspond to span and width.

meshes this type of indexing is beneficial as it allows im-
plementing efficient vertex access through a ring buffer.

Optimal Indexing references each of the w active vertices
with an index that is within the range 0 to w−1. Each index
can then be stored with log2(width) bits as the maximal
number of active vertices equals the width of the stream-
ing mesh. Again, using the current width makes the total
storage costs an integral of the width’s logarithm over the
stream. This type of indexing requires a more involved data
structure that re-assigns indices as vertices get finalized.

Obviously relative indexing will always be at least as
expensive as optimal indexing with equality being reached
only if vertices are introduced and finalized in the same or-

Streaming Compression, jan 2005 2 additional review material for papers 0371



class SMwriter smc {
// specifies optional quantization
bool open(FILE* file, int bits);

// may optionally be set if known in advance
void set bounding box(float* min, float* max);
void set num verts(int nverts);
void set num faces(int nfaces);

bool write vertex(float* v pos);
// finalize indices used for the last time
bool write triangle(int* t idx, bool* t final);

bool close();
}

typedef Type enum {SM VERTEX, SM TRIANGLE};

class SMreader smc {
int bits;
// only optionally known
float *bb min, *bb max;
int nverts, nfaces;

bool open(FILE* file);
Type read element();
bool close();

// position of read vertex
float* v pos;
// indices of read triangle ...
int* t idx;
// ... and their finalization
bool* t final;

}

Figure 1. Our current API for reading and writing compressed streaming meshes.

der. When comparing relative and optimal indexing with
standard indexing we must add one bit per index, which
is needed to specify finalization. These indexing costs are
listed in Table 1 for streaming meshes in different orders.

The storage requirements for optimal indexing are in
general still super-linear. Even if we reorder the mesh to
minimize its width, we are subject to the worst-case bound
of O(

√
v) for a mesh with v vertices [3]. Hence, the best

that could theoretically be guaranteed is O(v log2(
√

v)) bits
per vertex. In the next section we describe a compression
scheme that often requires only one optimal index per trian-
gle by keeping track of how already encoded triangles con-
nect active vertices. Furthermore it avoids this explicit in-
dex whenever subsequent triangles reference the same ver-
tex. While the coding costs are still O(v log2(width)) in
the worst case, it does much better in practice.

3 Streaming Compression

We depart from the traditional approach to mesh com-
pression, which traverse meshes in some deterministic man-
ner, and use a scheme that encodes the triangles of the mesh
in the particular order they are given to the compressor.
Since such a scheme not only encodes the connectivity but
also a particular triangle ordering, it can not achieve the
same compression rates as traditional schemes. However,
being able to immediately compress a mesh as it is written
to disk or piped across a network makes this scheme much
more usable in a typical mesh processing pipeline.

Previous schemes require loading the complete mesh and
constructing a representation that allows traversing its con-
nectivity graph—before the compression process can even
begin. To do this for large meshes they need to either cut
the mesh into smaller pieces as suggested by Ho et al. [6] or
build complex external memory data structures as proposed
by Isenburg and Gumhold [8]. We now have a streaming
mesh writers and corresponding readers through which on-
the-fly compressed meshes can be written and read in incre-
ments of single vertices and triangles (see Figure 1).

For reasons of efficiency our compressor only writes
vertex-compact pre-order meshes. Vertex positions are en-
coded in the moment their vertex is referenced for the first
time and finalization is encoded in the moment vertices are
referenced for the last time. Post-order meshes or meshes
that do not immediately finalize vertices are piped through a
filter that converts them on the fly. Although the input does
not need to be vertex-compact, it is compressed in a vertex-
compact manner. When a vertex is written it is simply in-
serted into a hash using its index as key. When a triangle is
written its vertices are looked up in the hash and only then
actual compression takes place. This delays out-of-order
vertices until they are referenced by a triangle.

The compressor maintains a set of active vertices and
a set of active half-edges. Vertices are active if they have
been referenced by previously written triangles but have not
yet been finalized. Half-edges are active if they are part of
a previously written triangle that connects two still active
vertices and if their counterpart of opposite orientation has
either not yet appeared or does not exist. Each active vertex
has a list of all its incident active half-edges.

When a triangle is written the compressor checks which
of the triangle’s vertices and which of the triangle’s half-
edges of opposite orientation are already active. There are
eight different configurations that can arise, namely start0,
start1, start2, start3, add, join, fill, and end, which are illus-
trated in Figure 2. The compressor encodes the configura-
tion of the triangle with an arithmetic using four different
symbols: START, ADD, JOIN, FILL END. For reasons of
efficiency it uses only one symbol for all four startx config-
urations as they are typically of infrequent occurrence. The
x is subsequently compressed with a separate context. The
fill and end configurations only need one symbol because
they can be distinguished at the decoding end.

Then the active vertices of the written triangle are ref-
erenced (unless it is in start0 configuration). This can be
done with optimal indexing using log2(w) bits per vertex,
where w is the current number of active vertices. But be-

Streaming Compression, jan 2005 3 additional review material for papers 0371



add

v0 v1

v2

fill

v0

v1

v2

join

v0
v1

v2

v0

v1

v2

fill

start2

v0

v1

v2

start1

v0

v1

v2

start0

v0

v1

v2

start3

v0

v1

v2

5/2

4/2

1/2

2/2

4/2

2/2

3/2

1/2

2/2

1/2

1/2
2/2

2/2
3/2

3/4
3/2

1/2

1/2

1/2

3/2
3/2

2/4

3/2
4/4

3/23/2

2/2

2/2 2/2

2/2

3/4

5/2

3/4

2/2 3/4

3/4

3/4

5/2

3/2
4/2

2/2

4/2
5/2

2/2

3/2
3/2 3/2

2/2

2/2

4/2
4/2 3/2

3/4

2/2

4/2

3/4

4/2 3/2

2/2

4/2

4/2

5/2 3/2

3/2

end

v0

3/4 v2

v1

3/2
6/2

5/2

4/2

3/2

add

v0 v1

v2

3/2
4/1

1/2

4/2

1/1

processed region

unprocessed region

written triangle

introduced

finalized 

active vertex 

active edge 

neither 
number of triangles / number of active edges 

mesh border

1/2

Figure 2. The eight possible adjacency configurations between the written triangle and the active vertices and half-edges

maintained by the compressor: a startx triangle is not adjacent to any active half-edge, but may be adjacent to zero, one,

two, or even three active vertices; an add triangle is only adjacent to one active half-edge with the third vertex being newly

introduced; for the similar join configuration this third vertex is already active; a fill triangles is adjacent to two half-edges

and an end triangle is adjacent to three half-edges. The small boxes show the triangle count and number of active half-edges.

cause subsequently written triangles often share vertices we
first check whether a vertex was already used by the pre-
vious triangle and if so, encode which of the three vertices
it was. This often saves us those log2(w) bits that are the
single most expensive part of our connectivity encoding.

In case of an add, join, fill, or end configuration the cur-
rent triangle is also adjacent to one or more active half-
edges. After having referenced the first active vertex (either
with log2(w) bits or as a vertex from the previous triangle)
we can now reference other active vertices using the list of
half-edges maintained with this already referenced vertex.

Since this list contains usually only one half-edge with the
correct orientation, we often avoid storing any further infor-
mation. Only vertex v2 of a join configuration can not be
referenced this way, which makes a join configuration the
most expensive configuration to encode.

In case of an add configuration we predict the position of
the newly introduced vertex with the parallelogram rule [10]
For this we store the position of the across vertex with each
active half-edge. This is the vertex that is neither origin nor
target of the half-edge but the third vertex of the triangle that
created this half-edge. In case of a startx configuration we

Streaming Compression, jan 2005 4 additional review material for papers 0371



predict the positions of newly introduced vertices as that of
a known neighboring vertex. For the first vertex of a start0
configuration there is no known neighbor. Here we simply
use the most recent vertex that was compressed as the pre-
diction. We compress the corrective vectors with different
arithmetic contexts depending on whether a parallelogram,
a neighbor, or a most recent prediction was used.

Finalization information is encoded by specifying for all
three vertices whether the current triangle finalizes them or
not. These binary flags can be efficiently compressed with
context-sensitive arithmetic coding. The context is chosen
based on the current triangle count and the number of active
half-edges around this vertex. As most vertices are final-
ized when they are surrounded by a closed ring of triangles
there is a strong correlation between the moment a vertex
no longer has active half-edges and its finalization. Border
vertices, which will still have one or two half-edges tend to
be surrounded by a smaller number of triangles.

Reading the pseudo-code of Figure 3 may further clarify
the compression algorithm that we have just described.

The vertices are maintained in two data structures: a hash
table and a dynamic vector. The hash table is used to look
up vertices by their index. A vertex is added to the hash
when it is written, it is looked up when a triangle is written
that references it, and it is removed from the hash when it is
finalized. The dynamic vector is used to address previously
encoded vertices with an index between 0 and w − 1. A
vertex is added to the dynamic vector when the triangle that
references it for the first time is written. Subsequently the
encoder looks up the index for a vertex in the dynamic vec-
tor whenever it needs to encode an explicit reference to it.
These indices are then compressed with log2(w) bits. The
dynamic vector implements constant time insertion and re-
moval of vertices and constant time lookup for vertex in-
dices simply by moving the last entry to a deleted posi-
tion. This means that the indices with which vertices are
addressed in the dynamic vector change over time, but they
do so in a consistent manner at both encoder and decoder.

3.1 Bounding-box less quantization
To support quantization of floating-point geometry for

streaming meshes whose bounding box is not known in ad-
vance, we use a scheme that quantizes conservatively using
a bounding box that is learned as the mesh streams by. The
first two vertex positions are compressed without quantiza-
tion and their distance gives us the initial conservative guess
on the number of mantissa bits that need to be preserved to
guarantee the user requested precision. This maximum dis-
tance is updated with every compressed vertex position and
will eventually match the extent of the actual bounding box.
Hence, how long we quantize overly conservative depends
on the order in which the vertex positions arrive.

We perform predictions in floating-point and encode sep-
arate correctors for sign, exponent, and mantissa. For com-

bool write vertex(float* v pos) {
Vertex* v = allocVertex(v pos);
hash->insert(v, v count);
v count++;

}

bool write triangle(int* t idx, bool* t final) {
Vertex* v[3];
for (i = 0; i < 3; i++) {

v[i] = hash->get(t idx[i]);
if (v[i] == 0) return false; // must be pre-order

}
determine and compress configuration;
rotate triangle so that vertex v0 of Figure 2 is in v[0];
if (STARTx configuration) {

compress which STARTx it is;
for (i = 0; i < 3; i++) {
if (x--) { // v[i] is an old vertex

if (v[i] is used by previous triangle) {
compress which of its vertices is v[i];

} else {
index = dvector->get index(v[i]);
compress explicit index of v[i];

}
} else { // v[i] is a new vertex

dvector->add(v[i]);
compress position of v[i];

}
}
create three new half-edges;

} else if (ADD or JOIN configuration) {
if (v[0] or v[1] is used by previous triangle) {

compress which of its vertices is v[0] or v[1];
} else {
index = dvector->get index(v[0]);
compress explicit index of v[0];

}
compress which half-edge of v[0] leads to v[1];
if (ADD configuration) {
dvector->add(v[2]);
compress position of v[2];

} else {
index = dvector->get index(v[2]);
compress explicit index of v[2];

}
create two new and delete one old half-edges;

} else if (FILL or END configuration) {
if (v[0] or v[1] or v[2] is used by previous triangle) {

compress which of its vertices is v[0] or v[1] or v[2];
} else {
index = dvector->get index(v[0]);
compress explicit index of v[0];

}
compress which half-edge of v[0] leads to v[1];
compress which half-edge of v[0] leads to v[2];
create new and delete old half-edges;

}
for (i = 0; i < 3; i++) {

compress whether v[i] is finalized
if (t final[i]) {
dvector->remove(v[i]);
hash->erase(v[i]);
delete all half-edges of v[i];
deallocVertex(v[i]);

}
}

}

Figure 3. An implementation of the SMC compression al-

gorithm (without the delay buffer) in C-like pseudo code.

pressing the mantissa, we switch between multiple arith-
metic contexts as the maximal range of the correctors varies
with the exponent. The scheme is part of our current proto-
type and works well in practice. However, we still need to
analyze its average performance and optimize its compres-

Streaming Compression, jan 2005 5 additional review material for papers 0371



mesh configurations [%] use details for conn [bpv] totals [bpv] time mem
(ordering) s a j f e [%] con pre exp adj fin conn geom [sec] [MB]

armadillo
(vcompact) 20 15 15 30 20 10 4.2 1.3 32.7 1.1 .00 39.35 22.24 1.4 9.3

(spectral) .0 50 .9 48 .5 49 1.3 1.1 8.5 .04 .01 11.04 19.15 .8 .8
(geometric) .7 49 4.3 42 4.3 51 2.0 2.0 9.2 .14 .01 13.26 19.16 .8 .8

(breadth) .0 50 1.4 47 1.4 97 1.8 0.9 0.6 .01 .01 3.27 19.14 .7 .9
(depth) .0 50 2.5 45 2.5 97 2.0 0.1 0.5 .03 .01 2.66 19.17 .7 1.0

(rendering) .5 49 4.7 41 4.6 91 2.5 3.1 1.7 .14 .01 7.45 19.35 .7 .8
dragon
(vcompact) 15 24 9.6 37 14 50 3.9 3.9 13.0 .83 .04 21.62 21.49 2.6 1.6

(spectral) .4 50 1.5 47 1.5 49 1.8 1.2 8.8 .07 .04 12.02 22.04 1.8 .8
(geometric) 1.1 48 3.7 43 3.8 57 2.2 2.4 8.7 .14 .04 13.45 21.86 1.8 .9

(breadth) .0 50 3.1 44 3.1 94 2.1 1.8 1.3 .05 .04 5.23 21.98 1.8 .9 ooc compressor [8]
(depth) .0 50 5.1 40 5.1 94 2.3 0.5 1.4 .09 .04 4.35 21.96 1.9 1.8 [bpv] time mem

(rendering) .6 49 5.1 40 4.9 90 2.5 3.1 1.8 .15 .04 7.62 22.13 1.8 .8 conn prepro. disk
lucy geom compr. main
(vcompact) 1.6 47 8.1 34 8.7 77 2.5 2.2 8.6 .35 .00 13.60 14.70 77 37

(spectral) 7.2 35 6.9 45 6.3 70 3.1 3.1 7.4 .44 .00 14.09 15.47 65 1.5
(geometric) .5 49 2.1 46 2.1 53 1.9 1.9 11.3 .07 .00 15.18 14.58 65 1.6 1.88 19 min 0.9 GB

(breadth) .0 50 2.3 45 2.3 96 2.0 1.3 1.1 .06 .00 3.51 14.54 59 1.6 14.60 5 min 128 MB
(depth) .0 50 3.8 42 3.8 96 2.1 0.2 1.0 .05 .00 3.32 14.55 61 2.7

david1mm

(vcompact) 12 28 5.8 44 9.4 66 2.8 2.6 9.9 .60 .02 15.94 10.95 126 4.8 1.79 36 min 1.7 GB
(spectral) 7.4 35 7.1 45 6.3 71 3.1 3.1 7.6 .45 .02 14.30 11.94 126 1.8 11.32 14 min 192 MB

(geometric) .8 49 2.0 47 2.0 67 1.9 2.8 8.0 .07 .02 12.71 11.63 131 2.4
st. matthew
(vcompact) 11 31 6.2 44 8.5 67 2.7 2.4 10.0 .53 .02 15.62 8.22 865 5.2 1.84 7 hrs 11 GB

(spectral) 7.5 34 7.2 45 6.2 71 3.2 3.1 8.9 .46 .02 15.60 9.44 837 7.4 8.83 4 hrs 384 MB
(geometric) .9 48 2.2 46 2.3 69 1.9 2.9 8.6 .08 .02 13.60 8.97 907 4.0

ppm
(vcompact) 9.4 31 8.4 43 8.1 65 3.2 3.2 12.7 .53 .01 19.64 14.91 1200 57

(spectral) 7.4 34 7.2 45 6.3 71 3.2 3.1 8.1 .46 .01 14.88 15.76 1030 9.1
(geometric) 1.2 47 2.7 46 2.6 63 2.1 2.5 12.2 .11 .01 16.84 16.05 1310 18

Table 2. For compressing in stream order we report the percentages of start, add, join, fill, and end configurations and of

subsequent triangles that re-use vertices. We give itemized coding costs for triangle configuration, previous and explicit

references, edge adjacency, and vertex finalization. Total bit-rates for connectivity and geometry (quantized at 16 bits) and

both time and memory footprint for reading, compressing, and writing the meshes on a 1.1 GHz Dell Inspiron laptop are listed.

sion speed. Our streaming mesh writer also supports abso-
lutely lossless floating-point compression [1]. This is less
efficient since the low-order bits of the mantissa typically
contain noise that is hard to compress. But providing this
functionality makes it possible to use compression when
quantization—for whichever reason—is not an option.

3.2 Results

Detailed performance measurements of our SMC com-
pressor for streaming meshes with different triangle order-
ings are listed in Table 2. The compact meshes have the
original triangle order of the mesh. The geometric meshes
have spatially sorted triangles and the spectral meshes are
sorted in an attempt to minimize the width [2]. The breadth
meshes are a triangle-compacted breadth-first ordering of
the vertices, the depth meshes have a depth-first triangle or-
dering, and the rendering meshes are generated with the re-

cursive cut algorithm of Bogomjakov and Gotsman [4].

As anticipated, our connectivity compression rates are
much higher than those of previous compressors [10, 5, 9],
whereas the achieved geometry compression rates are simi-
lar. The most expensive item for connectivity is the encod-
ing of explicit indices. We need to encode many of those
when the re-use of vertices among subsequent triangles is
low, which results in poor compression rates. Re-use is es-
pecially low if triangles appear somewhat “randomly” such
as in the compact orderings but also if they “hop around”
along the advancing front such as in the spectral and ge-
ometric orderings. The high percentage of start and join
configurations in the spectral orderings is due to the clus-
tering and the fact that triangles within a cluster are left in
a “random” order. The topological breadth- or depth-first
sorts derive the triangle order from the local adjacency of

Streaming Compression, jan 2005 6 additional review material for papers 0371



mesh elements, which gives a high percentage of vertex re-
use and therefore the best compression rates.

The biggest selling points of the SMC compressor are the
dazzling speed and the tiny memory footprint with which it
can compress even the largest models. The only competing
approach that can compress models as large as, for example,
the “St. Matthew” statue is the ooc-compressor by Isenburg
and Gumhold [8], for which we report compression rates
and time and memory consumption in Table 2. Running on
a 2.8 GHz Pentium IV processor they first spent 7 hours cre-
ating an 11 gigabyte data structure on disk before the actual
compression starts that then takes another 4 hours while us-
ing 384 megabytes of main memory. In contrast, running
on a 1.1 GHz mobile Pentium III we complete compres-
sion after 15 minutes while using only 6 megabyte of main
memory and no temporary disk space. However, their 11
hour and 11 gigabyte effort pays off with a state-of-the-art
connectivity compression rate that leave ours in the dust.
But so far we have not reordered a single triangle.

4 Reordering in a Delay Buffer

When the compressor is forced to follow the exact trian-
gle order in which the streaming mesh is written, it can not
avoid storing those log2(w) bits whenever a triangle does
not share a vertex with the previous. We can easily con-
struct a triangle sequence where no subsequent pair of tri-
angle uses the same vertex. However, if we allow the com-
pressor to locally reorder triangles with a simple strategy
for increasing the vertex re-use among subsequent triangle
we can significantly improve the compression rates.

We give the SMC compressor the option to store a user-
specified number of triangles in a delay buffer from which it
can choose any triangle for output. To globally preserve the
stream order we place a strict constraint on the maximum
delay (and the maximum rush) with which a triangle can
leave the buffer. Setting this delay to be the size of the buffer
allows us to efficiently implement both the buffering as well
as the delay control using a simple ring buffer.

The SMC compressor uses a greedy strategy that picks
the next triangle with the following priority order: First, are
triangles that share two vertices with the previous triangle.
Ties between candidates are broken by using the triangle
whose shared vertex has the lowest index. Second, are trian-
gles that share only one vertex but also finalize some vertex.
Third, are triangles that that share one vertex and have only
one active vertex. Ties between candidates are broken by
using the triangle whose active vertex has the highest index.
Fourth, are triangles that that share one vertex and have two
active vertices (neither of which is finalized, or it would be
second). Having this as the fourth instead of the third pri-
ority avoids a bias towards expensive join operations. Fifth,
are triangles that share one vertex but have no other active
vertex. And sixth, is the oldest triangle in the delay buffer.

4.1 Results

We have implemented this greedy reordering scheme and
report in Table 3 what effect different delay buffer sizes
ranging from 25 to 50,000 triangles have on the compres-
sion rates. Probably the biggest surprise is the enormous
improvement in compression rates that we can get with a
delay buffer that is as small as 25 triangles. For the com-
pacted “David” and “St. Matthew” models, which contain
56 and 372 million triangles, a maximal delay of 25 tri-
angles from the original order improves the bit-rates from
around 16 bpv down to around 7 bpv while having no affect
whatsoever on the width or the span. For a model of sev-
eral hundred million triangles even a delay buffer of 50,000
triangles does not have a significant impact on the overall
stream quality, while the compression rates come within a
factor of two of the ooc-compressor [8].

Only for the breadth and the depth orderings, the use of
the delay buffer can worsen the bit-rates. This is because
we destroy the overall regularity of the ordering that such
global orderings possess but which a scheme that makes
greedy local decisions can not create. Overall the bit-rates
of all mesh orderings seem to converge towards 4 to 5 bpv
as the buffer size is increased.

The drastic increase of width and span for the smaller
models, “armadillo” and “dragon”, when using a large delay
buffer should not be a surprise. The greedy triangle picking
strategy does not attempt to remove triangle as early as pos-
sible from the delay buffer. As long as it can find triangles
that share vertices with the previous triangle it neglects all
other triangles in the delay buffer. To preserve the overall
stream quality of the input mesh the size of the delay buffer
needs to be set in accordance to width and span. A delay
buffer of 10,000 or larger for meshes whose span is as low
as 1,197 (see Table 1) is clearly not the right choice.

Sometimes the delay buffer also improves width and
span. Although its greedy triangle selection strategy is not
designed for this purpose, it can lower the width of a “frac-
tal” front by “smoothing” its growth into triangle fans and
it can lower the span by delaying or advancing triangles
that appear before or after their neighbors. In the future we
want to investigate how delay buffers can be used to “re-
pair” streaming meshes that are locally incoherent, such as
the spectral and geometric orderings. In fact, we plan to im-
plement various streaming mesh “filters” that re-order with
different objectives and that can simply be plugged on top
of a reader or a writer.

5 Correcting a Deterministic Traversal
In the last section we greedily reordered incoming tri-

angles in a small delay buffer to increase the vertex re-
use among subsequent triangles before feeding them to the
SMC compressor. Even for small buffers this gave sig-
nificant improvements in compression while preserving the

Streaming Compression, jan 2005 7 additional review material for papers 0371



mesh bit-rates for delay buffers of different size [bpv] width and span change [%]
(ordering) none 25 50 100 250 500 1000 5000 10000 50000 250 10000 50000

armadillo
(vcompact) 39.35 34.72 33.03 31.46 30.00 29.26 28.60 23.73 20.52 12.93 - - - - - -

(spectral) 11.04 10.37 9.85 8.90 7.01 5.49 4.39 3.65 3.55 3.47 - - 9 46 41 292
(geometric) 13.26 10.16 9.32 8.26 6.74 5.56 4.52 3.56 3.52 3.49 - - - 88 25 478

(breadth) 3.27 2.48 2.51 2.56 2.65 3.09 3.26 3.62 3.61 3.50 - 8 7 430 32 1795
(depth) 2.66 2.71 2.77 2.85 2.99 3.41 3.76 3.64 3.57 3.52 - - - - 9 -

dragon
(vcompact) 21.62 15.24 13.30 12.05 11.36 11.21 11.14 9.49 7.35 4.83 - - -11 - -9 -11

(spectral) 12.02 11.03 10.48 9.54 7.74 6.31 5.28 4.42 4.33 4.30 - - 24 15 67 113
(geometric) 13.45 9.71 8.97 8.33 7.50 6.80 6.08 4.69 4.49 4.38 - - 5 36 58 177

(breadth) 5.23 3.71 3.70 3.69 3.73 3.78 3.97 4.55 4.53 4.40 - 6 6 286 42 1306
(depth) 4.35 4.50 4.49 4.50 4.56 4.60 4.88 5.11 4.85 4.63 - - - - - -

lucy
(vcompact) 13.60 12.69 12.43 12.25 12.08 11.96 11.75 9.68 8.46 5.96 - - - - - -

(spectral) 14.09 7.68 7.07 7.04 7.02 6.97 6.88 6.28 5.75 4.22 - - - - -7 5
(geometric) 15.18 13.56 13.41 13.30 13.19 12.05 10.49 6.22 4.95 3.80 - - - - 5 89

(breadth) 3.51 2.56 2.56 2.56 2.56 2.57 2.59 2.80 3.37 3.80 - - - 132 6 423
(depth) 3.32 3.37 3.37 3.36 3.37 3.36 3.40 3.60 4.19 3.88 - - - - - -

david1mm

(vcompact) 15.94 7.13 6.16 5.45 4.85 4.62 4.49 4.00 3.80 3.48 - - - - - -
(spectral) 14.30 7.94 7.11 6.64 6.61 6.58 6.54 6.23 5.91 4.51 - - - - -8 -

(geometric) 12.71 7.60 7.11 6.77 6.39 6.07 5.65 4.77 4.20 3.66 - - - 6 -9 70
st. matthew
(vcompact) 15.62 6.83 6.12 5.45 4.77 4.48 4.32 3.99 3.94 3.64 - - - - - -

(spectral) 15.60 8.51 7.71 7.06 6.34 5.95 5.87 5.83 5.77 5.48 - - - - - -
(geometric) 13.60 7.67 7.30 6.93 6.58 6.43 6.23 5.44 5.20 3.91 - - - - - 7

ppm
(vcompact) 19.64 15.11 15.07 14.96 13.92 11.02 8.82 6.41 6.15 6.05 - - - - - -

(spectral) 14.88 8.12 7.32 6.67 5.99 5.64 5.48 5.34 5.26 5.02 - - - - - -
(geometric) 16.84 14.80 14.75 14.56 13.11 11.32 10.17 8.56 7.97 6.35 - - - - - -

Table 3. Bit-rates for streaming connectivity compression when using delay buffers of different size. Respecting the maximal

allowed delay, triangles are greedily chosen from the buffer to maximize vertex re-use among subsequent triangles. Also

reported is the effect that greedy reordering has on the width and span given that this change is bigger than five percent.

global order. But no matter how we order the triangles, the
SMC compressor needs to encode at least one previous or
one explicit reference per triangle into the set of active ver-
tices. In contrast to non-streaming schemes it lacks the de-
terminism of choosing “on its own” where (i.e. adjacent to
which half-edge or vertex) it will encode the next triangle.

In this section we report initial results on our “experi-
mental” SMD compressor that takes a different approach to
streaming compression. This compressor chooses at which
active half-edge to encode the next triangle but corrects the
choice if necessary with a special command. The compres-
sor’s choice needs to be corrected either if the correspond-
ing triangle has not yet appeared in the stream or if other
triangles in the buffer have reached their maximal allowed
delay. But whenever the choice is acceptable there is no
longer the need to specify where to encode the next triangle
with a reference into the set of active vertices. For maximal
compression we like to have to correct the compressor as
seldom as possible.

Obviously there is no deterministic strategy that can
avoid corrections altogether for any triangle order, unless,
of course, we buffer all the triangles (which is exactly how
standard compressors operate). Our SMD compressor im-
plements a simple breadth-first strategy of the active half-
edges. The three half-edges that are created when the first
triangle is compressed are put into a traversal queue. At
every step the compressor chooses to compress the trian-
gle adjacent to the first active half-edge in the queue. If
this triangle has not yet appeared in the stream a skip com-
mand is encoded instead of this triangle’s configuration and
the compressor compresses the oldest triangle in the wait-
ing queue instead (using . If, however, this triangle simply
does not exist in the mesh a border command is encoded
and the compressor continues with the next element in the
traversal queue. We can detect borders case when the active
half-edge has at least one finalized vertex.

In Table 4 reports the connectivity compression rates that
are achieve with this approach together with the percentage

Streaming Compression, jan 2005 8 additional review material for papers 0371



of skip commands relative to the total number of triangles.
Roughly speaking, when there are less than two percent of
skip commands the SMD compressor beats the SMC com-
pressor and gives bit-rates that are nearly as good as those
of the ooc-compressor of Isenburg and Gumhold [8].

One interesting observation is that the original (vertex-
compacted) triangle ordering of “David” and “St. Matthew”
statues gives better results than their “spectral” or “geomet-
ric” re-orderings because they need fewer skips during com-
pression. We will have to re-design the strategy with which
the SMD compressor currently picks the next triangle to ac-
count for that. Our current strategy seems to benefit from
the “blocky” triangle order of these meshes.

Chopping meshes into spatial blocks and storing them
block after block with a compact vertex order results in
a small advancing front and a large stagnant front. Al-
though for each block the entire stagnant front will need
to be skipped, the entire advancing front can be fully pur-
sued. A smaller advancing front also needs fewer triangles
in the delay buffer to avoid skips. In a way those skips are
well invested because the skipped triangles are really far
down-stream. The geometric ordered meshes do not have a
stagnant front and a larger advancing front. When the delay
buffer barely stays ahead of the traversal front, each skip is
a lousy investment because the skipped triangle will arrive
very soon, but will then need an explicit index.

6 Summary and Conclusion

In this report have described a streaming compression
scheme that allows to encode meshes on-the-fly by operat-
ing on an partial representation of the connectivity that is
created and deleted as the mesh is fed in increments of sin-
gle triangle and vertices to the compressor. In contrast, pre-
vious schemes [10, 5, 9] expect to be given the entire mesh
up front and first construct a temporary representation that
allows them to traverse the mesh connectivity at will before
the compression process starts.

The advantage of a streaming compressor grows with the
size of the input mesh, as both construction and use of these
temporary representation becomes more and more cumber-
some. For the 372 million triangle “St. Matthew” statue, the
ooc-compressor by Isenburg and Gumhold [8] first spends
7 hours creating an 11 gigabyte data structure on disk be-
fore the actual compression starts that then takes another 4
hours and uses 384 megabytes of main memory. In contrast,
we can complete compression in 15 minutes using only 6
megabyte of main memory and no temporary disk space.

When we preserve the exact triangle order our connec-
tivity compression rates are a lot worse compared to those
of Isenburg and Gumhold [8]. However, employing a small
buffer within we delay triangle to put them into an order that
is more “compressible” allows us to significantly improve
compression. While streaming connectivity compression

mesh bit rates for delay buffer size
(ordering) 50,000 500,000 2,000,000

armadillo
(vcompact) 18.18 (29.2) 2.15 (0.0) 2.15 (0.0)

(spectral) 2.51 (1.6) 1.97 (0.0) 1.97 (0.0)
(geometric) 2.36 (1.0) 1.97 (0.0) 1.97 (0.0)

dragon
(vcompact) 4.89 (4.1) 3.24 (0.2) 3.12 (0.0)

(spectral) 3.25 (0.7) 3.06 (0.0) 3.06 (0.0)
(geometric) 3.81 (2.2) 3.08 (0.0) 3.08 (0.0)

lucy
(vcompact) 9.74 (15.3) 3.82 (3.0) 3.19 (1.9)

(spectral) 4.52 (5.3) 2.93 (1.7) 2.30 (0.4)
(geometric) 4.61 (5.8) 2.93 (1.8) 2.19 (0.2)

david1mm

(vcompact) 2.78 (1.7) 2.11 (0.3) 2.03 (0.1)
(spectral) 5.60 (8.5) 2.96 (1.9) 2.32 (0.7)

(geometric) 4.84 (6.9) 3.34 (3.2) 2.66 (1.6)
st. matthew
(vcompact) 3.21 (2.6) 2.22 (0.4) 2.14 (0.2)

(spectral) 6.91 (9.2) 4.40 (4.7) 2.71 (1.2)
(geometric) 9.40 (21.1) 4.03 (4.2) 3.45 (3.0)

ppm
(vcompact) 17.55 (33.7) 16.02 (29.7) 6.57 (6.8)

(spectral) 5.38 (5.4) 3.93 (2.6) 3.25 (1.2)
(geometric) 20.37 (48.3) 6.87 (8.6) 4.90 (4.3)

Table 4. The connectivity compression rates of our exper-

imental SMD compressor in bits per vertex for different

delay buffer sizes. In brackets we report the percentage

of skip commands compared to the total number of trian-

gles. Keeping 500,000 (2,000,000) triangles in the buffer

results in a memory footprint of roughly 50 (195) MB.

will in general not be able to rival those achieved by non-
streaming approaches, it makes compression a more useful
tool in a typical mesh processing pipeline because it remains
transparent to the user.

References
[1] A. Anonymous. Lossless compression of predicted floating-point

geometry. JCAD, 2005. to appear.
[2] A. Anonymous. Streaming meshes. submitted, 2005.
[3] R. Bar-Yehuda and C. Gotsman. Time/space tradeoffs for polygon

mesh rendering. ACM Trans. on Graphics, 15(2):141–152, 1996.
[4] A. Bogomjakov and C. Gotsman. Universal rendering sequences

for transparent vertex caching of progressive meshes. In Graphics
Interface’01 Proceedings, pages 81–90, 2001.

[5] S. Gumhold and W. Strasser. Real time compression of triangle
mesh connectivity. In SIGGRAPH’98 Proc., pages 133–140, 1998.

[6] J. Ho, K. Lee, and D. Kriegman. Compressing large polygonal mod-
els. In Visualization’01 Proceedings, pages 357–362, 2001.

[7] H. Hoppe. Optimization of mesh locality for transparent vertex
caching. In SIGGRAPH 99 Proceedings, pages 269–276, 1999.

[8] M. Isenburg and S. Gumhold. Out-of-core compression for gigantic
polygon meshes. In SIGGRAPH 2003 Proc., pages 935–942, 2003.

[9] J. Rossignac. Edgebreaker: Connectivity compression for triangle
meshes. IEEE Transactions on Visualization and Computer Graph-
ics, 5(1):47–61, 1999.

[10] C. Touma and C. Gotsman. Triangle mesh compression. In Graph-
ics Interface’98 Proceedings, pages 26–34, 1998.

Streaming Compression, jan 2005 9 additional review material for papers 0371


