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Figure 1: (a) - (g) Visualization of the decompression process for the St. Matthew statue. (h) Example Out-of-Core Rendering.

Abstract

Polygonal models acquired with emerging 3D scanning technol-
ogy or from large scale CAD applications easily reach sizes of
several gigabytes and do not fit in the address space of common
32-bit desktop PCs. In this paper we propose an out-of-core mesh
compression technique that converts such gigantic meshes into a
streamable, highly compressed representation. During decompres-
sion only a small portion of the mesh needs to be kept in memory
at any time. As full connectivity information is available along the
decompression boundaries, this provides seamless mesh access for
incremental in-core processing on gigantic meshes. Decompres-
sion speeds are CPU-limited and exceed one million vertices and
two million triangles per second on a 1.8 GHz Athlon processor.

A novel external memory data structure provides our compres-
sion engine with transparent access to arbitrary large meshes. This
out-of-core mesh was designed to accommodate the access pattern
of our region-growing based compressor, which - in return - per-
forms mesh queries as seldom and as local as possible by remem-
bering previous queries as long as needed and by adapting its traver-
sal slightly. The achieved compression rates are state-of-the-art.
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1 Introduction
The standard representation of a polygon mesh uses an array
of floats to specify the vertex positions and an array of inte-
gers containing indices into the vertex array to specify the poly-
gons. For large and detailed models this representation results
in files of gigantic size that consume large amount of storage
space. The St. Matthew model from Stanford’s Digital Michelan-
gelo Project [Levoy et al. 2000], for example, has over 186 million
vertices resulting in more than six gigabytes of data. Transmission
of such gigantic models over the Internet consumes hours and even
loading them from the hard drive takes tens of minutes.

The need for more compact representations has motivated re-
search on mesh compression and a number of efficient schemes
have been proposed [Deering 1995; Taubin and Rossignac 1998;
Touma and Gotsman 1998; Gumhold and Strasser 1998; Li and
Kuo 1998; Rossignac 1999; Bajaj et al. 1999; Isenburg and
Snoeyink 2000; Lee et al. 2002]. Ironically, none of these schemes
is capable—at least not on common desktop PCs—to deal with
meshes of the giga-byte size that would benefit from compression
the most. Current compression algorithms and some of the corre-
sponding decompression algorithms can only be used when con-
nectivity and geometry of the mesh are small enough to reside in
main memory. Realizing this limitation, Ho et. al [2001] propose
to cut gigantic meshes into manageable pieces and encode each sep-
arately using existing techniques. However, partitioning the mesh
introduces artificial discontinuities. The special treatment required
to deal with these cuts not only lowers compression rates but also
significantly reduces decompression speeds.

Up to a certain mesh size, the memory requirements of the com-
pression process could be satisfied using a 64-bit super-computer
with vast amounts of main memory. Research labs and industries
that create giga-byte sized meshes often have access to such equip-
ment. But to decompress on common desktop PCs, at least the
memory foot-print of the decompression process needs to be small.
In particular, it must not have memory requirements in the size of
the decompressed mesh. This eliminates a number of popular multi-
pass schemes that either need to store the entire mesh for connec-
tivity decompression [Taubin and Rossignac 1998; Rossignac 1999;
Bajaj et al. 1999] or that decompress connectivity and geometry in



separate passes [Isenburg and Snoeyink 2000; Karni and Gotsman
2000; Szymczak et al. 2002].

This leaves us with all one-pass coders that can perform decom-
pression in a single, memory-limited pass over the mesh. Such
schemes (de-)compress connectivity and geometry information in
an interwoven fashion. This allows streaming decompression that
can start producing mesh triangles as soon as the first few bytes have
been read. There are several schemes that could be implemented as
one-pass coders [Touma and Gotsman 1998; Gumhold and Strasser
1998; Li and Kuo 1998; Lee et al. 2002].

In this paper we show how to compress meshes of giga-byte size
in one piece on a standard PC using an external memory data struc-
ture that provides transparent access to arbitrary large meshes. Our
out-of-core mesh uses a caching strategy that accommodates the
access pattern of the compression engine to reduce costly loads of
data from disk. Our compressor is based on the scheme of Touma
and Gotsman [1998] and uses degree coding and linear prediction
coding to achieve state-of-the-art compression rates. It borrows
ideas from Isenburg [2002] to adapt the traversal, from Gumhold
and Strasser [1998] to handle mesh borders, and from Guéziec et
al. [1998; 1999] to deal with non-manifold meshes. Our com-
pressed format allows streaming, small memory foot-print decom-
pression at speeds of more than 2 million triangles a second.

The snap-shots in Figure 1 visualize the decompression process
on the St. Matthew statue. For steps (a) to (g) we stored every
1000th decompressed vertex in memory, while (h) is an example
out-of-core rendering. Using less than 10 MB of memory, this 386
million triangle model loads and decompresses from a 456 MB file
off the hard-drive in only 174 seconds. At any time only the green
boundaries need to be kept in memory. Decompressed vertices and
triangles can be processed immediately, for example, by sending
them to the graphics hardware. The out-of-core rendering took 248
seconds to complete with most of the additional time being spent on
computing triangle normals. These measurements were taken on a
1.8 Ghz AMD Athlon processor with an Nvidia Geforce 4200 card.

Our compressed format has benefits beyond efficient storage and
fast loading. It is a better representation of the raw data for perform-
ing out-of-core computations on large meshes. Indexed mesh for-
mats are inefficient to work with and often need to be de-referenced
in a costly pre-processing step. The resulting polygon soups are
at least twice as big and, although they can be efficiently batch-
processed, provide no connectivity information. Our compressed
format streams gigantic meshes through limited memory and pro-
vides seamless mesh access along the decompression boundaries,
thereby allowing incremental in-core processing on the entire mesh.

The remainder of this paper is organized as follows: The next
section summarizes related work on out-of-core processing, out-of-
core data structures, and mesh compression. In Section 3 we in-
troduce our out-of-core mesh and describe how to build it from an
indexed mesh. Then, in Section 4, we describe our compression al-
gorithm and report resulting compression rates and decompression
speeds on the largest models that were available to us. The last sec-
tion summarizes our contributions and evaluates their benefits for
other algorithms that process gigantic polygon meshes.

2 Related Work
Out-of-core or external memory algorithms that allow to process
vast amounts of data with limited main memory are an active re-
search area in visualization and computer graphics. Recently pro-
posed out-of-core methods include isosurface extraction, surface
reconstruction, volume visualization, massive model rendering,
and—most relevant to our work—simplification of large meshes.
Except for the work by Ho et al. [2001], out-of-core approaches to
mesh compression have so far received little attention.

The two main computation paradigms of external memory tech-
niques are batched and online processing: For the first, the data is

streamed in one or more passes though the main memory and com-
putations are restricted to the data in memory. For the other, the data
is processed through a series of (potentially random) queries. In or-
der to avoid costly disk access with each query (e.g. thrashing) the
data is usually re-organized to accommodate the anticipated access
pattern. Online processing can be accelerated further by caching or
pre-fetching of data that is likely to be queried [Silva et al. 2002].

Out-Of-Core Simplification methods typically make heavy
use of batch-processing. Lindstrom [2000] first creates a vertex
clustering [Rossignac and Borrel 1993] in the resolution of the out-
put mesh and stores one quadric error matrix per occupied grid
cell in memory. Indexed input meshes are first dereferenced into
a polygon-soup and then batch-processed one a triangle at a time
by adding its quadric to all cells in which it has a vertex. Later,
Lindstrom showed together with Silva [2001] that the limitation of
the output mesh having to fit in main memory can be overcome
using a series of external sorts.

A different approach for simplifying huge meshes was sug-
gested by Hoppe [1998] and Bernardini et al. [2002]: The input
mesh is partitioned into pieces that are small enough to be pro-
cessed in-core, which are then simplified individually. The parti-
tion boundaries are left untouched such that the simplified pieces
can be stitched back together seamlessly. While the hierarchical
approach of Hoppe automatically simplifies these boundaries at the
next level, Bernardini et al. simply process the mesh more than
once—each time using a different partitioning.

The methods discussed so far treat large meshes different from
small meshes as they try to avoid performing costly online pro-
cessing on the entire mesh. Therefore the output produced by an
out-of-core algorithm is usually of lower quality than that of an in-
core algorithm. Addressing this issue, Cignoni et. al [2003] propose
an octree-based external memory data structure that provides algo-
rithms with transparent online access to huge meshes. This makes it
possible to, for example, simplify the St. Matthew statue from 386
to 94 million triangles using iterative edge contraction.

Albeit substantial differences, our out-of-core mesh is motivated
by the same idea: it provides the mesh compressor transparent ac-
cess to the connectivity and geometry of gigantic meshes. There-
fore our compressor will produce the same result, no matter if used
with our out-of-core mesh or with the entire mesh stored in-core.

Out-Of-Core Data Structures for Meshes have also been
investigated by McMains et. al [2001]. They reconstruct complete
topology information (e.g. including non-manifoldness) from poly-
gon soups by making efficient use of virtual memory. Their data
structure provides much more functionality than our compressor
needs and so its storage requirements are high. Also, using virtual
memory as a caching strategy would restrict us to 4 GB of data on
a PC and we will need more than 11 GB for the St. Matthew statue.

The octree-based external memory mesh of Cignoni et. al [2003]
could be adapted to work with our mesh compressor. It has roughly
the same build times and stores only slightly more data on disk.
However, their octree nodes do not store explicit connectivity in-
formation, which has to be built on the fly. While this is acceptable
for a small number of loads per node, the query order of our com-
pressor might require to load some nodes more often—especially
if we used their octree-based mesh: its nodes are created through
regular space partitioning, which is insensitive to the underlying
connectivity, while our clusters are compact along the surface.

Mesh Compression techniques have always overlooked the
memory requirements of the decompression process. So far meshes
were moderately sized and memory usage was at most linear in
mesh size. However, today’s meshes most in need of compression
are those above the 10 million vertex barrier. The memory limi-
tation on common desktop PCs allows the decompression process
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only a single, memory-limited pass over such meshes. This elimi-
nates all schemes that need to store the entire mesh for connectivity
decompression [Taubin and Rossignac 1998; Rossignac 1999; Ba-
jaj et al. 1999] or that decompress connectivity and geometry in
separate passes [Isenburg and Snoeyink 2000; Karni and Gotsman
2000; Szymczak et al. 2002]. Naturally, this constraint also pro-
hibits the use of progressive approaches that require random mesh
access for refinement operations during decompression [Taubin
et al. 1998; Cohen-Or et al. 1999; Pajarola and Rossignac 2000;
Alliez and Desbrun 2001a]. And finally, the sheer size of the data
prohibits computation-heavy techniques such as traversal optimiza-
tions [Kronrod and Gotsman 2002], vector quantization [Lee and
Ko 2000], or expensive per-vertex computations [Lee et al. 2002].

This leaves all those methods whose decompressor can be re-
stricted to a single, memory-limited, computation-efficient pass
over the mesh. This coincides with all those methods whose com-
pressor can be implemented as a fast one-pass coder [Touma and
Gotsman 1998; Gumhold and Strasser 1998; Li and Kuo 1998].

All these compression algorithms require access to explicit
connectivity information, which is usually constructed in a pre-
processing step. However, if the mesh does not fit into main mem-
ory already this is not possible. Therefore, Ho et. al [2001] sug-
gest to cut large meshes into smaller pieces that can be dealt with
in-core. They process each piece separately by first constructing
explicit connectivity, which is then compressed with the two-pass
coder of Rossignac [1999], before compressing the vertex positions
with the parallelogram predictor of Touma and Gotsman [1998] in
a third pass. They record additional information that specifies how
to stitch the pieces back together after decoding.

The compression scheme we propose here has several advan-
tages over that of Ho et. al [2001]. As we do not break up the
model, our compression rates are 20 to 30 percent better. As we can
decode the entire model in a single pass, our decompression speeds
are about 100 times faster. Finally, as our decompressor streams
the entire mesh through main memory with a small memory foot-
print, our compressed representation is useful beyond reduced file
sizes and shortened download times. It supports efficient batch-
processing for performing computation on large meshes while at
the same time providing seamless access to mesh connectivity.

We should also mention shape compression methods [Kho-
dakovsky et al. 2000; Gu et al. 2002; Szymczak et al. 2002] as they
are especially well suited for converting detailed scanned datasets
into highly compressed representations. These approaches remesh
prior to compression under the assumption that not a particular
mesh but rather the geometric shape that it represents is of interest.
While these schemes were not designed to handle gigantic meshes,
they might benefit from the concepts to out-of-core processing pre-
sented here. However, remeshing methods are not applicable to
CAD data such as the Double Eagle model (shown in Figure 6).

3 Out-of-Core Mesh
We use a half-edge data structure [Mantyla 1988] as foundation for
our out-of-core data structure, because it gives us the functional-
ity needed by the compression algorithm at minimal storage space
consumption. A static data structure with an array V of vertices
and an array of half-edges H is basically sufficient. We provide the
compression algorithm with the following (see also Figure 2):

1. enumeration of all half-edges and ability to mark them as visited

2. access to the next and the inverse half-edge, and to the origin vertex

3. access to the position of a vertex and whether it is non-manifold

4. knowledge of border edges

3.1 Half-Edge Data-Structure
In order to efficiently support pure triangular meshes but also ac-
commodate general polygonal meshes we have two modes for

next

invorigin

next

struct IndexPair {
int ci : 15;
int li : 17;

};
struct HalfEdge {

Index origin;
Index inv;
Index next;
Index myself;

};

Figure 2: At each edge (black lines) of the mesh two directed half-edges (blue arrows)
are incident, one for each incident face (light grey background). From each half-edge
the next and inverse half-edges and the origin vertex are accessible. At the border
additional border edges (red arrows) are created. Following their next pointers (dark
red) cycles around the border loop. On the right is the syntax of an index-pair and of a
half-edge. The next index-pair is used in explicit mode and for all border edges. The
myself index-pair is only used for crossing half-edges.

the out-of-core data structure: The implicit mode is designed
for pure triangular meshes. Each internal half-edge consists of
an index of its inverse half-edge and an index of its origin ver-
tex. The three half-edges of a triangle are stored in succes-
sive order in the half-edge array H, such that the index of the
next half-edge can be computed from the half-edge index i via
next(i) = 3∗ (i/3)+(i+1)%3. The explicit mode is used for
polygonal meshes. A next index is explicitly stored with each half-
edge, which means they can be arranged in any order in H.

The vertex array V contains the three coordinates x, y and z of
each vertex in floating point or as a pre-quantized integer. In ad-
dition to V and H, a bit array for each vertex and each half-edge
are necessary to maintain the status of manifoldness and visitation
respectively. Border edges are also kept in a separate array. They
always store an explicit index to the next border edge.

3.2 Clustering
The maximally used in-core storage space of the out-of-core mesh
is limited to a user defined number of Sincore bytes. For efficient ac-
cess to the mesh data during compression, a flexible caching strat-
egy is necessary. For this we partition the mesh into a set of clusters.
The total number of clusters ctotal is

ctotal =
ccache

Sincore
·Svtx · v, (1)

where ccache is the maximal number of simultaneously cached clus-
ters, v is the number of mesh vertices, and Svtx the per vertex size
of our data structure. There are about six times as many half-edges
as vertices, so Svtx sums up to 60 bytes per vertex in implicit mode.
For the St. Matthew model compressed with Sincore = 384MB and
ccache = 768 this results in ctotal = 21381 clusters.

Index-Pairs After clustering vertices and half-edges they are re-
indexed into so-called index-pairs (ci, li) consisting of a cluster in-
dex ci and a local index li. If possible, the index-pair (ci, li) is
packed into one 32-bit index to reduce the required storage space
for the half-edge data structure. The number of bits needed for the
cluster index is simply �log2 ctotal�. For the St. Matthew example
this is 15 bits, which leaves 17 bits for the local indices. A perfectly
balanced clustering needs about 6 ·v/ctotal different local indices for
the half-edges. For the St. Matthew model this would be 52,482.
As we would like to use no more than 217 = 131,072 local indices,
a sophisticated clustering approach is inevitable.

Caching Strategy For efficient access to the out-of-core mesh
we cache the clusters with a simple LRU strategy. The vertex data,
the half-edge data, and the binary flag data of a cluster are kept
in separate files because they are accessed differently: The vertex
data—once created—is only read. The half-edge data is both read
and written when the out-of-core mesh is built, but only read when
later queried by the compressor. The only data that needs to be read
and written at compression time are the binary flags that maintain
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Figure 3: Visualization of the clustering and its usage during compression on the Lucy
statue with Sincore = 64MB and ccache = 128. Already encoded regions are rendered
with points while the rest is rendered with triangles. Cached clusters are colored.

the visitation status of half-edges. We maintain separate caches for
this data, each having ccache entries. For a given mesh traversal
the quality of the caching strategy can be measured as the quotient
Qread/Qwrite of read/written clusters over the total number of clus-
ters. For a full traversal the minimum quotient is one.

3.3 Building the Out-of-Core Mesh
Given the input mesh in an indexed format, we build the out-of-core
mesh in six stages, all of them restricted to the memory limit Sincore:

1. vertex pass: determine the bounding box

2. vertex pass: determine a spatial clustering

3. vertex pass: quantize and sort the vertices into the clusters

4. face pass: create the half-edges and sort them into the clusters

5. matching of incident half-edges

6. linking and shortening of borders, search for non-manifold vertices

First Vertex Pass Each of the three vertex passes reads and
processes the vertex array one time sequentially. In the first pass
we only determine the number of vertices and the bounding box
of the mesh. It can be skipped if this information is given. The
required in-core storage for this pass is negligible.

Second Vertex Pass In this pass we compute a balanced, spa-
tial clustering of the vertices into ctotal clusters similar as Ho et
al. [2001]. We subdivide the bounding box into a regular grid of
cubical cells and count for each cell the number of vertices falling
into it. Only for non-empty cells we allocate counters and keep
them in a hash map. This ensures linear storage space consumption
in the number of occupied cells. Then we partition the non-empty
cells are into ctotal compact clusters of balanced vertex counts us-
ing a graph partitioning package [MeTiS Version 4]. As input we
build a k−nearest neighbor graph on the centroids of occupied cells
using an approximate nearest neighbor package [ANN Version 0.2]
(with k = 6 and 1% precision) and weigh its vertices using the ver-
tex counts of the associated cells. Ho et al. [2001], on the other
hand, derive the graph by connecting cells that are shared by a face.
This could potentially give better cluster locality along the surface
but would require an additional—especially expensive—face pass.

The second block in Table 1 shows results of cluster balancing.
The time to build and cluster the graph is negligible. The standard

deviation of the cluster sizes is fairly small and the minimum and
maximum are within 10% of the average, which is sufficient for our
needs. Figure 3 illustrates an example clustering on the Lucy statue.

Third Vertex Pass In the final pass over the vertices we sort the
vertices into clusters and determine their index-pairs (ci, li) using
the cell partitioning generated in the last pass. Since the vertices of
each cluster are stored in separate files, we use a simple buffering
technique to avoid opening too many files at the same time. If a
vertex falls into cluster ci, which already contains k vertices, we
assign it index-pair (ci,k), increment k, and store its position in the
respective buffer. If a buffer is full, its contents are written to disk.
The mapping from vertex indices to index-pairs is stored in a map
file that simply contains an array of index-pairs. For the St. Matthew
model the map file is 729 MB and cannot be stored in-core.

Face Pass There is only one pass over the faces. We read a
face and map its vertex indices to vertex index-pairs according to
the map file. Then we create one half-edge for each of its edges,
determine a suitable cluster, store them in this cluster, and—if
necessary—also store them in some other cluster.

For each cluster ci we create two files of half-edges. The pri-
mary half-edge file stores the half-edges sorted into cluster ci within
which they are locally indexed with li in the same way as vertices.
The secondary half-edge file is only temporary. It stores copies of
half-edges from other clusters that are needed later to match-up cor-
responding inverse half-edges. These so called crossing half-edges
are incident to a half-edge of cluster ci but reside in a different clus-
ter. They are augmented by their own myself index-pair (see Fig-
ure 2) that is used later for matching the inv index-pairs.

As the map file is too large to be stored in-core, we split it into
segments that are cached with a LRU strategy. For our test meshes
the vertex indices of the faces were sufficiently localized, such that
the read quotients Qread of the map file cache was between 1 and
1.5. Cache thrashing will occur when the indices of the faces ran-
domly address the vertex array. Then the mapping from indices
to index-pairs needs to be established differently. One possibility
is to perform several face passes, while each time storing a differ-
ent chunk of the map file in memory and mapping only the stored
indices. For the St. Matthew model three face passes would be suf-
ficient when a chunk size of 256 MB is used. Another possibility is
to use external sorting as proposed by Lindstrom and Silva [2001].

Before writing the half-edges to file, we store the index-pair of
its origin vertex in the origin field and the index-pair of its target
vertex in its inv field. The latter is only temporary and will be used
during matching. Depending on the mesh mode we sort the half-
edges differently into the primary and secondary half-edge files. In
both modes, crossing half-edges receive their myself index-pair
based on the cluster in which they are stored.

a) b)

0

1

2

A

B

Figure 4: The sorting of the half-edges into the clusters. a) In explicit mode each
half-edge is sorted into the cluster of its origin vertex. b) In implicit mode all half-
edges of a triangle have to be in the same cluster, which is the cluster in which two or
more vertices reside or any of three clusters otherwise.

In explicite mode the half-edges can be arranged arbitrarily
within a cluster. We sort each half-edge into the cluster of its origin
vertex. In this mode a half-edge is crossing when it has its target
vertex in a different cluster. As they potentially have a matching in-
verse half-edge there, we insert them into the secondary file of that
cluster. A small example is given in Figure 4a. The colors of the
half-edges show, in which of the three clusters they are sorted.
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In implicit mode all three half-edges of a triangle must be in suc-
cessive order in the same cluster. They are placed into the cluster in
which the triangle has two or three of its vertices. In case all three
vertices fall into different clusters we simply select one of them.
Figure 4b shows an example, where the dashed triangle spans three
clusters. The so called external half-edges, like the one from vertex
A to vertex B, will require special attention later, because they are
stored in a different cluster than either of their incident vertices.

Again, a half-edge is crossing when its origin vertex and its tar-
get vertex are in different clusters. However, in implicit mode it
is not obvious in which cluster its potential inverse match will be
located. Therefore the secondary files are created in two stages.
First we write crossing half-edges into a temporary file based on the
smaller cluster index of their end vertices. Then we read these tem-
porary files one by one and sort the contained crossing half-edges
using their origin and target index-pairs ordered by increasing clus-
ter index as key. Remember, the index-pair of the target vertex was
stored in their inv field. Now all potential inverse matches among
crossing half-edges are in successive order. Finally, all matching
half-edges are entered into the secondary file of the cluster of their
inverse, which can be determined from their myself index-pairs.

Matching of Inverse Half-Edges For each cluster we read the
half-edges from the primary and the crossing half-edges from the
secondary half-edge file. With the target vertex index-pairs in the
inv fields, we again use the sorting strategy for matching inverse
half-edges. We reduce the run time for sorting the half-edges with
a single bucket-sort over all edges followed by a number of quick-
sorts over the edges of each bucket. This results in a sort time of
O(n logdmax), where n is the number of half-edges and dmax is the
maximum vertex degree—usually a small constant. If origin and
target vertex of an edge are both from the current cluster, the key
used in the bucket-sort is the smaller of their local indices. Oth-
erwise it is the local index from whichever vertex is in the current
cluster. The key used in the quick-sorts is the index-pair of the ver-
tex not used in the bucket-sort. External edges constitute a special
case as they do not have any vertex in the current cluster necessary
for the bucket-sort. These very rare external edges are gathered in
a separate list and matched in the end using a single quick-sort.

All half-edges with the same vertex index-pairs have subsequent
entries in the sorted array of half-edges. Looking at their number
and orientation, we can distinguish four different types of edges:

1. border edge: an unmatched half-edge

2. manifold edge: two matched half-edges with opposite orientation

3. not-oriented edge: two matched half-edges with identical orientation

4. non-manifold edge: more than two matched half-edges

In case of a manifold edge we set the inverse index-pairs. In all
other cases we pair the half-edges with newly created border edges,
thereby guaranteeing manifold connectivity. This is similar to the
cutting scheme that was proposed by Guéziec et al. [1998].

Border Loops and Non-Manifold Vertices The final three
steps in building the out-of-core mesh consists of linking and short-
ening border loops and of detecting non-manifold vertices. First we
cycle for each border half-edge via inv and next around the origin
vertex until we hit another border half-edge. Its next field is set to
the half-edge we started from. This links all border loops.

The second step can shorten border loops that are the result of
cutting non-manifold edges. We iterate again over all border half-
edges, this time checking if a sequence of next, next, and origin
addresses the same vertex as origin. In this case we can match
the inv fields of their incident half-edges and discard the border
half-edges. This can shorten or even close a border loop.

The third and last step detects and marks non-manifold vertices
using two binary flags per vertex and one binary flag per half-edge.
Each flag is administered in one LRU-cached file per cluster with

mesh name lucy david (1mm) st. matthew

vertices 14,027,872 28,184,526 186,836,665
in-core storage limit 96 MB 192 MB 384 MB
cached clusters 192 384 768
clusters 1,605 3,225 21,381
out-of-core size 871 KB 1.7 GB 11.2 GB

counter grid resolution [283,163,485] [340,196,856] [409,1154,373]
ANN nearest neighbor 0:00:02 0:00:05 00:00:18
METIS graph partitioning 0:00:03 0:00:08 00:00:33
min vertices per cluster 8,569 8,550 8,360
max vertices per cluster 8,922 8,907 9,223
std over all clusters 0.00583 0.00529 0.01232

first vertex pass 0:00:14 0:00:34 0:03:24
second vertex pass 0:00:20 0:00:49 0:04:34
third vertex pass 0:00:51 0:02:04 0:53:56
face pass 0:05:22 0:11:01 2:09:20
matching 0:08:39 0:14:06 2:31:46
border link & shorten 0:00:01 0:00:39 0:09:06
non-manifold marking 0:03:26 0:06:36 1:02:06
total build time 0:18:57 0:35:52 6:54:17

compression time 0:48:46 0:13:42 3:36:24
Qread half-edges 11.0 1.3 2.1
precision 20 bits 20 bits 20 bits
compressed size 47 MB 77 MB 456 MB

Table 1: Four blocks of measurements that characterize the out-of-core mesh: global
parameters, performance of clustering stage, timings for different building steps, com-
pression statistics. Times are in h:mm:ss taken on a Windows PC with 1 GB of memory
and a 2.8 GHz Pentium IV processor. The system cache was software disabled.

a bit container holding as many bits as there are vertices/half-edges
in the cluster. The first vertex flag specifies whether a vertex was
visited before, the second whether a vertex is non-manifold, while
the half-edge flag marks visited half-edges. For each non-manifold
vertex we also maintain an occurrence counter. We iterate over all
half-edges. If the current edge has not been visited before, we cycle
via inv and next around its origin and mark all out-going edges as
visited until we come back to the edge we started. Then we check if
the visited flag of the origin vertex has already been set. If yes, we
mark this vertex as non-manifold using the second flag and create
or increase its occurrence counter. If no, we set its visited flag. This
way we mark all types of non-manifold vertices including those,
which cannot be found along non-manifold edges.

3.4 Results
Performance results of the out-of-core mesh are gathered in Table 1
for Lucy, David (1mm), and St. Matthew. The in-core memory was
restricted to 96/192/384 MB and we allowed 192/384/768 clusters
to be cached simultaneously. The resulting out-of-core meshes con-
sumed 0.8/1.7/11.2 GB on disk with the build times being domi-
nated by the face pass and the inverse half-edge matching.

The best compression times are achieved when enough clusters
are cached to cover the entire compression boundary. But since its
maximal length is not known in advance, this cannot be guaranteed.
If too few clusters are cached, the compression process becomes
heavily IO-limited. However, even then compression times are ac-
ceptable given the small in-core memory usage. Lucy, for example,
has a poor cache quality factor Qread of 11.0. Although Qread for
Lucy is much better with ccache = 384, handling the larger number
of files results in an overall longer running time. Twice the number
of clusters as MB of in-core storage seemed a good trade-off be-
tween the two. When increasing Sincore to 128 MB and caching 256
clusters, then Qread is 2.1 and Lucy compresses in about 5 minutes.

4 Compression
In order to enable fast out-of-core decompression with small mem-
ory foot-print, our mesh compressor performs a single pass over
the mesh during which both connectivity and geometry are com-
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struct Boundary {

BoundaryEdge* gate;

int length;

int one_slots;

};

struct BoundaryEdge {

BoundaryEdge* prev;

BoundaryEdge* next;

Index edge;

bool border;

Index origin;

Index across;

int slots;

};
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2

2

2
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Figure 5: The minimal data structures required for out-of-core (de-)compression: The
prev and next pointers organize the boundary edges into double-linked loops. The
edge index refers to the mesh edge that a boundary edge coincides with. The origin
index refers to the vertex at the origin of this edge. The across index is used for
(de-)compressing vertex positions with the parallelogram rule. It refers to the third
vertex of an adjacent and already (de-)compressed triangle. For an out-of-core version
of the decompressor, the indices origin and across are replaced with integer vectors
containing the actual positions. The slots counter and the border flag are required
for (de-)compressing the mesh connectivity with degree coding. The Boundary struct
is used to store information about boundaries on the stack.

pressed in an interleaved fashion. It grows a region on the connec-
tivity graph by including faces adjacent to its boundaries one by
one. Whenever a previously unseen vertex is encountered, its posi-
tion is compressed with a linear prediction. The decompressor can
be implemented such that at any time it only needs to have access
to the boundaries of this region. In order to decompress out-of-core
these boundaries are equipped with some additional information.
Maintaining such extra information also at compression time re-
duces the number of required queries to the out-of-core mesh.

4.1 Connectivity Coding
Our connectivity coder is based on the degree coder that was pio-
neered by Touma and Gotsman [1998] for triangle meshes and ex-
tended to polygon meshes by Isenburg [2002] and Khodakovsky et
al. [2002]. Starting from an arbitrary edge it iteratively grows a re-
gion by always including the face adjacent to the gate of the active
boundary. This boundary is maintained as loop of boundary edges
that are doubly-linked through a previous and a next pointer. Each
boundary edge maintains a slot count that specifies the number of
unprocessed edges incident to its origin. The boundary edges also
store an index to their corresponding half-edge in the mesh, which
is used for queries. If the compressor is used in conjunction with
the out-of-core mesh we want to make as few queries as possible.
Therefore each boundary edge keeps a copy of the index to the ori-
gin and the across vertex as illustrated in Figure 5.

The face to be included can share one, two, or three edges with
the active boundary. If it shares three edges, then the boundary ends
and a new boundary is popped from the stack. If the stack is empty
we iterate over the half-edges of the mesh to find any remaining
components. If there are none, compression is completed. If the
face shares two edges with the active boundary, no explicit encod-
ing is needed. Otherwise it shares only one edge and has a free
vertex. This can lead to three different cases: add, split, or merge.

In the most common case the free vertex is not on any boundary.
Here we add the vertex to the boundary, record its degree, and up-
date the slot counts. A more complex case arises if the free vertex
is already on some boundary. If it is on the active boundary it splits
this boundary into two loops that will be processed one after the
other. A stack is used to temporarily buffer boundaries. We record
the shorter direction and the distance in vertices along the boundary
to reach the free vertex. If, however, the free vertex is on a bound-
ary from the stack it merges two boundaries. This happens exactly
once for every topological handle in the mesh. In addition to how
the free vertex can be reached starting from that boundary’s gate,
we record the index of this boundary in the stack. The compressor
does not query the out-of-core mesh to search for a free vertex along

the boundaries. It uses the origin indices, which are stored (mainly
for this purpose) with each boundary edge, to find this vertex.

The resulting code sequence contains the degree of every ver-
tex plus information associated with the occurrence of split and
merge operations. While it is not possible to avoid splits altogether,
their number can be significantly reduced using an adaptive region
growing strategy [Alliez and Desbrun 2001b]. Instead of continu-
ing the mesh traversal at the current gate, one selects a gate along
the boundary that is less likely to produce a split. We implemented
the simple heuristic proposed by Isenburg [2002], which picks a
boundary edge with a slot count of 1 if one exists, or stays where it
is otherwise. However, we restrict this adaptive conquest to +/- 10
edges along the boundary, as moving the gate to a more distant lo-
cation could cause a cache-miss on the next query to the out-of-core
mesh. By keeping track on the number of these one-slots currently
on the boundary we avoid searching for them unnecessarily.

Continuing compression on the smaller of the two boundary
loops resulting from a split operation keeps the boundary stack shal-
low and the number of allocated boundary edges low. This helps
further lowering the memory foot-print of the decoding process.

Holes in the mesh require special treatment. Isenburg [2002]
suggests to include a hole into the active boundary in the same
way it is done for faces. However, this requires immediate pro-
cessing of all vertices around the hole. Since holes can be as large
as, for example, the hole at the base the St. Matthew statue shown
in Figure 1, this would result in an bad access pattern to the out-of-
core mesh—potentially causing many cache-misses. Furthermore,
it would lead to poor geometric predictions for all vertices around
the hole since the parallelogram rule could not be applied.

Instead, similar to Gumhold and Strasser [1998], we record for
every edge whether it is a border edge or not in the moment it joins
the active boundary using a binary arithmetic context. If an edge
has a slot count of zero on either end, we do not need to record this
information explicitly. In this case the edge will be of the same type
as the boundary edge it connects to via this zero-slot.

Non-manifold vertices are present when the neighborhood of
a vertex is not homeomorphic to a disk or a half-disk. The out-of-
core mesh provides our compressor with manifold connectivity and
marks multiple occurrence of originally non-manifold vertices. We
encode how to stitch these vertices back together using a simplified
version of Guéziec et al.’s [1999] stack-based approach. Whenever
a vertex is processed with an add operation we record whether it is
manifold or not with a binary arithmetic context. For non-manifold
vertices we specify whether this is its first appearance using a sec-
ond arithmetic context. Only the first time a non-manifold vertex is
encountered its position is compressed. These first-timers are then
inserted into an indexable data structure. Each subsequent time this
vertex makes a non-manifold appearance it is addressed with log2 k
bits among the k entries of that data structure. Then a third binary
context is used to specify whether this was its last appearance or
not. If yes, it is deleted from the data structure.

4.2 Geometry Coding
Quantization of the vertex positions into integer values is needed
before they can be efficiently compressed with predictive coding.
Especially for large datasets any loss in precision is likely to be
considered unacceptable. Vertex positions are usually stored as 32-
bit IEEE floating point numbers. In this format the least precise
(e.g. the widest spaced) samples are those with the highest expo-
nent. Within the range of this exponent all points have 24 bit of pre-
cision: 23 bit in the mantissa and 1 bit in the sign. Hence, once the
bounding box (e.g. the exponent) is fixed we can capture the preci-
sion of the floating point samples by uniform quantization with 24
bits. Unless, of course, the data was specifically aligned with the
origin to provide higher precision in some areas. But in general we
can assume that the sampling within the bounding box is uniform.
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Figure 6: Less than 1 MB of memory is used by the out-of-core process that loads, decompresses, and renders this 82 million triangle “double eagle” model in 78 seconds from a
180 MB file. This example application does not store triangles in memory, but immediately renders them with one call to glNormal3fv() and three calls to glVertex3iv() as the model
is too large to be decompressed into the main memory of common desktop PCs. Loading and decompression alone takes only 63 seconds. Most of the additional 15 seconds are spent
on computing triangle normals. The above frame was captured in anti-aliased 2048x768 dual-monitor mode on a 1.8 Ghz AMD Athlon processor with an Nvidia Geforce 4200.

For scanned datasets it is often not necessary to preserve the full
floating point precision. The samples acquired by the scanner are
typically not that precise, in which case the lowest-order bits con-
tain only noise and not actually measured data. A reasonable quan-
tization level keeps the quantization error just below the scanning
error. In Table 2 we lists the resulting sample spacings per millime-
ter for different levels of quantization. For the 20 cm tall Buddha
statue even 16 precision bits seem an overkill, whereas the 195 me-
ter long Double Eagle is more likely to make use of all 24 bits.

The quantized vertices are compressed with the parallelogram
rule [Touma and Gotsman 1998] in the moment they are first en-
countered. A vertex position is predicted to complete the parallelo-
gram formed by the vertices of a neighboring triangle. The result-
ing corrective vectors are subsequently compressed with arithmetic
coding. Vertices are always encountered during an add operation.

The first three vertices of each mesh component cannot be com-
pressed with the parallelogram rule. While the first vertex has no
obvious predictor, the second and third can be predicted with delta-
coding [Deering 1995]. To maximize compression it is beneficial to
encode correctors of less promising predictions with different arith-
metic contexts [Isenburg and Alliez 2002]. For meshes with few
components this hardly makes a difference, but the Power Plant and
the Double Eagle model each consist of millions of components.

Other properties such as colors or confidence values can be
treated similarly to vertex positions. However, for models of this
size one might consider to store properties in separate files. Not
everybody is interested, for example, in the confidence values that
are stored for every vertex with all of Stanford’s scanned datasets.
Despite being in separate files, the decoder can add them on-the-fly
during decompression, if the appropriate file is provided.

mesh number of samples per millimeter
name extent [m] 16 bit 18 bit 20 bit 22 bit 24 bit

happy buddha 0.2 327 1311 5243 20972 83886
lucy 1.5 47 187 749 2995 11984
david 5.2 13 50 202 807 3226
double eagle 195 0.3 1.4 5.4 22 86
st. matthew 2.7 24 97 388 1553 6214

Table 2: This table reports the length of the longest bounding box size of a model in
meters and the resulting number of samples per millimeter for different quantization.

4.3 Results
The compression gains of our representation over standard binary
PLY are listed in Table 3. Depending on the chosen level of preci-
sion the compression ratios range from 1 : 10 to 1 : 20. Comparing
measurements on the same models to Ho et al. [2001], our bit-rates
are about 25% better. Another advantage of our compressed for-
mat is the reduced time to load a mesh from disk. Decompression
speeds are CPU-limited and exceed one million vertices and two
million triangles per second on a 1.8 GHz Athlon processor.

The compression rates for connectivity and for geometry at dif-
ferent precision levels are detailed separately in Table 4. One imme-
diate observation is that an additional precision of 2 bits increases
some geometry compression rates by about 6 bits per vertex (bpv)
or more. While predictive coding is known not to scale well with
increasing precision, here this is likely a sign for the precision of
quantization being higher than that of the data samples. In this case
the additional two bits only add incompressible noise to the data.

5 Conclusion
We presented a technique that is able to compress gigantic models
such as the St. Matthew statue in one piece on standard desktop
PCs. Our compression rates are about 25% lower and our decom-
pression speeds about 100 times faster than the technique by Ho et
al. [2001] that processes such models by cutting them in pieces.

For this, we introduced an external memory data structure, the
out-of-core mesh, that provides our compressor with transparent
access to large meshes. We described how to efficiently build this
data structure from an indexed mesh representation using only lim-
ited memory. Our out-of-core mesh may also be useful to other
algorithm that process large meshes. To use it efficiently the order
of mesh queries should be localized, but most traversal-based pro-
cessing is readily accommodated. While our current implementa-
tion only allows index-pairs to use a combined maximum of 32 bits,
this data structure can theoretically handle arbitrary large meshes.
Storing more bits per index-pair, however, will increase in-core and
on-disk storage and make its build-up/usage more IO-limited.

Our compressed format has benefits beyond efficient storage and
fast loading. It provides better access to large meshes than indexed
formats or polygon soup by allowing to stream gigantic meshes
through limited memory while providing seamless connectivity in-
formation along the decompression boundary. This streaming mesh
representation offers a new approach to out-of-core mesh process-
ing that combines the efficiency of batch-processing with the ad-
vantages of explicit connectivity information as it is available in
online-processing. The concept of sequenced processing restricts
the access to the mesh to a fixed traversal order, but at the same time
provides full connectivity for the active elements of this traversal.

Traversing mesh triangles in a particular order is already used
for fast rendering on modern graphics cards. The number of times
a vertex needs to be fetched from the main memory is reduced by
caching previously received vertices on the card. The triangles are
sent to the card in a rendering sequence that tries to minimize cache
misses [Hoppe 1999]. Misses cannot be avoided altogether due to
the fixed size of the cache [Bar-Yehuda and Gotsman 1996].

In a similar spirit our compressed format provides processing
sequences for more efficient mesh processing—but at a much larger
scale. With the main memory as the “cache” we usually have more
than enough storage space for all active elements throughout the
traversal of a mesh. Therefore the analogue of a “cache miss” does
not exist. Any algorithm that requires a complete mesh traversal
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mesh name
number of size of raw and compressed files on disk [MB] load time foot-print

vertices triangles components holes handles non-manifold ply 16 bit 18 bit 20 bit 22 bit 24 bit [sec] [MB]
happy buddha 543,652 1,087,716 1 0 104 0 20 1.6 1.9 2.2 2.5 3.0 0.68 0.7
david (2mm) 4,129,614 8,254,150 2 1 19 4 150 7 10 12 15 17 4.1 1.3
power plant 11,070,509 12,748,510 1,112,199 1,221,511 10 37,702 285 19 23 28 32 35 8.9 0.7
lucy 14,027,872 28,055,742 18 29 0 64 508 28 37 47 58 70 14.6 1.5
david (1mm) 28,184,526 56,230,343 2,322 4,181 137 1,098 1,020 44 61 77 93 108 27 2.8
double eagle 75,240,006 81,806,540 5,100,351 5,291,288 1,534 3,193,243 1,875 116 146 180 216 244 63 0.7
st. matthew 186,836,665 372,767,445 2,897 26,110 483 3,824 6,760 236 344 456 559 672 174 9.4

Table 3: This table lists vertex, triangle, component, hole, handle, and non-manifold vertex counts for all meshes. Furthermore, the size of a binary ply file containing three floats
per vertex and three integers per triangle is compared to our compressed representation at 16, 18, 20, 22, and 24 bits of precision. Also the total time in seconds required for loading
and decompressing the 20 bit version on a 1.8 GHz AMD Athlon processor is reported. Finally, we give the maximal memory foot-print of the decompression process in MB.

mesh name
compression rates [bpv] decompression speed [sec] decompression and rendering speed [sec]

conn 16 bits 18 bits 20 bits 22 bits 24 bits 16 bits 18 bits 20 bits 22 bits 24 bits 16 bits 18 bits 20 bits 22 bits 24 bits
happy buddha 2.43 21.79 26.44 32.15 36.92 43.95 .75 .81 .97 1.13 1.38 1.15 1.21 1.37 1.53 1.79
david (2mm) 1.50 12.54 17.81 23.22 28.37 34.13 4.9 5.3 5.7 6.2 7.1 7.7 8.0 8.5 9.0 10.3
power plant 2.50 11.57 15.26 18.54 21.48 24.23 11.1 11.8 12.5 13.4 15.1 14.9 15.7 16.5 17.4 19.2
lucy 1.88 14.60 20.41 26.51 32.87 39.08 17.8 18.9 21.1 22.8 27.3 26.7 28.0 30.2 32.1 36.7
david (1mm) 1.79 11.32 16.50 21.20 25.99 30.43 33 35 38 41 45 51 53 56 60 64
double eagle 3.39 9.58 12.92 16.66 20.67 23.84 77 81 88 94 113 94 105 110 119 134
st. matthew 1.84 8.83 13.71 18.86 23.63 28.61 215 228 242 259 294 327 351 363 384 419

Table 4: This table details compression rates and decompression speeds on our example models. Compression rates are reported in bits per vertex (bpv) separately for connectivity
and for geometry at 16, 18, 20, 22, and 24 bits of precision. Decompression times are reported first for loading/decompression alone and then for loading/decompression and
out-of-core rendering. All timings are taken on a Dell Inspiron 8100 laptop with an Intel 1.1 Ghz Mobile Pentium III processor and a Nvidia Geforce2go card. Compare to Table 3.

without being particular about its order can perform computations
at decompression speed—we can envision an entire breed of mesh
processing algorithms adapted to this kind of mesh access.
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