
Triangle Fixer: Edge-based Connectivity Compression

Martin Isenburg

University of North Carolina at Chapel Hill
isenburg@cs.unc.edu

1 Introduction

Encoding the connectivity of triangle meshes has recently
been the subject of intense study and many representa-
tions have been proposed [9, 10, 4, 8, 2, 5]. The sudden
interest in this area is fueled by the emerging demand for
interactive visualization of 3D data sets in a networked
environment (e.g. VRML over the Internet). Since trans-
mission bandwidth across wide-area networks is a scarce
resource, compact encodings for 3D models are of great
advantage.

Common representations for triangle meshes use two
lists: a list of vertices and a list of triangles. The list of
vertices contains coordinates that specify a physical loca-
tion for each mesh vertex. This is referred to as the ge-
ometry of the triangle mesh. The list of triangles contains
triplets of indices into the vertex list that specify the three
vertices of each triangle. This is referred to as the con-
nectivity of the triangle mesh. For triangle meshes with
v vertices, the triangle list uses at least 3 log

2
v bits per

triangle. Euler’s relation implies that there are approxi-
mately twice as many triangles as vertices, giving a total
of 6v log

2
v bits for the mesh connectivity.

In this paper we introduce a simple and efficient scheme
for encoding the connectivity of a triangle mesh. Using
seven operations our algorithm traverses all edges of the
mesh and records a sequence of corresponding labels T,
R, L, S, E, H, and M. For every triangle there is a label
of type T, for every hole there is a label of type H, and
for every handle there is a label of type M. The remaining
labels R, L, S, and E correspond to the edges of a vertex
spanning tree that ‘fixes’ triangles and holes together.

2 Connectivity Compression Techniques

Most efficient connectivity compression schemes for tri-
angle meshes [9, 10, 4, 8, 2, 5] follow the same pattern:
They encode the mesh through a compact and often in-
terwoven representation of a vertex spanning tree and
its corresponding dual, a triangle spanning tree. Neither
the triangle nor the vertex spanning tree are by themself
sufficient to capture this connectivity information. All
schemes start at an arbitrary edge and traverse the vertices
and the triangles of the mesh using a deterministic strat-
egy (e.g. breadth or depth first search).

Turan [11] was one of the first to observe that the fact
that planar graphs could be decomposed into two span-
ning trees implied that they could be encoded in a constant
number of bits per vertex. He gave an encoding that uses
12 bits per vertex (bpv).

Keeler and Westbrook improved Turan’s scheme for
encoding planar graphs. They specialize their encoding
of planar graphs and maps [6] and achieve a guaranteed
4.6 bpv encoding for simple triangle meshes.

Taubin and Rossignac have the only scheme that ex-
plicitly encodes both the vertex and the triangle spanning
tree. Their Topological Surgery method [9] cuts a mesh
along a set of edges that corresponds to a spanning tree
of vertices. This produces a simple mesh without inter-
nal vertices that represents the dual triangle spanning tree.
A rather complicated decoding algorithm can reconstruct
the connectivity from these two trees. Run-length encod-
ing both trees results in bit-rates of around 4 bpv.

Touma and Gotsman’s Triangle Mesh Compression
scheme [10] encodes the degree of each vertex along a
spiraling vertex tree. For branches in the tree they need an
additional split code. This technique implicitely encodes
the triangle spanning tree. They compress the resulting
code sequence using a combination of run-length and en-
tropy encoding and achieve bit-rates as low as 0.2 bvp for
very regular meshes and 2 ˜ 3 bpv otherwise.

Isenburg and Snoeyink’s Mesh Collapse Compres-
sion [5] encodes the mesh connectivity with an invert-
ible sequence of edge contract and edge divide operations.
They record a vertex degree for each contract operation
and a start and an end symbol for each divide operation.
Entropy encoding this code sequence results in bit-rates
that range from 1.1 to 3.6 bpv.

Gumhold and Strasser [4] introduce a compressed rep-
resentation for triangle meshes that traverses the triangles
of the mesh and includes them into a cut-border using six
different operations. The reported compression rates vary
from 3.5 to 5 bpv, but no upper bound is given.

Independently developed but similar is Rossignac’s
Edgebreaker scheme [8]. Seven operations are used to in-
clude triangle after triangle into an active boundary. For
meshes without holes and handles a guaranteed 4 bpv en-
coding exists. The work by King and Rossignac [7] im-

Triangle Fixer, Isenburg 1 appeared in EWCG ’2000

proves this bound to 3.67 bpv. This is currently the low-
est worst case bound known and lies within 13% of the
theoretical lower limit by Tutte [12].

De Floriani et al. [2] presented a technique that is
closely related to the two methods above. Their compres-
sion algorithm is simpler as it uses only four operations
to traverse the triangles of the mesh. However, this limits
their scheme to the class of extendably shellable triangle
meshes [1]. For those a bit-rate of 6 bpv is guaranteed and
experimental bitrates of 4.1 to 4.5 bpv are reported. Trian-
gle meshes with holes and handles can be compressed by
partitioning them into shellable patches. This increases
the observed bitrate to 5 bpv and higher. Furthermore it
requires the replication of all vertices shared by more than
one patch (up to 30%).

3 Triangle Fixer

Inspired by Rossignac’s Edgebreaker method [8], we pro-
pose a novel edge-based approach for connectivity com-
pression. The Triangle Fixer scheme expects the input
mesh to be a 2-manifold surface with boundary composed
of consistently oriented triangles. This means that the
neighbourhood of each vertex can be mapped to a disk or
a half-disk. The input mesh might consist of several con-
nected components and can have multiple holes or han-
dles.

The connectivity of the input mesh is encoded as a se-
quence of labels T, R, L, S, E, H, and M. The total num-
ber of labels equals the number of mesh edges. For every
triangle there is a label of type T, for every hole there is
a label of type H, and for every handle there is a label of
type M. The remaining labels R, L, S, and E describe how
to ‘fix’ triangles and holes together.

Subsequently this sequence of labels is compressed
into a compact bit-stream by assigning a unique bit-
pattern to every label. We observe that dependen-
cies among subsequent labels can be exploited for more
compact encodings. Therefore we compress the la-
bel sequence with a simple order-3 adaptive arithmetic
coder [13] and achieve high compression ratios.

3.1 Encoding
The encoding process defines an active boundary in
clockwise orientation around an arbitrary edge of the
mesh. This initial boundary has two boundary vertices
and two boundary edges. One of them becomes the gate
of the boundary. The gate of the active boundary is the
active gate.

In every step of the encoding process the active gate is
labeled with either T, R, L, S, E, H, or M. Which label the
active gate is given depends on its adjacency relation to
the boundary. After recording the label, the boundary is
updated and a new active gate is selected. Depending on
the label the boundary expands (T and H), shrinks (R and

offset1

offset2

size

ODEHO 7

ODEHO 5

ODEHO /

ODEHO 6

ODEHO (

ODEHO +

ODEHO 0

gate popped
from stack

gate pushed
on stack

gate removed
from stack

Figure 1: The labels T, R, L, S, E, H, and M of the Triangle
Fixer encoding scheme.

Triangle Fixer, Isenburg 2 appeared in EWCG ’2000

L), splits (S), ends (E), or merges (M). See Table 1 for a
summary. An initially empty stack of boundaries is used
to temporarily buffer boundaries. The encoding process
terminates after exactly e iterations where e is the number
of mesh edges.

label boundaries edges vertices
init 1 2 0
T – +1 –
R – -2 +1
L – -2 +1
S +1 – –
E -1 -2 +2

Hsize – +(size-2) –
Midx;off1;off2

-1 -2 –

Table 1: The relative changes in number of boundaries,
boundary edges, and abandoned vertices for each label.

Figure 1 illustrates for all seven labels the situation in
which they apply and the respective updates for gate and
boundary that they imply. They are as follows:

label T The active gate is not adjacent to any other
boundary edge, but to an unprocessed triangle. The
active boundary is extended around this triangle.
The new active gate is the right edge of the included
triangle.

label R The active gate is adjacent to the next edge along
the active boundary. The gate is ‘fixed’ together with
this edge. The new active gate is the previous edge
along the active boundary.

label L The active gate is adjacent to the previous edge
along the active boundary. The gate is ‘fixed’ to-
gether with this edge. The new active gate is the next
edge along the active boundary.

label S The active gate is adjacent to an edge of the ac-
tive boundary which is neither the next nor the pre-
vious. The gate is ‘fixed’ together with this edge,
which splits the active boundary. The previous edge
and the next edge along the active boundary become
gates for the two resulting boundaries. One is pushed
on the stack and encoding continues on the other.

label E The active gate is adjacent to an edge of the ac-
tive boundary which is both, the next edge and the
previous edge. Then the active boundary consists
of only two edges which are ‘fixed’ together. If the
boundary stack is empty the encoding process termi-
nates. Otherwise it continues on the boundary that is
popped from the stack.

label Hsize The active gate is not adjacent to any other
boundary edge, but to an unprocessed hole. The ac-
tive boundary is extended around this hole. The size
of the hole (e.g. the number of edges around the
hole) is stored with the label. The new active gate
is the rightmost edge of the included hole.

label Midx;off1;off2
The active gate is adjacent to a

boundary edge which is not from the active bound-
ary, but from a boundary in the stack. ‘Fixing’ the
two edges together merges the two boundaries. Con-
sequently this boundary is removed from the stack.
Its former position idx in the stack and two offset
values (see Figure 1) are stored with the label. The
new active gate is the previous edge along the bound-
ary from the stack.

An example run for the encoding and the decoding pro-
cess is given in Figure 2 and 3. We use an enhanced
half-edge structure [3] during encoding and decoding to
store the mesh connectivity and to maintain the bound-
aries. Besides pointers to the origin, to the next and the
previous edge around the origin, and to the invers half-
edge, we have two pointers to reference a next and a pre-
vious boundary edge. This way we organize all half-edges
of the same boundary into a cyclic doubly-linked list.

The Triangle Fixer encoding scheme as presented so far
captures the connectivity of an unlabeled mesh. Together
with a permutation of vertex data it captures the connec-
tivity of a labeled mesh. The vertex data, such as coordi-
nates, texture information, and normals, are stored in the
order in which the vertices are abandoned by the encoding
process. Vertices are abandoned in the moment they are
removed from the active boundary. The operations R and
L remove one boundary vertex, the operation E removes
two boundary vertices.

3.2 Decoding
The recorded information (e.g. the sequence of labels) is
sufficient to uniquely invert each boundary and gate up-
date that was performed during encoding. Thus, we de-
code the mesh connectivity by processing the labels in
reverse order, while performing the inverse of every la-
bel operation. Every update can be performed in constant
time, which gives us linear time complexity. An excep-
tion is the inverse operation for label M, which requires
the traversal of offset1 + offset2 edges. However, labels
of type M correspond to handles in the mesh, which are
of rare occurrance.

This reconstructs the connectivity of the unlabeled
mesh. Using the reverse of the of vertex data permuta-
tion produced by the encoding process, the mesh label-
ing is reconstructed. The vertex data is assigned in the or-
der in which the vertices are encountered by the decoding

Triangle Fixer, Isenburg 3 appeared in EWCG ’2000

process. Vertices are encountered in the moment they are
inserted into the active boundary. The operations R and
L insert one boundary vertex, the operation E inserts two
boundary vertices.

mesh characteristics bits per vertex
name vertices holes handles fixed aac-3

marcy-U1 42943 1 - 4.008 2.432
marcy-U2 28510 1 - 4.015 2.495
marcy-U3 13057 1 - 4.017 2.534
marcy-U4 6221 1 - 4.013 2.561
marcy-A1 15389 1 - 4.002 2.382
marcy-A2 15233 1 - 4.001 2.368
marcy-A3 15515 1 - 4.003 2.369
marcy-A4 15624 1 - 4.001 2.357

shape 2562 - - 3.998 0.769
fandisk 6475 - - 4.007 1.671
eight 766 - 2 4.090 1.434
cow 3078 22 - 3.987 2.364

femur 3897 - 2 4.161 3.047
pieta 3476 - 7 4.147 2.932
skull 10952 - 51 4.221 2.957

bunny 34834 5 - 4.001 1.732
phone 33204 3 - 4.054 2.700

Table 2: Example results: The two compression ratio are
achieved using a fixed bit assignment scheme (fixed) and
an order-3 adaptive arithmetic coder (acc-3). Marcy U1-
U4 are terrains at uniform accuracy, Marcy A1-A4 are ter-
rains at variable accuracy, the remaining meshes represent
three dimensional objects.

3.3 Compression and Results
Triangle meshes of v vertices without holes or handles
have 3v � 6 edges and 2v � 4 triangles. This means that
2v� 4 labels are of type T, while the remaining v � 2 la-
bels have type R, L, S, or E. An encoding that uses 1 bit
for label T and 3 bits each for the other labels guarantees
a 5v � 10 bit encoding.

However, we notice a correlation
after TRLSE
T, R 1 2 4 3 4

L 1 4 2 4 3
S 1 4 3 4 2
E 1 2 4 4 3

among subsequent labels that is con-
sistent across our wide range test mod-
els. For instance label R is more likely
to be followed by label R than by la-
bel L, whereas label L is more likely to
be followed by another label of type L.
We can exploit this correlation for compression by mak-
ing the bit assignment dependent on the last label. Using
1 bit for label T and a varying assignment of 2, 3, 4 and 4
bits for labels R, L, S, and E guarantees a 6v � 12 bit en-
coding, while being in practice close to 4v bits. The table
on the right describes the bit assignment we use.

The number of holes and handles of a mesh is generally
small and so is the number of labels H and M. We observe
that label T is never followed by labels L or E. So we can

encode label H with the label combination TL and label
M with the combination TE. The associated integer values
are compressed subsequently using a standard technique
for encoding variable sized integers into bit-streams.

The correlation among subsequent labels invites arith-
metic encoding [13]. Using a simple order-3 adaptive
arithmetic coder achieves excellent compression rates.
Since the input sequence to the arithmetic coder contains
only five different symbols, it can be efficiently imple-
mented using less than 4 KB of memory for the proba-
bility tables. Experimental results for various meshes are
listed in Table 2.

4 Summary and Acknowledgments

We have presented a new edge-based algorithm for com-
pressing the connectivity information of triangle meshes.
The Triangle Fixer scheme is very simple to implement
and the achieved compression ratio compare well with
those of previously reported schemes.

Many thanks to Paola Magillo for providing her set
of example meshes, to Michael Maniscalco and Freder-
ick Wheeler for technical support on arithmetic encoding,
and to Jack Snoeyink for reviewing the paper.

5 References
[1] H. Bruggesser and P. Mani. Shellable decompositions of cells and

spheres. Math. Scand., 29:197–205, 1971.
[2] L. de Floriani, P. Magillo, and E. Puppo. A simple and efficient

sequential encoding for triangle meshes. In Proceedings of 15th
European Workshop on Computational Geometry, pages 129–133,
1999.

[3] L. Guibas and J. Stolfi. Primitives for the manipulation of gen-
eral subdivisions and the computation of Voronoi Diagrams. ACM
Transactions on Graphics, 4(2):74–123, 1985.

[4] S. Gumhold and W. Strasser. Real time compression of triangle
mesh connectivity. In SIGGRAPH’98 Conference Proceedings,
pages 133–140, 1998.

[5] M. Isenburg and J. Snoeyink. Mesh collapse compression. In Pro-
ceedings of SIBGRAPI’99 - 12th Brazilian Symposium on Com-
puter Graphics and Image Processing, pages 27–28, 1999.

[6] K. Keeler and J. Westbrook. Short encodings of planar graphs and
maps. In Discrete Applied Mathematics, pages 239–252, 1995.

[7] D. King and J. Rossignac. Guaranteed 3.67v bit encoding of planar
triangle graphs. In Proceedings of 11th Canadian Conference on
Computational Geometry, pages 146–149, 1999.

[8] J. Rossignac. Edgebreaker: Connectivity compression for trian-
gle meshes. IEEE Transactions on Visualization and Computer
Graphics, 5(1), 1999.

[9] G. Taubin and J. Rossignac. Geometric compression through topo-
logical surgery. ACM Transactions on Graphics, 17(2):84–115,
1998.

[10] C. Touma and C. Gotsman. Triangle mesh compression. In GI’98
Conference Proceedings, pages 26–34, 1998.

[11] G. Turan. Succinct representations of graphs. Discrete Applied
Mathematics, 8:289–294, 1984.

[12] W.T. Tutte. A census of planar triangulations. Canadian Journal
of Mathematics, 14:21–38, 1962.

[13] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for
data compression. Communications of the ACM, 30(6):520–540,
1987.

Triangle Fixer, Isenburg 4 appeared in EWCG ’2000

1716 18 19

76 8 9

21 3 4

1211 13 14

20

10

5

15

7 7 7 5

7 5 77 57

75 75 7 675

5 (7 5(7

Figure 2: An example run showing the final 24 iterations of the encoding algorithm. Almost the entire mesh has already
been processed except for the thirteen triangles shown in white. The interior of the active boundary is shaded dark, the
active gate is denoted by a black arrow, and gates in the stack are shown as grey arrows. The label(s) in the lower left
corner of each frame express the performed update(s) since the previous frame (compare to Figure 1).

1716 18 19

76 8 9

21 3 4

1211 13 14

20

10

5

15

5 7 (5

6 7 5 77

57 5 77 557

5 7 7 777

(

Figure 3: Here the first 24 iterations of the correspoding decoding process that reconstructs the connectivity of the mesh
from the sequence of labels produced in Figure 2. Note that the labels are processed in reverse order.

Triangle Fixer, Isenburg 5 appeared in EWCG ’2000

APPENDIX (sneak preview)

The motivation for our edge-based approach to connectiv-
ity encoding was the design of a compression scheme for
more general polygon meshes. That is, meshes composed
of a mix of triangles, quadrangles, pentagons, hexagons,
and higher degree faces. It proved to be a versatile tech-
nique with natural extensions towards efficient encodings
for stripified triangle meshes and polygon meshes that
contain structural information.

This is accomplished by a design choice that is the
crucial difference between our scheme and similar ap-
proaches [4, 8, 2]. Our method slightly uncouples the
traversal of the triangle spanning tree from the traversal
of its corresponding vertex spanning tree. Triangles are
included into the active boundary without immediately
specifying their adjacency relation to all previously pro-
cessed mesh components. This happens delayed and ex-
plicit through the labels R, L, S, E, and M.

A Face Fixer

The Triangle Fixer method can be seen as a specializa-
tion of our Face Fixer scheme for the case of fully trian-
gulated input meshes. The Face Fixer scheme uses the la-
bels F3, F4, F5, F6, F7, etc. to encode polygonal faces
in the mesh (see Figure 4). Label F3 corresponds to la-
bel T and encodes triangles in the mesh. The other labels
encode quadrangles (F4), pentagons (F5), hexagons (F6),
and so on. Some example results for various well-known
polygon models are given in Table 3.

Face Fixer is the first compression method that encodes
polygon meshes directly. Previous approaches compress
a triangulated version of the input mesh and mark edges
with bits to recover the polygon information.

name vrts aac-3
triceratops 2832 346 2266 140 63 19 2.115

galleon 2372 336 1947 40 18 43 2.595
chessna 3745 900 2797 180 27 23 2.841
shark 2560 188 2253 83 29 9 1.670
cupie 2984 384 2506 114 10 18 2.307

Table 3: Popular polygonal models, statistics about the
faces they contain, and the achieved connectivity com-
pression in bits per vertex with Face Fixer.

B Triangle Strip Compression

Supported in software and hardware, triangle strips are
used for efficient rendering of triangle meshes. Since gen-
erating a good set of triangle strips is a hard problem, it is
desirable to do this just once and store the computed strips
with the mesh. However, no previously reported mesh en-
coding scheme is designed to include triangle strip infor-
mation into the compressed representation.

ODEHO)�

ODEHO)�

ODEHO)�

ODEHO)�

Figure 4: Face Fixer uses labels F3, F4, F5, F6, ... to en-
code polygonal faces in a mesh.

Our algorithm encodes the stripification and the con-
nectivity of a triangular mesh in an interwoven fashion,
that exploits the correlation between the two. It follows
the concept of encoding mesh connectivity through an in-
terwoven representation of a triangle spanning tree and its
dual vertex spanning tree. But instead of traversing a tri-
angle spanning tree using a deterministic search strategy
we let the underlying stripification be the guide. The ad-
jacency information that is encoded while walking along
a strip means progress for both, the compression of con-
nectivity and the compression of stripification.

name vertices strips fixed aac-3
marcy-U3 13057 707 4.313 3.755

shape 2562 2 3.092 0.617
cow 3078 152 4.002 3.238

femur 3897 237 4.484 4.021
bunny 34834 1229 3.692 2.399

Table 4: Compressing connectivity and stripification with
a fixed bit scheme (fixed) and an arithmetic coder (acc-3).

Triangle Fixer, Isenburg 6 appeared in EWCG ’2000

