
Large Mesh Simplification using Processing Sequences

Martin Isenburg
University of North Carolina

at Chapel Hill
isenburg@cs.unc.edu

Peter Lindstrom
Lawrence Livermore
National Laboratory

pl@llnl.gov

Stefan Gumhold
WSI/GRIS

University of Tübingen
gumhold@gris.uni-tuebingen.de

Jack Snoeyink
University of North Carolina

at Chapel Hill
snoeyink@cs.unc.edu

Figure 1: Simplification with a fixed-size in-core buffer (pink). Via processing sequences, original triangles (gray) stream into the buffer and simplified triangles (gold) stream out.

Abstract

In this paper we show how out-of-core mesh processing techniques
can be adapted to perform their computations based on the newpro-
cessing sequenceparadigm [Isenburg and Gumhold 2003; Isenburg
et al. 2003], using mesh simplification as an example. We believe
that this processing concept will also prove useful for other tasks,
such as parameterization, remeshing, or smoothing, for which cur-
rently only in-core solutions exist.

A processing sequence represents a mesh as a particular inter-
leaved ordering of indexed triangles and vertices. This represen-
tation allows streaming very large meshes through main memory
while maintaining information about the visitation status of edges
and vertices. At any time, only a small portion of the mesh is kept
in-core, with the bulk of the mesh data residing on disk. Mesh
access is restricted to a fixed traversal order, but full connectivity
and geometry information is available for the active elements of
the traversal. This provides seamless and highly efficient out-of-
core access to very large meshes for algorithms that can adapt their
computations to this fixed ordering.

The two abstractions that are naturally supported by this repre-
sentation areboundary-basedandbuffer-basedprocessing. We il-
lustrate both abstractions by adapting two different simplification
methods to perform their computation using a prototype of our
mesh processing sequence API. Both algorithms benefit from using
processing sequences in terms of improved quality, more efficient
execution, and smaller memory footprints.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—surface, solid, and object represen-
tations

Keywords: Out-of-core algorithms, processing sequences, mesh
simplification, large meshes.

1 Introduction
Polygonal models acquired with modern 3D scanning technology
easily reach sizes of gigabytes—the most prominent examples are
the detailed scans of Michelangelo’s sculptures generated by teams
at IBM [Bernardini et al. 2002] and Stanford [Levoy et al. 2000].
Similarly large polygonal data sets result from extracting dense iso-
surfaces from volumetric data. A polygon mesh with hundreds of
millions of vertices requires gigabytes of raw data, making sub-
sequent processing difficult. The sheer amount of data not only
exhausts the main memory resources of common desktop PCs, but
also exceeds the 4 gigabyte address space of 32-bit machines.

A straightforward approach for processing meshes that are too
large to fit in main memory is to cut them into pieces small enough
to be processed in-core. The disadvantages of mesh cutting are the
processing artifacts that tend to be introduced along the cut bound-
aries. Another approach is to design computations to work in in-
crements of single triangles. This allows efficient batch processing,
as the CPU can be kept busy by loading and processing triangles as
fast as possible. However, the absence of explicit mesh connectiv-
ity information typically results in a lower quality output. Finally,
there are approaches that use external memory data structures that
provide transparent access for online processing of arbitrarily large
meshes. However, building and using such complex data structures
is typically inefficient.

We recently proposed a new processing paradigm for out-of-core
computations on large meshes [Isenburg and Gumhold 2003; Isen-
burg et al. 2003] that combines the efficiency of batch processing
with the advantage of explicit mesh connectivity that is available in
online processing. The idea of aprocessing sequenceis to restrict
access to the mesh to a fixed traversal order, but to support access to
full connectivity and geometry information for the active elements
of this traversal. In this representation only a small fraction of the
mesh is kept in main memory at any time with the bulk of the mesh
data residing on disk. While the mesh streams through memory,
we provide seamless mesh access for algorithms that can respect a
fixed traversal order.

Processing sequences support two computational abstractions:
boundary-basedprocessing andbuffer-basedprocessing. Several
operations that are useful in dealing with large meshes are naturally
supported by these abstractions, including loading, decompression,
rendering, and connectivity reconstruction. In this paper we show
how they can be used for more complex tasks, which we demon-
strate using out-of-core mesh simplification as an example.

The remainder of this paper is organized as follows: The next
section summarizes current approaches to out-of-core mesh pro-
cessing. In Section3 we describe how processing sequences pro-

mailto:isenburg@cs.unc.edu
mailto:pl@llnl.gov
mailto:gumhold@gris.uni-tuebingen.de
mailto:snoeyink@cs.unc.edu


vide access to large meshes. In Section4 we detail current tech-
niques for the simplification of large meshes. Then we adapt two
different mesh simplification schemes to sequenced processing: In
Section5 we adapt Lindstrom’s non-adaptive OoCS simplification
algorithm [2000] to boundary-based processing. Similarly, in Sec-
tion 6, we map Wu and Kobbelt’s adaptive stream simplification
algorithm [2003] to buffer-based processing. Both algorithms ben-
efit from using processing sequences in terms of improved quality,
more efficient execution, and smaller memory footprints. The last
section concludes with a summary and an outlook on other types of
mesh processing.

2 Out-of-Core Processing
There are three main approaches for processing meshes that are too
large to fit in main memory [Silva et al. 2002]: cutting the mesh into
pieces, batch processing of polygon soups, and online processing
using external memory data structures.

Mesh cutting is a straightforward approach for processing large
meshes: cut the mesh into pieces small enough to fit in main mem-
ory and then process each piece separately while giving special
treatment to the cut boundaries. This strategy has successfully been
used to, for example, simplify [Hoppe 1998; Prince 2000; Bernar-
dini et al. 2002] and compress [Ho et al. 2001] very large polygon
models. Despite the apparent simplicity of this approach, the initial
cutting step can be expensive when the input mesh is given in an
indexed representation, as we will see later. Because mesh cutting
typically lowers the quality of the output, many out-of-core algo-
rithms try instead to process the data as a whole.

Batch processing aims to keep the memory footprint low and
the processor busy by streaming the mesh data through main mem-
ory in one or more passes, and by restricting computations to the
amount of data that is resident in memory at any time. This makes
batch processing computationally very efficient.

Examples include a number of mesh simplification meth-
ods [Lindstrom 2000; Lindstrom and Silva 2001; Shaffer and Gar-
land 2001; Garland and Shaffer 2002], which batch-process the in-
put mesh as a sequence of individual triangles. If indexed meshes
are used that exhibit no locality in referencing the vertex array (e.g.
where vertex indices of subsequent triangles address vertex array
entries at random) an initialde-referencing stepis required [Lind-
strom and Silva 2001]. This can be computationally expensive and
the resulting immediate mesh (i.e.polygon soup) requires at least
twice the storage of an indexed mesh, and more if there are addi-
tional per-vertex properties such as texture coordinates or surface
normals. The output of a batch simplification pass either is small
enough to fit in memory, so that the remaining computation can be
done in-core [Lindstrom 2000; Shaffer and Garland 2001; Garland
and Shaffer 2002], or is directly written to a file, which is then used
as input for subsequent passes [Lindstrom and Silva 2001].

Online processing accesses the data through a series of (poten-
tially random) queries. In order to avoid costly disk seeks with each
query (resulting in thrashing) the data is usually re-organized to ac-
commodate an anticipated access pattern. Queries can be acceler-
ated bycachingor pre-fetchingdata that is likely to be accessed.

Some schemes simply use the virtual memory functionality of
the operating system and try to organize the data accesses such
that the number of page faults is minimized [McMains et al. 2001;
Choudhury and Watson 2002]. The performance of such schemes
is operating system dependent and their input data is restricted to
4 gigabytes on a 32-bit machine. Going beyond that limit requires
dedicated external memory data structures that explicitly manage a
virtual address space for the data.

Such external memory data structures enable traditional in-core
algorithms to be applied to large data sets. Cignoni et al. [2003],

for example, propose an octree-based external memory data struc-
ture that makes it possible to simplify a model of Michelangelo’s
St. Matthew statue [Levoy et al. 2000] from 386 to 94 million
triangles using iterative edge contraction [Garland and Heckbert
1997]. Similarly, the out-of-core mesh proposed by Isenburg and
Gumhold [2003] allows compressing the St. Matthew statue from
over 6.5 GB to 344 MB of data using a compressor based on region
growing [Touma and Gotsman 1998].

For comparison, out-of-core algorithms based on batch process-
ing do their work on polygon soups without explicit connectivity
information. Thus, they can perform their computations efficiently,
but their output tends to be of lower quality than that of algorithms
with access to explicit connectivity information. Out-of-core algo-
rithms based on online processing, on the other hand, have explicit
connectivity available. However, building these data structures is
expensive in time and space, and using them significantly slows
down the computations.

Recently we proposed an approach that combines the efficiency
of batch processing with the advantages of explicit connectivity in-
formation available in online processing. The idea of aprocessing
sequenceis to restrict the access to the mesh to a fixed traversal
order, but to support access to the full connectivity and geometry
information for the active elements during this traversal.

Rearranging mesh triangles into a particular order is already used
for improving rendering performance on modern graphics cards.
The number of times a vertex needs to be fetched from main mem-
ory is reduced by caching previously received vertices on the card.
The triangles are sent to the card in arendering sequencein an at-
tempt to minimize cache misses [Deering 1995; Evans et al. 1996;
Hoppe 1999; Bogomjakov and Gotsman 2001]. Due to the fixed
size of a vertex cache, misses cannot be avoided completely [Bar-
Yehuda and Gotsman 1996].

Our processing sequencesexploit a similar strategy for more ef-
ficient mesh processing—but at a much larger scale. However, the
main memory as a “cache” is much more flexible. The amount of
storage necessary to maintain the active elements of a mesh traver-
sal is usually small enough to fit in main memory. Therefore the
analogue of a “cache miss” does fortunately not exist.

3 Processing Sequences
A processing sequencepresents a mesh as a fixed interleaved se-
quence of indexed vertices and triangles that grow a region. The
mesh edges that separate already processed triangles from unpro-
cessed ones form theprocessing boundary. Mesh trianglesgen-
eratedby the processing sequence are either edge-adjacent to the
processing boundary or start a new region. With each triangle, the
processing sequence provides vertex information such as indices,
coordinates, first and last time referenced, and non-manifoldness.
Similarly, the topological type of edges and their relationship to the
processing boundary are made available. Finally, a processing se-
quence supports storage and retrieval of user data on the evolving
processing boundary.

Triangles can change the processing boundary in one of the five
ways illustrated in Figure2. A “start” triangle creates a new com-
ponent of a processing boundary with threenewvertices and edges.
A new edge may beenteringthe processing boundary, to be paired
with an incident triangle later in the sequence, or it may be part of
the surfaceborder, the topological boundary of the mesh. An “add”
triangle completes a boundary edge and connects a new vertex with
two new edges. The completed edgeleavesthe processing bound-
ary. A “fill” completes two edges, replacing them and the vertex
reference between them with a new edge. A “join” completes one
edge, adds two new edges, and either merges two components of the
processing boundary into one (usually forming a handle), or splits
one component into two. An “end” completes three edges.

Large Mesh Simplification, Isenburg, Lindstrom, Gumhold, Snoeyink 2 of 8 appeared in Visualization ’2003



start add

fill

previously generated triangles

unprocessed region

end

join

new
edge

leaving
edges

border
edge

entering
edge

leavingedge

leavingedge 

entering
edges

new
edges

leaving
edges

current triangle

processing boundary 

mesh border 

new vertex 

Figure 2: The five different ways generated triangles relate to the processing boundary.

Given a “somewhat” compactly growing processing sequence,
this representation allows streaming very large meshes through
main memory. At any time only the processing boundary needs
to be kept in-core. Yet, as explicit connectivity information can be
maintained along the processing boundary, this provides seamless
access to large meshes.

Connectivity reconstruction is supported by letting users
store their own data with the first appearance of any edge or vertex
on the processing boundary. This data is made available when these
mesh elements later reappear as part of another triangle, enabling
full recovery of mesh connectivity in constant time per element.

If processing sequences are read and written at the same time
there are two processing boundaries: one is theinput boundary,
along which triangles are added, and one is theoutputboundary,
where triangles are removed. The region between the two bound-
aries is the called thetriangle buffer, which contains those triangles
that are currently in memory. The triangle order of the input and the
output sequence does not need to be identical. In particular, the two
sequences can contain a completely different set of triangles and
vertices, for example, if remeshing or simplification is performed
on the triangle buffer. When the order in which an application out-
puts triangles and vertices does not immediately correspond to a
processing sequence, we use aprocessing sequence converterthat
temporarily accumulates triangles and vertices in a smallwaiting
areaand reorders them appropriately, as illustrated in Figure3.

Processing sequences provide two useful computational abstrac-
tions: boundary-based and buffer-based processing.

Boundary-based processing performs its computations di-
rectly on the input boundary. It immediately processes the triangles
generated at the input boundary and stores intermediate results only
along these boundaries. Example applications are simplification
methods using vertex clustering, non-iterative smoothing methods,
gradient or surface normal computations, etc.

Buffer-based processing performs its computations on the tri-
angle buffer between input and output boundary (Figure1). It gen-
erates triangles at the input boundary to fill the buffer and at the
output boundary to empty the buffer. Example applications are sim-
plification methods that use edge contraction, iterative smoothing
methods, remeshing methods, etc. We can think of buffer-based
processing as bridging the conceptual gap between boundary-based
processing and in-core processing. Restricting the buffer size to
a single triangle is equivalent to boundary-processing. A buffer
size that is large enough to contain the entire mesh is equivalent
to in-core processing. Any buffer size in between these extremes
provides a compromise that “adapts” to the available resources.

Implementations of either abstraction can perform their compu-
tation in a single pass or in multiple passes over the data. For mul-
tiple passes, the output sequence of a previous pass becomes the

Figure 3: An illustration of how awaiting
area is used toon-the-flyconvert the triangle
and vertex ordering produced by the simplifica-
tion method described in Section5 into a pro-
cessing sequence. After processing the triangle
marked in gray, the simplifier turns the quadric
Q2 into a vertex and places it into the waiting
area. In this moment the vertex becomes eli-
gible for output, as do the two triangles in the
waiting area marked in red that are connected
to it. Furthermore, this alsofinalizesthe vertex,
in the sense that no triangles other than those
already in the waiting area reference it.

8

7

Q5

5

Q7

7

Q4

Q2

4

2

Q8

output
boundary

waiting
area

written
region

unprocessed
region

4

input
boundary

input sequence of the next. Instead of sequentially performing mul-
tiple passes, a multi-stage approach streams the results of one pass
directly to the next by making the output boundary of one the input
boundary of the other. Immediate compression of the output of a
simplification algorithm, for example, could be implemented using
such a multi-stage approach.

Generating processing sequences can be done in a num-
ber of different ways, as the definition neither imposes a specific
traversal order, nor a data format. The input sequences used in this
paper were generated in a pre-processing step using an out-of-core
compression method [Isenburg and Gumhold 2003]. Mostone-pass
compression schemes naturally generate triangle and vertex order-
ings that conform to the definition of a mesh processing sequence.
In fact, it was the memory-efficient decompression order of our de-
coder that originally inspired processing sequences. Although these
particular processing sequences are compact and very fast to load,
their generation is not trivial and they are currently created offline.

The processing sequence converter, mentioned earlier, is one
efficient method foron-the-flycreation of processing sequences.
It accepts indexed vertices and triangles ordered in some loosely
localized form, temporarily accumulates them in awaiting area,
where they are re-ordered into a proper processing sequence. A
vertex from the waiting area becomes eligible for output when its
first triangle is to be output. A triangle from the waiting area be-
comes eligible for output when all its vertices are already output
andit conforms to one of the five configurations shown in Figure2.

The sole requirement, besides some locality in the input, is that
the converter is told when a vertex isfinalized, i.e., used for the last
time. This information is needed to correctly recover connectivity
around vertices, as well as to safely deallocate the memory of mesh
elements that are no longer used. For our output sequences, the
simplification process tells the converter when a vertex is finalized.

The converter automatically buffers as many triangles as needed
to produce a valid processing sequence. Increasing the size of the
waiting area beyond the minimum gives the converter freedom to
choose among several potential output triangles. This allows, for
example, sequences with fewer “start” or “join” configurations to be
generated. Sequences generated this way are currently stored in a
verbose format, but a compressed format foron-the-flycompression
of arbitrary output sequences is in the works.

This converter also provides an alternative to the out-of-core
compressor [Isenburg and Gumhold 2003] for generating process-
ing sequences “from scratch”: First we create two spatially ordered
sequences, one of vertices and one of triangles. Vertices are sorted
together with their indexi using one coordinate, for examplex,
as the sort keyk. Triangles are sorted in indexed form using the
minimal keyk of their three vertices as the sort key. This can be
implemented using a few external sorts [Lindstrom and Silva 2001].

In a final pass over the two sorted sequences we load vertices and
triangles into the waiting area. We read from the triangle sequence
as long as the next triangle key is less than or equal to the next
vertex key. Eventually the key of the next triangle is larger than
that of the next vertex and we read from the vertex sequence. This

Large Mesh Simplification, Isenburg, Lindstrom, Gumhold, Snoeyink 3 of 8 appeared in Visualization ’2003



vertex can now be finalized as all its triangles are already in the
waiting area. The vertices and triangles leave the waiting area in
processing sequence order, as described earlier.

Non-manifold meshes are turned into manifold meshes simply
by cutting along non-manifold vertices and edges. However, ver-
tices and edges are not replicated, but re-appear multiple times as a
newmesh element. This allows representing non-manifold meshes
while using only the five operations allowed for generating trian-
gles. An additional flag per vertex and per edge provided by the pro-
cessing sequence API informs whether an element is non-manifold
and whether there are still future non-manifold occurrences of the
element remaining.

4 Large Mesh Simplification
Early methods for simplifying large meshes were based on mesh
cutting [Hoppe 1998; Prince 2000; Bernardini et al. 2002]. In mesh
cutting, the input mesh is partitioned into pieces small enough to be
processed in-core, which are then simplified individually. The par-
tition boundaries are left untouched such that the simplified pieces
can be stitched back together seamlessly. While the hierarchical ap-
proaches of Hoppe [1998] and Prince [2000] automatically simplify
these boundaries at the next level, Bernardini et al. [2002] process
the mesh more than once—each time using a different partitioning.

Later, out-of-core simplification methods based on batch pro-
cessing became popular. Lindstrom [2000] performs vertex clus-
tering [Rossignac and Borrel 1993] on a uniform grid and stores
one quadric error matrix [Garland and Heckbert 1997] per occupied
grid cell in memory. Indexed input meshes are first dereferenced
into polygon soups and then batch-processed one triangle at a time,
adding each triangle’s quadric matrix to the cells in which the tri-
angle has a vertex. The output triangles are those that connect three
different grid cells. Each cell is represented by a vertex whose po-
sition minimizes the quadric error accumulated in the cell. In more
recent work Lindstrom and Silva [2001] show that the limitation
of the output mesh having to fit in main memory can be overcome
using a series of external sorts.

Although the vertex clustering approach to simplification allows
efficient out-of-core implementations, it delivers lower quality re-
sults than a typical in-core algorithm. Vertex clustering can not
retain details smaller than a grid cell and lacks the adaptivity of an
implementation based on, for example, iterative edge contraction.
Addressing this issue, Shaffer and Garland [2001; 2002] suggest
using batch processing to accumulate error quadrics with a vertex
cluster resolution that is higher than that of the output mesh, but still
fits in-core. From there a simplified mesh can be created in-core ei-
ther top-down, using a variation of R-simp [Brodsky and Watson
2000], or bottom-up, using QSlim [Garland and Heckbert 1997].
The accumulated quadrics pass information about the original sur-
face to the in-core algorithm. This allows higher quality simpli-
fications with an exact vertex budget, provided that the available
memory is a constant factor larger than the output mesh.

As we will see in Section5, processing sequences allow efficient
implementations of simplification algorithms based on vertex clus-
tering. As the processing boundary sweeps over the entire mesh,
visiting every triangle exactly once, we can store, update, and prop-
agate quadric error matrices along these boundaries only. This will
significantly reduce the memory footprint, improve the quality of
the simplified mesh, and enable pipelined processing by immedi-
ately feeding the output to another application.

The simplification methods discussed so far treat large meshes
differently from small meshes as they try to avoid performing costly
online processing on the entire mesh. Therefore the output pro-
duced by an out-of-core algorithm is usually of lower quality than
that of an in-core algorithm. Cignoni et al. [2003] propose an
octree-based external memory data structure that provides algo-

mesh name
number of

vertices triangles comp. holes handles n.-m. v. p. b. v.
buddha 544 K 1.1 M 1 0 104 0 2.3 K
blade 883 K 1.8 M 295 0 165 0 7.3 K
david (2mm) 4.1 M 8.3 M 2 1 19 4 21 K
lucy 14 M 28 M 18 29 0 64 23 K
david (1mm) 28 M 56 M 2.3 K 4.2 K 137 1.1 K 59 K
st. matthew 187 M 373 M 2.9 K 26 K 483 3.8 K 223 K
isosurface 235 M 469 M 168 K 6.2 K 168 K 0 1.6 M

Table 1: Vertex, triangle, component, hole, handle, and non-manifold vertex counts,
as well as maximum length of the processing boundary in thousands (K) and millions
(M) for all meshes used in our experiments.

rithms with transparent online access to huge meshes. This makes
it possible to, for example, simplify the St. Matthew statue from
386 to 94 million triangles using iterative edge contraction [Garland
and Heckbert 1997]. However, the run times for both constructing
an external memory data structure and using it during simplifica-
tion are orders of magnitude above those of simplification methods
based on batch processing.

Wu and Kobbelt [2003] propose an out-of-core simplification
technique that is similar to the buffer-based abstraction of process-
ing sequences. Starting with polygon soup as input, they keep a
large in-core buffer of triangles on which they perform edge col-
lapses. Since the input mesh is not indexed, connectivity between
triangles must be reconstructed by matching up the coordinates of
their vertices. Their method assumes that the polygon soup is spa-
tially ordered so that the triangles in the in-core buffer form con-
nected regions. Thus, an input mesh may need to be pre-sorted
using external sorting [Lindstrom and Silva 2001].

One drawback of Wu and Kobbelt’s method is that it can not
distinguish actual mesh borders from the input boundary of the
buffer. As borders cannot be recognized and simplified until the
entire mesh has been read, they must keep all triangles along the
mesh borders in the buffer. For a mesh with many small holes,
which is common in large range scans, this can considerably inflate
the memory requirements and may reduce the quality of the output.

Processing sequences provide an ideal input to Wu and Kobbelt’s
stream-based method: The incoming triangles that populate the
buffer are maximally connected. The mesh borders are known,
which allows immediate simplification of holes. The connectivity
reconstruction is either already provided by the API or can be done
more efficiently as triangles are in an indexed format. Finally, their
stream-based algorithm maps exactly to the abstraction of buffer-
based processing, which is discussed further in Section6.

5 Boundary-Based Processing
In this section we show how Lindstrom’s out-of-core simplification
method OoCS [2000] can be adapted to mesh processing sequences
using boundary-based processing. Capitalizing on the coherent ge-
ometric or topological ordering provided by processing sequences,
as well as the connectivity information made available, we improve
upon OoCS in a number of ways.

First, we make use of explicit mesh connectivity to detect and
preserve surface boundaries. This is trivially accomplished using
processing sequences, although it is an important improvement.
Second, we avoid the common “pinching” problem that results
when two or more (possibly unconnected) layers of the surface pass
through the same grid cell and are pinched. This problem is partic-
ularly noticeable when simplifying “dense” meshes with many thin
structures, such as CAD models and complex isosurfaces (see, for
example, Figure6(a)). Finally, because of spatial coherence, we
do not need to maintain the entire simplified mesh in memory, but
output vertices and triangles whenever possible as the processing
boundary advances through space. As a result, we require in-core
storage only on the order of the length of the processing boundary.

Large Mesh Simplification, Isenburg, Lindstrom, Gumhold, Snoeyink 4 of 8 appeared in Visualization ’2003



unprocessed
region

Q5
Q9

Q7
processed

region

5

7

88

9Q8

unprocessed
region

Q5
Q9

Q7
processed

region

5

5

7

88

9Q8

unprocessed
region

Q5

Q4

Q7
processed

region

5

5

7

88

Q8

unprocessed
region

Q5

Q4

Q7
processed

region

5

5

7

4

8

Q8

unprocessed
region

Q5

Q4

Q7
processed

region

5

5

7

4
4

8

Q8

unprocessed
region

Q5

Q4

Q7
processed

region

5

5

7

4
4a) b) c) d) 

e) f) 

border
edge quadric turns into vertex

quadrics
merge

processing boundaryvertex
clustering

grid

new
edge

new
vertex

Figure 4: A 2D illustration of using boundary-based processing for vertex clustering
based simplification: Quadrics, here depicted as colored ellipsoids, are allocated only for
grid cells that contain processing boundary vertices. Each quadric maintains a counter for
the number of vertices it is associated with. The counted vertices are marked with smaller
colored ellipsoids. In every frame the triangle marked in gray is processed:a→b) A new
quadric Q8 is allocated because the new vertex falls into a different grid cell. The quadric
of the triangle is computed and added to Q4 and Q8. This triangle is not output as two
of its vertices fall into the same grid cell.b→c) The triangle quadric is computed and
added to Q4, Q5, and Q8. This triangle is output as all its vertices fall into different grid
cells.c→d) The quadric of the triangle is computed and added to Q4 and Q8. Because of
the border edge a border error quadric is also added to Q4 and Q8. No triangle is output.
As the counter of Q4 drops to zero, we compute and output its representative vertex, and
deallocate the quadric.d→e) A new quadric Q9 is allocated because the new vertex falls into a different grid cell from those it is connected to. The quadric of the triangle is added
to Q5 and Q9. No triangle is output.e→f) The new edge connects two vertices of the same grid cell that have different quadrics. Therefore, quadrics Q8 and Q9 are merged. The
triangle quadric is added to Q5 and Q8/Q9.

We will describe two extensions to the original clustering method—
one simple and one somewhat more involved—and begin by ex-
plaining the general idea behind the two new techniques.

In both of our extensions, quadric error matrices are allocated,
updated, and evaluated only along the processing boundaries, which
sweep over the entire mesh, visiting every triangle exactly once. As
in [Lindstrom 2000], triangles add their quadric error to the respec-
tive matrices the moment they are processed. However, the life-time
of each matrix is limited to the duration that a processing boundary
pierces the grid cell associated with the matrix. More precisely, a
grid cell isactivewhenever it contains vertices from the processing
boundary. Quadric matrices are stored only with currently active
grid cells, thus obviating the need to explicitly store the entire grid.
Similar to the original method, but more efficient since only the
active subset of the cells intersected by the surface are stored, this
sparse grid representation is implemented using a hash table.

With each active cell, we also store a counter that is incremented
whenever a new vertex falls into this cell and decremented when-
ever a vertex from this cell is used for the last time (Figure4). Thus,
the active cells are those with non-zero vertex counters. When the
value of the counter drops to zero, we compute the cell’s representa-
tive vertex from the accumulated quadric matrix and place it on the
output. The grid cell, including the counter and the quadric matrix,
is then deallocated (i.e. removed from the hash table).

Notice that the processing boundary may enter and leave any
given cell several times when multiple layers of the mesh pass
through the cell. Therefore we will often generate one represen-
tative vertex for each layer. This is in contrast to the original ap-
proach that represents all mesh layers passing through a grid cell
with a single vertex. This difference becomes especially noticeable
for aggressive simplification, as illustrated by the simplified blade
model in Figure6. The original approach collapses many layers
into one vertex, which modifies the underlying topology and leads
to poor positioning of the representative vertex.

Occasionally we generate more than one vertex per layer for a
single cell, e.g. when an edge with no endpoint in the cell divides
the layer passing through the cell in two (see Figure5). However,
such additional vertices are generally beneficial since they serve to
unfold what would otherwise become non-manifold mesh pieces.
Indeed, a single additional vertex can sometimes untangle multiple
non-manifold vertices, as evidenced by Table2.

Figure 5: The presence ofcell-dividingedges
(shown stippled) results in more than one repre-
sentative vertex per grid cell for a single mesh
layer. Here they prevent Q8 and Q9 from merg-
ing. This is beneficial as it prevents the out-
put triangles{Q7,Q8,Q2} and {Q2,Q9,Q7}
(shown in red) from collapsing into a pair of
oppositely oriented triangles with non-manifold
edges. The grid cell on the right illustrates an-
other example of a cell-dividing edge.

cell-dividing
edges

Q9Q8

Q7

5
5

9

9

7

Q5

2
Q2

Q4

4

8

The framework just described is the basis of our first extension
to OoCS. As should be evident, it involves a minor change to the
original algorithm—an additional per-cell counter and the ability to
remove cells—yet it can have a dramatic impact on the topologi-
cal quality of the output mesh. For example, disconnected compo-
nents are guaranteed not to be merged if the processing sequence
traverses the mesh one component at a time. Nevertheless, it is
still possible for pinching to occur, e.g. if the processing bound-
ary wraps around and re-enters an already active cell, or if multiple
boundaries simultaneously pass through a cell. Ideally, we would
like to further partition each cluster of vertices within a cell into
connected components, which would eliminate pinching altogether.
This is accomplished in our second and more elaborate extension.

Conceptually, we construct connected components within a cell
by initially assigning each new vertex introduced in the processing
sequence to a unique cluster. Then, for each triangle processed, we
collapse clusters that both share an edge of the triangle and are part
of the same grid cell. As a result, vertices from the input mesh are
merged only if they share an edge, which in effect renders our ver-
tex clustering algorithm as an edge collapse method. That is, our
method is functionally equivalent to collapsing all edges whose ver-
tices are contained in the same grid cell. Indeed, for simplicity, our
implementation explicitly makes use of edge collapse and a con-
ventional mesh data structure for the partially simplified mesh near
the processing boundary. Contrary to conventional edge collapse
methods, however, we do not have access to the entire input mesh.
In the context of processing sequences, this implies maintaining
which cluster each of the vertices on the processing boundary be-
longs to, merging clusters (i.e. collapsing edges), and keeping track
of when a single cluster (as opposed to all clusters) within a cell
becomes inactive. We accomplish the latter by adding the vertex
counters of two partial clusters when merging them.

Large Mesh Simplification, Isenburg, Lindstrom, Gumhold, Snoeyink 5 of 8 appeared in Visualization ’2003



(a) original algorithm: 33,053 vertices, 3,366 non-manifold

(b) with active cells: 34,682 vertices, 1,665 non-manifold

(c) with connected layers: 35,134 vertices, 897 non-manifold

Figure 6: Semitransparent and opaque views of the turbine blade model, simplified
using the original OoCS algorithm and our extensions to it. Notice the severe pinching
in (a)as interior and exterior layers of the surface pass through single grid cells and are
collapsed. The grid dimensions are57× 96× 44 in all three cases.

The order in which triangles and vertices are finalized does not
directly result in a proper output sequence. This is because out-
put triangles are usually generated before their vertices are ready
for output, i.e. before their clusters become inactive. Therefore,
output triangles are first put into a waiting area, as illustrated ear-
lier in Figure3. Whenever a vertex is output, we check whether
waiting triangles that reference the vertex are eligible for output,
i.e. whether all three of their vertices have been output, and if so
output and deallocate the triangle. Because the generated vertices
and triangles can be written (almost) directly to disk, the memory
requirements of this approach are independent of the size of the out-
put mesh. Rather, the memory usage depends solely on the maximal
length of the processing boundary.

The information on border edges available during sequenced
processing further improves the quality of the simplified mesh. In-
stead of adding tangential error terms for every edge that com-
pletely neutralize each other only across coplanar triangles, as sug-
gested in [Lindstrom and Silva 2001], we explicitly penalize devi-
ation from actual border edges using specialized quadric error ma-
trices, similar to [Garland and Heckbert 1997].

5.1 Results
Figure6 and Table2 highlight the results of using our boundary-
based processing methods to simplify the turbine blade model. No-
tice the large reduction in non-manifold vertices relative to the small
increase in total number of vertices (in all cases a higher than 100%
efficiency). As can be seen in Figure6, many of these non-manifold

Tout method Vout Vnm
∆Vnm
∆Vout

RAM time speed
(MB) (s) (Tin/s)

70,546
original 33,053 3,366 – 10.7 5.62 314 K
active cells 34,682 1,665 104% 7.3 5.78 305 K
connected 35,134 897 119% 3.4 6.18 285 K

122,470
original 59,675 3,103 – 11.0 6.97 253 K
active cells 60,618 2,008 116% 8.0 7.07 250 K
connected 61,109 1,172 135% 3.4 7.10 249 K

230,642
original 113,961 3,472 – 21.9 9.02 196 K
active cells 114,695 2,436 141% 13.8 9.13 193 K
connected 115,238 1,360 165% 3.5 9.15 193 K

Table 2: Results of simplifying the blade model using the original OoCS algorithm and
our “active cells” and “connected layers” extensions based on processing sequences.
The fifth column lists the change in number of non-manifold vertices (∆Vnm) over the
change in total number of output vertices (∆Vout) relative to the original method. Note
that, on average, each added vertex generally makes more than one previously non-
manifold vertex manifold. The last column reports the simplification speed as number
of input triangles processed per second.

vertices are the result of pinching. These models were simplified on
a 2 GHz Pentium 4 Windows 2000 PC with 1 GB of RAM.

In addition to higher quality meshes, our “connected layers”
method is also more memory efficient than the original method,
which requires storing the entire simplified mesh in-core. We sim-
plified the St. Matthew model from 373 million triangles to 23
million using these two methods on a 250 MHz SGI Onyx2 with
40.5 GB of RAM. The original OoCS took 67 minutes and used
3,282 MB of RAM, while the boundary-based method took 83 min-
utes and used only 121 MB of RAM; a reduction in memory usage
by a factor of 27.

6 Buffer-Based Processing
In this section we show how an adaptive simplification method
based on iterative edge contraction [Garland and Heckbert 1997]
can use processing sequences. We modify the algorithm by Wu
and Kobbelt [2003], which uses a buffering mechanism based on a
geometric triangle ordering that directly maps to the buffer-based
computation abstraction of processing sequences.

Their algorithm uses three operations, READ triangle, DECI-
MATE triangles, and WRITE triangle, to maintain anactiveportion
of the mesh that is memory-resident and eligible for simplification.
It stores a quadric error matrix with each active vertex.

READ inputs the next triangle in the triangle ordering, hooks it
into the active mesh, and adds the quadric error of the triangle to
the quadric matrices of its three vertices.

DECIMATE chooses an edge with minimal quadric error that is el-
igible for collapse, merges its two active vertices and their quadric
matrices, and eliminates the triangles that share the edge. Constant-
time complexity is achieved by choosing this edge from only a
small, fixed-size set of random candidates.

WRITE chooses a triangle with maximal quadric error that has an
edge on the output boundary and outputs it. Again, the search is
restricted to a random set of potential output triangles for constant-
time selection. When all triangles incident on a vertex have been
written, the vertex is deleted together with its quadric.

Wu and Kobbelt READ triangles to keep an in-core buffer full,
and interleave batches of WRITE and DECIMATE operations to
maintain a simplified mesh whose resolution corresponds to a user-
specified percentage reduction of the original mesh.

Figure7 illustrates Wu and Kobbelt’s algorithm adapted to the
processing sequence paradigm. The unprocessed region is shown
at the top. Shown in black is the processing boundary of the in-
put sequence, where new triangles are read and where vertices ac-
cumulate the quadric error of incoming triangles in their quadric
matrices. Furthermore, the input sequence provides information
about connectivity and border edges to the in-core buffer (shown

Large Mesh Simplification, Isenburg, Lindstrom, Gumhold, Snoeyink 6 of 8 appeared in Visualization ’2003



unprocessed
region

partly
simplified 

hole

hole

simplified
hole

triangle
buffer

written
region

input
boundary

output
boundary

C

A

C
C

C

C C

C

C

C

C

C

C
C

C
C

C
C

C

AA

A
A

A

A

A A
A A

collapsible

accumulating

candidates

Figure 7: A 2D illustration of buffer-based computation using processing sequences.
Such an algorithm, here the simplification algorithm of Wu and Kobbelt [2003], oper-
ates on a triangle buffer between an input and an output boundary. Triangles generated
at the input boundary are read from disk. They are not immediately processed, but
used to (re-)fill the buffer in which the actual processing takes place. Their quadric er-
ror is added to the accumulating error quadrics of vertices on the input boundary. Edge
collapse operations are restricted to those edges (shown dashed) that are not incident
to vertices on either boundary. They merge collapsible quadrics. Triangles adjacent to
the output boundary empty the buffer and are written to disk. The next candidate for
output is the triangle with all three vertices on the output boundary (shown in gray).

in the middle). Edge collapse operations are disallowed for edges
that have vertices on the input or the output boundary. After dec-
imation, the surviving triangles are output in the form of a second
processing sequence. Again connectivity and border information
is stored along the boundary of the output sequence, allowing for
further processing such as on-the-fly compression.

In order to output a processing sequence, we slightly modify Wu
and Kobbelt’s method to select triangles to output. As in the orig-
inal method, we try to minimize the number of “start” operations
(compare with Figure2) for output triangles in order to keep the
output boundary as short and the triangle buffer as connected as
possible. This is achieved by choosing an output triangle only from
triangles incident to an edge of the output boundary, and allow-
ing “start” operations only if no such triangle is available. Further-
more, we favor outputting triangles whose three vertices are on the
output boundary, i.e. “end,” “fill,” and “join” operations (in that
order), since its vertices can no longer be involved in an edge col-
lapse. When no such triangle exists, we choose (using multiple
choice selection) some triangle with one vertex between the input
and output boundaries, i.e. we perform an “add” operation. To de-
termine which such triangle to output from a set of multiple choice
candidates, we choose the one with the largest quadric error at the
non-boundary vertex rather than evaluating the quadric error for the
entire triangle, as in Wu and Kobbelt’s method. We decided on this
approach since, in our method, vertices on the output boundary have
no impact on the error involved in future potential edge collapses.

When a new vertex is encountered in the input, a corresponding
vertex is allocated in the in-core mesh data structure. The process-
ing sequence API optionally maintains a mapping between the ver-
tices it knows to be on the boundary and corresponding client-side
vertices. This eliminates the need for the client to establish this
mapping, e.g. via hashing on global vertex indices, for each pre-
viously visited vertex in the sequence, which gives us connectivity
reconstruction essentially for free. Furthermore, using processing
sequences, the mesh border edges are not (miss-)classified as input
boundary edges, as in [Wu and Kobbelt 2003]. This allows border
edges and nearby incident edges to be directly involved in decima-
tion; we need not set aside precious space in the fixed-size mesh

mesh name Tin Tbuf Tout
p RAM time speed

(%) (MB) (h:m:s) (Tin/s)

happy buddha 1,087,716
400 K 21,754 2 41 27 40,663
400 K 217,544 20 41 26 42,434

blade 1,765,388
400 K 35,308 2 41 41 43,292
400 K 353,078 20 42 45 39,396

david (2mm) 8,254,150
400 K 82,541 1 43 3:06 44,491
400 K 825,415 10 44 3:50 35,915

lucy 28,055,742
400 K 280,557 1 43 10:05 46,408
400 K 1,402,788 5 43 10:45 43,502

david (1mm) 56,230,343
400 K 562,303 1 48 14:40 63,898
400 K 2,811,517 5 48 16:07 58,149

st. matthew 372,767,445
800 K 559,152 0.15 104 1:30:32 68,624
800 K 1,863,837 0.5 105 1:33:00 66,804

isosurface 467,614,855 4 M 2,346,907 0.5 776 2:25:11 53,883

Table 3: Results of buffer-based simplification.Tbuf specifies the size (in number of
triangles) of the in-core buffer, andp is the simplification ratio. For these results, we
used 8 multiple choice candidates. The top four models were simplified on an 800 MHz
Linux PC, while the bottom three were simplified on a 2 GHz Windows PC.

buffer to hold such edges until the entire input mesh has been read.

6.1 Results
Table 3 lists the results of running our adaptive simplification
method on several meshes. The majority of these meshes were sim-
plified on an 800 MHz Pentium 3 with 880 MB of RAM, running
Red Hat Linux 7.1 (allowing a fair comparison with several other
methods, including [Wu and Kobbelt 2003; Lindstrom and Silva
2001; Cignoni et al. 2003]). The larger meshes were simplified on
the PC described in Section5.1. Except for lower memory require-
ments and higher speed, these results generally agree with those
published by Wu and Kobbelt. The performance differences may
be attributed in part to our method not requiring hashing, but may
also be the result of a more efficient implementation. Finally, Fig-
ure8 shows a simplified mesh produced by our method.

7 Conclusion
We have demonstrated that the mesh access provided by process-
ing sequences allows highly efficient out-of-core computations on
large meshes. We have illustrated this by adapting two different
simplification algorithms to access the mesh through a prototype
of our processing sequence API [Isenburg et al. 2003]: one using
boundary-based, the other using buffer-based processing. In both
cases using processing sequences was beneficial.

Boundary-based processing significantly reduces the memory-
requirements of the vertex clustering based simplification method
of Lindstrom [2000], enabling it to produce very large output
meshes in a single pass. Furthermore, the quality of the simplified
mesh improves significantly—especially in the case of aggressive
simplification—as multiple mesh layers that pierce one grid cell are
no longer collapsed into a single vertex. Finally, information about
border edges supports dedicated error quadrics that better preserve
surface boundaries.

Buffer-based processing readily accommodates the stream-based
simplification method of Wu and Kobbelt [2003], providing it with
a triangle ordering that keeps the buffer maximally connected. Fur-
thermore, the indexed nature of processing sequences removes the
overhead associated with polygon soups. Additional speed-ups are
gained through assistance in reconstructing connectivity. Finally,
information about border edges solves the issue of uncollapsible
triangles clogging the triangle buffer.

We would like to see these two computational abstractions ap-
plied to other types of mesh processing, in particular parameteriza-
tion and remeshing algorithms. For this we will make the process-
ing sequence API available to other researchers. Their needs and
experiences may result in improvements to our current API [Isen-
burg et al. 2003] or in slight changes to its definition.

Large Mesh Simplification, Isenburg, Lindstrom, Gumhold, Snoeyink 7 of 8 appeared in Visualization ’2003



Figure 8: Adaptive simplification of David (2mm) to 1% of the input mesh with a
stream-based simplifier using processing sequences and buffer-based processing.

The maximal length of the processing boundary directly impacts
the memory footprint of the simplification process. For the isosur-
face data set this length is 1.6 million vertices, far above theO(

√
n)

worst-case bound established by Bar-Yehuda and Gotsman [1996].
Our processing sequences are currently generated by a compression
scheme that traverses the mesh with a heuristic for lowering the bit
rate, and does not attempt to keep the maximal boundary length
small. Currently we are investigating how to create processing se-
quences that have a smaller footprint.

Future work will also addresson-the-flycompression of process-
ing sequences that are either the output of an algorithm or created
from scratch with the converter and geometric sorting. When com-
pressing processing sequences in a traversal order that is dictated by
an application rather than chosen by the compressor we can expect
lower compression rates. However, this will allow both inputting
and outputting processing sequences in compressed form.

Acknowledgements
This work was performed under the auspices of the U.S. DOE by LLNL under contract

no. W-7405-Eng-48. We thank Kitware for the Blade model. The Happy Buddha and

the Lucy model are courtesy of the Stanford Computer Graphics Laboratory. The two

versions of David and the St. Matthew statue are courtesy of the Digital Michelangelo

Project at Stanford University. The isosurface is courtesy of the LLNL ASCI Program.

References
BAR-YEHUDA, R., AND GOTSMAN, C. 1996. Time/space tradeoffs for

polygon mesh rendering.ACM Transactions on Graphics 15, 2, 141–
152.

BERNARDINI, F., MARTIN , I., M ITTLEMAN , J., RUSHMEIER, H., AND

TAUBIN , G. 2002. Building a digital model of Michelangelo’s Florentine
Pieta.IEEE Computer Graphics and Applications 22, 1, 59–67.

BOGOMJAKOV, A., AND GOTSMAN, C. 2001. Universal rendering se-
quences for transparent vertex caching of progressive meshes. InGraph-
ics Interface’01 Proceedings, 81–90.

BRODSKY, D., AND WATSON, B. 2000. Model simplification through
refinement. InGraphics Interface’00 Proceedings, 221–228.

CHOUDHURY, P.,AND WATSON, B. 2002. Completely adaptive simplifica-
tion of massive meshes. Tech. Rep. CS–02–09, Northwestern University.

CIGNONI, P., MONTANI , C., ROCCHINI, C., AND SCOPIGNO, R. 2003.
External memory management and simplification of huge meshes.IEEE
Transactions on Visualization and Computer Graphics. To appear.

DEERING, M. 1995. Geometry compression. InSIGGRAPH 95 Proceed-
ings, 13–20.

EVANS, F., SKIENA , S. S.,AND VARSHNEY, A. 1996. Optimizing triangle
strips for fast rendering. InVisualization’96 Proceedings, 319–326.

GARLAND , M., AND HECKBERT, P. 1997. Surface simplification using
quadric error metrics. InSIGGRAPH 97 Proceedings, 209–216.

GARLAND , M., AND SHAFFER, E. 2002. A multiphase approach to effi-
cient surface simplification. InVisualization’02 Proceedings, 117–124.

HO, J., LEE, K., AND KRIEGMAN, D. 2001. Compressing large polygonal
models. InVisualization’01 Proceedings, 357–362.

HOPPE, H. 1998. Smooth view-dependent level-of-detail control and its
application to terrain rendering. InVisualization’98 Proceedings, 35–42.

HOPPE, H. 1999. Optimization of mesh locality for transparent vertex
caching. InSIGGRAPH 99 Proceedings, 269–276.

ISENBURG, M., AND GUMHOLD , S. 2003. Out-of-core compression for
gigantic polygon meshes. InSIGGRAPH 2003 Proceedings, 935–942.

ISENBURG, M., GUMHOLD , S., AND SNOEYINK , J. 2003. Processing
sequences: A new paradigm for out-of-core processing on large meshes.
Preprint available athttp://www.cs.unc.edu/∼isenburg/oocc/.

LEVOY, M., PULLI , K., CURLESS, B., RUSINKIEWICZ, S., KOLLER, D.,
PEREIRA, L., GINZTON, M., ANDERSON, S., DAVIS , J., GINSBERG,
J., SHADE, J.,AND FULK , D. 2000. The Digital Michelangelo Project.
In SIGGRAPH 2000 Proceedings, 131–144.

L INDSTROM, P.,AND SILVA , C. 2001. A memory insensitive technique for
large model simplification. InVisualization’01 Proceedings, 121–126.

L INDSTROM, P. 2000. Out-of-core simplification of large polygonal mod-
els. InSIGGRAPH 2000 Proceedings, 259–262.

MCMAINS, S., HELLERSTEIN, J., AND SEQUIN, C. 2001. Out-of-core
build of a topological data structure from polygon soup. InProceedings of
the 6th ACM Symposium on Solid Modeling and Applications, 171–182.

PRINCE, C. 2000.Progressive Meshes for Large Models of Arbitrary Topol-
ogy. Master’s thesis, University of Washington.

ROSSIGNAC, J., AND BORREL, P. 1993. Multi-resolution 3d approxima-
tion for rendering complex scenes. InModeling in Computer Graphics,
455–465.

SHAFFER, E., AND GARLAND , M. 2001. Efficient adaptive simplification
of massive meshes. InVisualization’01 Proceedings, 127–134.

SILVA , C., CHIANG , Y., EL-SANA , J., AND L INDSTROM, P. 2002. Out-
of-core algorithms for scientific visualization and computer graphics. In
Visualization’02 Course Notes.

TOUMA , C., AND GOTSMAN, C. 1998. Triangle mesh compression. In
Graphics Interface’98 Proceedings, 26–34.

WU, J., AND KOBBELT, L. 2003. A stream algorithm for the decimation
of massive meshes. InGraphics Interface’03 Proceedings, 185–192.

Large Mesh Simplification, Isenburg, Lindstrom, Gumhold, Snoeyink 8 of 8 appeared in Visualization ’2003

http://www.cs.unc.edu/~isenburg/oocc/

	Introduction
	Out-of-Core Processing
	Processing Sequences
	Large Mesh Simplification
	Boundary-Based Processing
	Results

	Buffer-Based Processing
	Results

	Conclusion

