
Streaming Compression of Tetrahedral Volume Meshes

Martin Isenburg
UC Berkeley

isenburg@cs.berkeley.edu

Peter Lindstrom
LLNL

pl@llnl.gov

Stefan Gumhold
TU Dresden

stefan@gumhold.de

Jonathan Shewchuk
UC Berkeley

jrs@cs.berkeley.edu

ABSTRACT

Geometry processing algorithms have traditionally assumed that
the input data is entirely in main memory and available for ran-
dom access. This assumption does not scale to large data sets, as
exhausting the physical memory typically leads to IO-inefficient
thrashing. Recent works advocate processing geometry in a
“streaming” manner, where computation and output begin as soon
as possible. Streaming is suitable for tasks that require only local
neighbor information and batch process an entire data set.

We describe a streaming compression scheme for tetrahedral vol-
ume meshes that encodes vertices and tetrahedra in the order they
are written. To keep the memory footprint low, the compressor is
informed when vertices are referenced for the last time (i.e. are fi-
nalized). The compression achieved depends on how coherent the
input order is and how many tetrahedra are buffered for local re-
ordering. For reasonably coherent orderings and a buffer of 10,000
tetrahedra, we achieve compression rates that are only 25 to 40
percent above the state-of-the-art, while requiring drastically less
memory resources and less than half the processing time.

CR Categories: I.3.5 [Computational Geometry and Object Mod-
eling]: Curve, surface, solid, and object representations

Keywords: mesh compression, geometry streaming, connectivity
coding, stream-processing, tetrahedral meshes, volume data.

1 INTRODUCTION

Compression techniques are widely used for compact storage and
faster transmission of digital data. While generic compression al-
gorithms such as “gzip” can be applied to any type of data, com-
pression schemes dedicated to a particular type of data typically
achieve far superior rates of compression. Efficient compression al-
gorithms for geometric data sets have been pursued since Deering’s
groundbreaking work [3] from 1995. Over the course of the last
ten years, mesh compression has become a mature area of research
and numerous algorithms for coding polygonal surface meshes and
polyhedral volume meshes have been proposed.

For audio and video, the increasing size of content has led to the
design of “streaming” codecs that can compress and decompress a
file while keeping only a small portion of it in memory. This al-
lows compression and decompression of audio or video files with
arbitrary duration using a relatively small amount of memory. In
contrast, until recently mesh compression schemes were inherently
“non-streaming” [23, 5, 21, 7, 19, 17]. All these schemes construct
auxiliary data structures to support connectivity queries for deter-
ministically traversing and, consequently, globally reordering the
mesh. Compressing a mesh larger than the available memory means
either processing the mesh piece by piece [6] or employing complex
external memory data structures [10]. This is IO-inefficient and re-
quires lots of preprocessing and temporary disk storage.

Recent works [10, 12, 11, 14] advocate applying the same type of
“streaming” that has long been used to compress, resample, or filter

audio and video data for batch processing of geometric data sets.
Since data that describes geometric models has no similarly “nat-
ural” stream order like the temporal succession of sound samples
or movie frames, Isenburg and Lindstrom [11] describe a stream-
ing mesh format that allows meshes to stream in any order that is
reasonably coherent. Mesh elements (vertices, triangles, tetrahe-
dra) appear interleaved in the stream, and vertices are active only
as long as there are future references to them. Their last references
are documented with explicit finalization tags in the format.

Knowledge about finalized vertices gives the necessary guaran-
tees to complete local mesh operations, immediately produce out-
put, and safely deallocate the corresponding data structures to make
room for data still streaming in. This enables IO-efficient imple-
mentations of simple tasks like dereferencing, counting number of
components/handles, or computing normals/gradients, independent
of the size of the input mesh. More complex tasks such as sim-
plification [12] or compression [14] of surface meshes, iso-surface
extraction [20, 11], and simplification of volume meshes [24] have
also been adapted to take advantage of streaming input.

In this paper we describe an algorithm for streaming compres-
sion of tetrahedral volume meshes. Given streaming mesh input,
our compressor simultaneously reads the mesh, encodes incoming
tetrahedra and vertices, and outputs a stream of bits, while dynam-
ically allocating and freeing the data structures that represent mesh
elements briefly resident in memory. For reasonably coherent input
our connectivity compression rates are nearly independent from the
order in which the tetrahedra arrive, so long as we reorder tetrahe-
dra in a small delay buffer. With a delay buffer of 10,000 tetrahedra,
we achieve connectivity compression rates within a factor of two of
the state-of-the-art in-core method. Together with geometry com-
pression that rivals those of others, our total bit rates are only 25
to 40 percent larger than those reported by Gumhold et al. [4] but
obtained using drastically less memory and less than half the time.

2 PREVIOUS WORK

The standard indexed format for polygonal and polyhedral meshes
uses an array of floats that specifies a position for each vertex in 3D
(i.e. the geometry), and an array of integers containing indices into
that vertex array that specifies the polygons or polyhedra (i.e. the
connectivity). Volume meshes often also have simulation data like
pressure or temperature values associated with each vertex.

Indexed formats are not the most concise way for storing a mesh;
large models occupy files of challenging sizes. The connectivity
typically dominates the overall storage costs—especially for tetra-
hedral volume meshes. While each vertex is referenced about 6
times in a triangular surface mesh, it has an average of 22 refer-
ences in a tetrahedral volume mesh. Moreover, the cost for storing
indexed connectivity increases superlinearly in the number of ver-
tices v, as each index requires at least log2 v bits.

Numerous schemes have been proposed for compressing polyg-
onal surface meshes such as [23, 5, 21, 16, 7, 19, 17] and many
more. For polyhedral volume meshes there are considerably fewer
schemes [22, 4, 9, 1]. This is no surprise as surface meshes are
widely used in entertainment and industry while volume meshes are
mostly found in specialized scientific and engineering applications.

The challenge to compress the connectivity of tetrahedral vol-
ume meshes was first approached by Szymczak and Rossignac [22].

Streaming Tet Mesh Compression, Isenburg et al. 1 of 7 appeared in Graphics Interface’06



Figure 1: The layout diagrams on the left illustrate the original layout of the “torso,” “fighter,” “rbl,” “f16,” and “sf1” meshes (top to bottom). Vertices/tetrahedra
are represented along the vertical/horizontal axis in the order they appear in the file. For each tetrahedron there is a point (violet) for each of its four vertices

and a vertical line segment (gray) connecting them. For each vertex there is a horizontal line segment (green) connecting all the tetrahedra that reference it. The

renderings on the right show the first two percent of tetrahedra in the file for the respective mesh.

Their “Grow&Fold” technique codes tetrahedral connectivity using
slightly more than 7 bits per tetrahedron (bpt). The encoding pro-
cess builds a tetrahedral spanning tree rooted in an arbitrary bound-
ary triangle. This tree is encoded with 3 bpt that indicate for each
face whether the spanning tree will continue growing. The bound-
ary of the tetrahedron spanning tree, a triangular surface mesh, has
an associated “folding string” that is represented with 4 bpt. This
string describes how to “fold” and occasionally “glue” the boundary
triangles of the spanning tree to reconstruct the original connectiv-
ity. The indices associated with the occasional “glue” operations
lift the total bit rate slightly above 7 bpt.

Gumhold et al. have extended their connectivity coder for trian-
gular surface meshes [5] to tetrahedral volume meshes [4]. Their
algorithm performs a region growing process that maintains a “cut-
border,” a (possibly non-manifold) triangle surface mesh, that sepa-
rates processed tetrahedra from unprocessed ones. Each iteration of
the algorithm processes a triangle on the cut-border, either declar-
ing it a “border” face or including its adjacent tetrahedron inside
the cut-border. The latter operation specifies the fourth vertex of
the tetrahedron. If this is not a “new vertex” it is a vertex from the
cut-border, which is specified with a “connect” operation using an
indexing scheme that is based on a local breadth-first traversal. Be-
cause of the order in which cut-border triangles are processed, this
fourth vertex is often close to the processed triangle, and thus has
a small local index. The bit rates they achieve for connectivity are
around 2 bpt, a result that has not been challenged since.

Yang et al. propose a compression technique that allows pipelin-
ing decompression and rendering of a tetrahedral mesh [26], which
can significantly reduce the memory requirements of a ray cast-
ing renderer. The contribution of a decompressed tetrahedron to
the rays it intersects is incrementally composited and its memory is
freed as soon as possible. This allows them to render compressed
tetrahedral meshes without keeping the entire uncompressed mesh
in memory. First, they encode the surface formed by the boundary
triangles using a triangle mesh compression scheme. Then, they
grow the boundary surface inwards using a breadth-first traversal.
Like Gumhold et al. [4], they encode a tetrahedron by specifying
its fourth vertex, but if the fourth vertex was already visited, they

specify it using three different operations instead of Gumhold’s uni-
versal “connect”. Yang et al. use a local index into a list of adjacent
faces or edges when the fourth vertex is connected across one of
those faces or edges; otherwise, they use a global index into a list
of all vertices in memory. Their connectivity compression rates are
only slightly worse than those of Gumhold et al.

A similar scheme for the special case of back-to-front render-
ing of compressed Delaunay meshes was proposed by Bischoff and
Rossignac [1]. A server reorders the tetrahedra in visibility order by
sweeping a triangulated “sheet” through the mesh. Since Delaunay
input is convex and without visibility cycles, the sheet of triangles
remains a manifold and never changes topology. Only three differ-
ent configurations arise when including a tetrahedron into the sheet,
and only two need to be distinguished: the tetrahedron either shares
one triangle with the sheet and “adds” a new vertex, shares two tri-
angles and “flips” an edge, or shares three triangles and “fills” a
gap. The server traverses the sheet triangles and includes tetrahedra
batch-wise, alternating between only “adding” tetrahedra and only
performing “flips” and “fills.” The encoding is further compressed
by testing edges on the sheet for convexity (which rules out a fill
on that edge) and marking some edges as locked (which does the
same). The connectivity encodings have entropies as low as 1.6 bpt,
but can only represent Delaunay meshes.

None of the schemes just described is suited to compress
gigabyte-sized input meshes. They expect an entire mesh as input;
compression cannot start until the mesh is completely generated and
stored at least once in uncompressed form. They construct tem-
porary data structures as large as the mesh to support topological
adjacency queries, requiring prohibitively large amounts of mem-
ory. They also completely reorder the input mesh, so gigabytes of
data have to be globally reorganized. Hence, these schemes cannot
easily compress large meshes with standard computing equipment.

Ho et al. [6] suggest cutting large triangle meshes into manage-
able pieces, encoding each separately using previous techniques,
and recording how to stitch the pieces back together. Avoiding
the cutting step, Isenburg and Gumhold [10] instead make use of
a dedicated external memory data structure that supports the topo-
logical adjacency queries of their compressor. However, both these

Streaming Tet Mesh Compression, Isenburg et al. 2 of 7 appeared in Graphics Interface’06



approaches are highly I/O-inefficient and require large amounts of
temporary disk space. Isenburg et al. [14] propose a radically dif-
ferent approach to mesh compression that incrementally encodes a
triangle mesh as it is given to the compressor. This makes the com-
pression process transparent to the user and almost independent of
the mesh size. In this paper we extend their approach to similarly
compress tetrahedral meshes.

3 STREAMING TETRAHEDRAL VOLUME MESHES

In a streaming mesh format [11], tetrahedra and the vertices they
reference are stored in an interleaved fashion. This makes it pos-
sible to start operating on the data immediately without having to
first load all the vertices, as is common practice with standard in-
dexed formats. Furthermore, streaming formats provide explicit in-
formation about when vertices are referenced for the last time. This
makes it possible to complete operations on these vertices and free
the corresponding data structures for immediate reuse.

The width of a streaming mesh is the maximal number of vertices
that need to be in memory simultaneously. Those are vertices that
have already streamed in but have not been finalized yet. The width
is the lower bound for the amount of memory needed for processing
a streaming mesh since any mesh processing application has to store
at least that many vertices simply to dereference the mesh.

Our streaming approach to compression relies on the input
meshes either being stored or produced in a streaming manner. The
set of example volume meshes that we use to test our compres-
sor, however, does not fulfill these expectations at all. Not only are
these tetrahedral meshes distributed in conventional, non-streaming
formats, they also come with absolutely “un-streamable” element
orders, as illustrated by the layout diagrams [11] in Figure 1. The
horizontal axis represents the tetrahedra (in the order they occur in
the file), and the vertical axis represents the vertices (also echoing
their order in the file). A layout diagram connects all the tetrahedra
that reference a common vertex with a horizontal green line seg-
ment, and the four vertices of a tetrahedron with a vertical gray line
segment. On top of this, the diagram represents each individual
reference from a tetrahedron to its four vertices by a violet dot.

The few unclassified data sets that are currently used by the vi-
sualization community for performance measurements were cre-
ated several years ago. Back then, the difficulty of using random
access in-core algorithms for producing larger and larger meshes
were overcome simply by employing sufficiently powerful com-
puter equipment. But only when there is enough main memory to
hold the entire mesh is it possible to output meshes whose vertices
and tetrahedra are ordered so “randomly” in the file.

In the near future we anticipate a new generation of meshing al-
gorithms that produces and outputs volume mesh data in a more
coherent fashion. This is a necessity if algorithms are to scale to
increasingly large data sets. An algorithm for tetrahedral mesh re-
finement, for example, could be designed to sweep over the data
set and restrict its operation at any time to the currently active set
until it achieves the desired element quality. For a mesh generation
algorithm operating in this manner, it is natural to output reason-
ably coherent meshes in a streaming manner. To stream legacy data
stored in non-streaming formats or with highly incoherent layouts,
Isenburg and Lindstrom [11] describe several conversion strategies.

As streaming input for our compressor1, we use reordered
versions of the originally incoherent tetrahedral meshes that we
obtained from Vo et al. [24] and that are shown in Figure 1.
These meshes constitute a good representation of orderings that
future layout-aware mesh generators may produce: two geometric
orderings—a sweep along one axis and a space-filling curve—and
a topological breadth-first ordering. For comparison we include

1for demo and software: http://www.cs.unc.edu/∼isenburg/sctvm/

mesh
number of width

vertices tetrahedra original axis z-order breadth
torso 168,930 1,082,723 168,909 3,118 7,253 5,528

fighter 256,614 1,403,504 208,338 3,894 9,197 16,629
rbl 730,273 3,886,728 594,107 2,814 10,075 3,206
f16 1,124,648 6,345,709 1,066,871 8,239 37,281 44,200
sf1 2,461,694 13,980,162 484,735 16,898 48,532 30,258

Table 1: Shown are “torso” and “fighter” in breadth-first and z-order. Listed
are vertex and tetrahedron counts and the width of streaming tetrahedral

meshes in four different orderings. Green bars show the width as a percentage.

results for streaming with the original tetrahedron order by vertex-
compacting [11] the original mesh. This reorders the vertices (but
not the tetrahedra) so they appear in the interleaved stream right
before the first tetrahedron that references them. Due to their ex-
tremely high widths of up to 99.99 percent (see Table 1), some of
these “streaming meshes” do not actually stream.

4 CONNECTIVITY COMPRESSION

Our connectivity compressor and decompressor use several strate-
gies First, like Gumhold et al., we maintain a cut-border, whose
triangular structure is stored in a half-edge data structure. Second,
we use the finalization information in the stream to discard ver-
tices and half-edges from memory as soon as the demands of com-
pression and decompression permit it, thereby keeping the memory
footprint small. Third, we use a dynamic indexing method to refer-
ence the vertices in memory, so that the number of bits we use to
index a vertex depends on the current width of the stream, not the
total number of vertices in the mesh. Fourth, the compressor uses
a small delay buffer to reorder tetrahedra, and whenever possible
it compresses a tetrahedron that adjoins the previously compressed
tetrahedron, which reduces the number of vertex indices we must
write to the compressed stream. Fifth, we use short local indices
to reference vertices when we can, resorting to the global dynamic
indices only when necessary. If the vertices of the next tetrahedron
to be compressed are already connected by edges of the cut-border,
the tetrahedron’s remaining vertices might be specified by local in-
dices that index the cut-border’s connectivity.

The compressor and decompressor maintain a set of active ver-
tices that are connected by active half-edges. A vertex becomes
active the moment it is (de)compressed, and remains active until it
is finalized. Up to twelve half-edges become active in the moment
a tetrahedron is (de)compressed. They are linked into units of three
that describe oriented faces of a tetrahedron. They remain active ei-
ther until an incident face of opposite orientation is (de)compressed
or until one of their vertices is finalized. Each active half-edge
stores a pointer to its origin vertex and a pointer to the next half-
edge of the tetrahedral face it lives in. Each active vertex stores a
list of pointers to the active half-edges for which the vertex is the
origin. For some forms of predictive coding of vertex positions (see

Streaming Tet Mesh Compression, Isenburg et al. 3 of 7 appeared in Graphics Interface’06



Figure 2: Possible configurations between a tetrahedron and active elements
of the cut-border: (a,b,g) START tetrahedra are not adjacent to any face, but

may be adjacent to up to four vertices; (c) ADD tetrahedra are adjacent to one

face and introduce a new vertex; (d,e) JOIN tetrahedra are also adjacent to

one face but do not introduce a new vertex; (f) FLIP tetrahedra are adjacent

to two faces; (h) FILL tetrahedra are adjacent to three (or four) faces.

Section 5) each active half-edge also stores a copy of the position
of the tip vertex—the non-incident fourth vertex of the tetrahedron
that “created” the face containing this half-edge.

When we compress a tetrahedron, we first determine how many
of its faces and vertices are already active. An arithmetic coder
distinguishes the configurations illustrated in Figure 2 and encodes
whether the tetrahedron is labeled START, ADD, JOIN, FLIP, or
FILL (see the figure caption for the definitions of these labels). As
there usually is correlation between successive configurations, we
switch contexts based on the previous configuration.

Next, we reference some active vertex of the tetrahedron. If w is
the current number of active vertices, this can be done with dynamic
indexing [14] using log2 w bits per vertex. As consecutive tetra-
hedra often share faces, edges, or vertices—especially after local
reordering (see Section 4.1)—we first check whether a tetrahedron
shares a mesh element with its predecessor and if so, we encode
which one. This check often avoids the need to specify a global
index, saving the log2 w bits that are the most expensive part of our
connectivity encoding. After specifying a vertex of the tetrahedron
(or an edge or face shared with the previous tetrahedron), we can
usually reach all other active vertices via an active half-edge. Only

for some START and JOIN configurations we do have to specify
several vertices. If a vertex is reachable via an active half-edge,
we can reference it locally (using a shorter index) within the list of
half-edges maintained by a known vertex or (even better) within the
intersection of the lists of two already known vertices. Whenever
such an intersection results in only one correctly oriented face we
do not have to store any further information at all.
START. The tetrahedron may have up to four active vertices. We topologically rotate

the tetrahedron so that active vertices come before new ones, and encode how
many active vertices there are. Unless they are shared with the previous tetrahe-
dron, we address them through dynamic indexing. New vertices are compressed
with predictive coding (see Section 5) and added to the dynamic vector.

ADD. Ideally, the active face is shared with the previous tetrahedron and addressed
as such. If not, the active face might share an edge or a vertex, which can be
addressed as such. Otherwise we address one vertex through dynamic indexing.
To address the remaining vertices we use local indices into the list of active
half-edges of the known vertex or—if two vertices are already known—into an
intersection of lists. The new vertex is compressed and added as before.

JOIN. Like an ADD, but we also need to address the fourth vertex. Sometimes we
can do this locally, through one of the lists of half-edges maintained with the
vertices of the active face. Otherwise we use dynamic indexing.

FLIP. One of the two faces is addressed like an ADD. The respective other face is
specified locally within the intersection of half-edge lists maintained with the
two vertices that are shared by both faces.

FILL. One of the three faces is addressed like an ADD. The other two faces are then
addressed using half-edge lists of the known vertices. A FILL also corresponds
to the case when all four faces are active. This does not need to be explicitly
distinguished; it can be detected by the decoder.

Finalization is encoded by specifying for all four vertices of the
currently processed tetrahedron whether they have now been ref-
erenced for the last time. These binary choices can be efficiently
compressed with context-sensitive arithmetic coding. The context
is chosen based on the total number of tetrahedra that have refer-
enced this vertex so far, and on the current number of active half-
edges around this vertex. As most vertices are finalized when they
are surrounded by a closed star of tetrahedra, there is a strong corre-
lation between the moment a vertex no longer has active half-edges
and its finalization. Boundary vertices, which still have on average
six active half-edges, tend to be surrounded by fewer tetrahedra.

4.1 Reordering in a Delay Buffer

When we compress the tetrahedra exactly in the order they stream
in, we generally have to store at least log2 w bits per tetrahedron as
we need to reference at least one of its active vertices with dynamic
indexing. With the same strategy as Isenburg et al. [14], we sig-
nificantly improve compression rates by employing a small delay
buffer from which the compressor can pick the next tetrahedron to
encode. The compressor always looks for tetrahedra that share a
face, an edge, or at least a vertex with the previous tetrahedron so
that global indices having log2 w bits can be avoided.

The compressor follows a greedy strategy that favors tetrahedra
that are as connected as possible with the currently active elements,
but also share as many vertices as possible with the previous tetra-
hedron. It picks the next tetrahedron from the delay buffer that

• finalizes a shared vertex;

• shares a face but does not introduce a new vertex;

• shares a face and introduces a new vertex;

• shares an edge but does not introduce new vertices;

• shares an edge and introduces one new vertex;

• shares a vertex but does not introduce new vertices;

• shares a vertex and introduces one new vertex;

• shares an edge and introduces two new vertices;

• shares a vertex and introduces two new vertices;

• shares a vertex and introduces three new vertices;

• is the oldest tetrahedron in the delay buffer.

Streaming Tet Mesh Compression, Isenburg et al. 4 of 7 appeared in Graphics Interface’06



mesh ordering
bit rate [bpt] element sharing [%]

0 100 1 k 10 k 0 10 k

torso

original 27.9 25.1 24.8 22.3
axis 6.0 5.0 4.6 3.9

z-order 6.6 4.3 4.1 4.1
breadth 6.9 4.3 4.1 4.0

fighter

original 28.2 27.7 25.3 18.3
axis 5.5 4.7 4.1 3.4

z-order 6.3 3.9 3.7 3.6
breadth 6.4 3.8 3.6 3.5

rbl

original 13.2 9.2 9.1 8.9
axis 5.5 4.8 4.2 3.4

z-order 6.2 3.9 3.7 3.6
breadth 6.2 3.8 3.5 3.5

f16

original 31.2 30.0 29.9 28.7
axis 8.6 5.0 4.7 3.7

z-order 7.9 4.1 3.8 3.7
breadth 6.8 4.0 3.8 3.7

sf1

original 28.3 19.6 15.3 11.3
axis 5.9 3.7 3.7 3.4

z-order 5.7 3.7 3.5 3.5
breadth 6.7 3.9 3.6 3.5

Table 2: Bit rates for streaming connectivity compression with different delay
buffer sizes and the effect of a 10 k buffer on the percentage of subsequent

tetrahedra that share a face , an edge , or at least a vertex .

4.2 Connectivity Compression Results
We measured the performance of our streaming tetrahedral con-
nectivity compressor on five example meshes. We made measure-
ments when streaming tetrahedra in their original incoherent order
as well as in three different coherent orderings. In Table 2 we report
bit rates for compressing tetrahedra exactly in stream order (with
no delay buffer) and when using delay buffers of 100, 1,000, and
10,000 tetrahedra. The table also illustrates the increase in the per-
centage of tetrahedra that share a face, an edge, or at least a vertex
when we use a delay buffer of 10,000 tetrahedra for reordering.

As one would expect, a delay buffer of size 10,000 is of little
use for completely incoherent input orderings. However, on more
coherent input the percentage of tetrahedra that share some mesh el-
ement approaches 100 percent and gives average connectivity rates
of around 3 to 4 bpt for all three coherent orderings.

4.3 Streaming Compression without Finalization
Our compression scheme does not necessarily need streaming mesh
input. We can also compress reasonably coherent indexed meshes
(i.e. a block of vertices followed by a block of tetrahedra) or rea-
sonably coherent interleaved meshes (i.e. streaming meshes without
vertex finalization). This will obviously affect compression rates, as
the costs for dynamic indexing increase when unfinalized vertices
accumulate. More severe, however, is the impact on the memory,
as all unfinalized vertices will eventually be in memory.

One approach to deal with unfinalized streaming input is to
“guess” finalization, as proposed by Wu and Kobbelt [25]. They as-
sume a vertex in a surface mesh is finalized when it is surrounded by
a closed star of triangles. This technique can fail in the presence of
a nonmanifold triangulation (e.g. where a dangling triangle shares a
vertex that also has a complete ring of triangles). Moreover, a ver-
tex does not get finalized when it is on the mesh boundary or when
flipped triangles prevent the star of triangles from being closed.

The results in Table 3 show that the lack of explicit finalization
has little impact on the bit rate. Local reordering in a 10,000 tetrahe-
dron delay buffer eliminates most of the dynamic indices, which is
the only coding item suffering from unfinalized vertices. The mem-
ory footprint, however, grows to the size of the input if vertices are
not finalized. By guessing finalization, we limit the accumulating
unfinalized data structures to boundary elements (and perhaps tetra-
hedra with the wrong topological orientation, and their neighbors).
For meshes with proportionally large boundaries such as “rbl” and
“f16,” this entails a significant increase in memory footprint.

mesh
bit rate accumulating data structures

explicit none guessed vertices % edges [MB]
torso 3.88 3.97 3.88 3,056 5.5 18,354 1

fighter 3.41 3.51 3.46 41,754 6.1 250,512 10
rbl 3.44 3.54 3.50 162,472 22.2 979,086 38
f16 3.71 3.92 3.83 154,976 13.8 929,808 36
sf1 3.44 3.60 3.52 242,259 9.8 1,453,542 56

Table 3: Bit rates for streaming connectivity compression of the axis-ordered
meshes with a delay buffer size of 10,000 tetrahedra using explicit, none, and

guessed finalization. For the latter we also report the total amount of unfinal-

ized data structure that has accumulated on reaching the end of the stream.

5 GEOMETRY COMPRESSION

When a vertex is encountered for the first time (i.e. the first tetrahe-
dron to reference this vertex is encoded), we compress its position
with a predictive coding scheme. Floating-point positions are quan-
tized to a user-defined precision—for example, 16 bits per coordi-
nate. This is reasonable as the 3D positions of a geometric data set
usually have uniform precision within the bounding box and do not
require the variable precision provided by the IEEE floating-point
format. Furthermore, real-world data is generally much less precise
than the 24 signed bits of uniform precision that are supported by
single-precision floats. However, our coder also supports lossless
floating-point compression [13] if needed.

Predictive coding methods use the positions of already known
neighbor vertices to predict the position of the newly encountered
vertex, and store only an offset vector that corrects this prediction.
The absolute value of the correction vector tends to be less than that
of the original position, so it can be stored with fewer bits.

A popular predictor for triangle meshes predicts vertices to com-
plete a parallelogram spanned by three already known vertices of an
adjacent triangle [23]. One approach for improving the success of
the parallelogram rule first locates triangle pairs of parallelogram-
like shape in the mesh and then directs the mesh traversal to include
a maximal number of them [18]. However, this method significantly
increases the overall complexity of the compression algorithm and
does not easily extend to a streaming implementation.

For tetrahedral meshes, Gumhold et al. [4] use the midpoint (i.e.
centroid) M of the known base triangle of a tetrahedron to predict
the position of its tip vertex. They report that compression with
their midpoint rule further improves when the correction vector is
expressed in a local coordinate system that has one axis pointing
along the base triangle’s normal and whose origin is M. Chen et
al. [2] suggest mirroring the tip vertex A of the already known tetra-
hedron from the other side of the base triangle through the midpoint
M; so 2M−A is the prediction. They view it as a natural extension
of the parallelogram rule [23], and find pairs of tetrahedra that give
good predictions similar to those of Kronrod and Gotsman [18].

We found that the midpoint rule of Gumhold et al. and the mirror
rule of Chen et al. both have shortcomings. By expressing the cor-
rection vectors in a local coordinate system, we separate their pre-
diction error into a normal and a tangential component. By measur-
ing these errors for both rules across our set of example meshes, we
quickly see how they can be improved (see Table 4). The midpoint
rule gives lower errors in the tangential direction, but has higher
errors in the normal component. This is no surprise, since the mid-
point rule does not predict anything in the normal direction. The
mirror rule does a good job in predicting the normal component,
but performs surprisingly poorly in the tangential direction.

This is because the tangential part of the parallelogram rule is
based on a two-dimensional geometric regularity that does not ex-
tend to three dimensions. A regular triangular tiling of the plane
turns every triangle pair into an equilateral parallelogram. An anal-
ogous regular tetrahedral tiling of three-dimensional space does not
exist. Therefore, we cannot expect much correlation in the tan-
gential positions of the tip vertices of two tetrahedra that share a
base triangle. To mirror the tip vertex through the midpoint adds a
tangential bias that has no geometric justification. Mirroring the tip

Streaming Tet Mesh Compression, Isenburg et al. 5 of 7 appeared in Graphics Interface’06



mesh rule
prediction error bit rate

total normal tangent global local

torso

midpoint 580 466 303 30.7 29.8
mirror 508 151 467 31.2 30.9

heightmirror 358 151 303 29.6 29.7
baseheight 340 123 303 29.4 29.3

fighter

midpoint 256 233 96 26.1 24.2
mirror 164 43 152 25.0 24.6

heightmirror 110 43 96 23.4 23.3
baseheight 107 36 96 23.2 23.1

rbl

midpoint 144 125 66 24.4 22.4
mirror 99 16 95 23.9 21.3

heightmirror 72 16 66 22.6 20.8
baseheight 74 26 66 22.7 22.6

f16

midpoint 22 19 10 14.7 12.8
mirror 16 4 15 14.0 13.6

heightmirror 11 4 10 12.5 12.4
baseheight 11 4 10 12.3 12.1

sf1

midpoint 269 220 145 10.3 17.5
mirror 183 11 178 11.3 14.9

heightmirror 151 11 145 13.5 14.6
baseheight 168 69 145 14.7 17.7

Table 4: Prediction errors and bit rates for different prediction rules, with

positions quantized to 16 bits and correctors in global and local coordinate

systems. Values are averages over different orderings and delay buffer sizes.

vertex perpendicularly through the triangle would add a similar tan-
gential bias. Either bias leads to a higher average tangential error
than predicting without a bias by using the midpoint.

We combine the lower tangential error of the midpoint rule with
the lower normal error of the mirror rule by mirroring only the nor-
mal component. In other words, we add to the midpoint a normal
whose length is the height of the tetrahedron on the other side of the
base triangle. We call this the heightmirror rule. We can also predict
in normal direction without involving the tip vertex, which some-
times is not known. We estimate the normal component from the
average edge length of the base triangle, or from its area. Our base-
height rule adds a normal whose length is 0.8 times the square-root
of twice the base triangle’s area. Found experimentally, this value
is meaningful: it slightly under-predicts the height of an equilateral
tetrahedron whose sides have the same area as the base triangle.

When compressing the vertices of a START tetrahedron (see Fig-
ure 2), we often do not have enough neighbor information to apply
either of these prediction rules; then we fall back on a simpler pre-
diction method like delta coding. As our reordering strategy tries to
avoid START tetrahedra, few vertices are predicted this way.

Previous schemes break each coordinate of the corrector into
smaller chunks and compress them separately. Gumhold et al. [4],
for example, break their 16-bit correctors into four chunks of four
bits. We use a scheme that first encodes the number k of nonzero
bits in the corrector, and then only compresses those. Since most of
the efficiency in predictive coding of vertex positions comes from
eliminating the high-order bits [8], we could store the nonzero bits
raw without losing much coding efficiency—unless the same cor-
rector appears over and over again, as it does for one of our test
meshes. To compromise between these possibilities, we employ a
hybrid approach that compresses the highest eight nonzero bits with
an entropy coder, and stores any remaining bits raw.

5.1 Geometry Compression Results
In Table 4 we compare the performance of the four predictive rules
on our five test meshes when they code the correctors in either
global or local coordinates. We report prediction errors and bit rates
averaged over twenty-one compression runs—each of the three co-
herent orderings “axis”, “z-order”, and “breadth” compressed with
seven different delay buffer sizes, ranging from 0 to 10,000.

The best results are usually obtained with the heightmirror or the
baseheight rule. In agreement with Gumhold et al. [4], we find that
for better compression it is best to express correction vectors in lo-

cal coordinates. However, the improvement in bit rate when going
from the global midpoint rule to the local heightmirror rule or the
local baseheight rule is at most 15 percent. If robustness and ease
of implementation are important, the global midpoint predictor may
be the right choice. Unlike the mirror and heightmirror rules, it does
not require access to the tip vertex. And while heightmirror, base-
height, and local coordinates all perform floating-point arithmetic,
including square root computations, the global midpoint rule only
adds three integers and divides them by three.

Despite having the highest prediction errors, the global midpoint
rule achieves by far the best bit rates for the “sf1” data set. The
vertex positions of this model are aligned on an adaptive octree grid
and their precision is much lower than 16 bits, so that the same coor-
dinate values appear over and over again. It is known that predictive
coding is not the best choice for compressing such data sets [13].
Applying more complex prediction rules and expressing correctors
in local coordinates destroys the regularity in the grid-aligned posi-
tions. The global midpoint rule causes, so to speak, the least dam-
age. Instead, simply using some neighbor vertex as the prediction
(i.e. delta coding) brings the average bit rate down to 7.8 bpv.

6 STREAMING VERSUS NON-STREAMING

The trade-off between compression rates and IO-efficiency offered
by streaming compression is best explored in an actual performance
comparison with a conventional, non-streaming coder. We obtained
an executable that implements the current state of the art in tetra-
hedral mesh compression from Gumhold et al. [4]. On our request,
their software was recently improved for faster preprocessing and
higher memory efficiency, so that a direct comparison with our soft-
ware would be as meaningful as possible. We list in Table 5 bit
rates, timings, and main memory use for conventional and stream-
ing compressors. The streaming results are averages over the three
coherent orderings when using a delay buffer of 10,000 and the
heightmirror rule with correctors represented in local coordinates.
Measurements were taken on a new Dell Inspiron 6000 laptop with
an Intel Centrino 2.13 GHz Processor and 1 GB of main memory.
The models were read from an external firewire drive and written
to the local hard disk. Timings include reading and writing.

We should mention that the technique of coding with 16 bits as
reported in [4] does not actually compress coordinates with 16 bits
of precision. The authors quantize signed correctors that have twice
the range as the original values into 16 bits. In doing so they effec-
tively quantize their positions with 15 bits of precision. Further-
more they scale these 15 bits of precision along the bounding box
diagonal, not along the longest side of the bounding box. For a
fair comparison, we lower our level of quantization to match that
of the conventional software. For the “torso,” for example, setting
the quantization to 16 bits with their software means quantizing the
longest side of the bounding box with 22,481 different values.

While our compression rates for geometry are similar (or better
due to height prediction) to those of Gumhold et al. [4], our com-
pressed connectivity information takes almost twice as much space.
But as the models get bigger, other merits of streaming compres-
sion start to outweigh the weaker compression. For the large “sf1”
model, the conventional compressor needed almost the entire 1 GB
of main memory and would start thrashing when other programs
were running in parallel. After a fresh reboot it was able to com-
press the model without thrashing in 100 seconds using 645 MB
of main memory. In contrast, our streaming compressor completed
compression in 44 seconds using only 20 MB of memory.

For meshes too large to fit into main memory a conventional
compressor can not be used. Recent techniques for streaming com-
putation of 3D Delaunay triangulations [15], for example, make
it possible to generate meshes containing several hundred million
tetrahedra with relative ease. This translates into Gigabytes of gen-
erated mesh data that—assuming we could compress it with con-

Streaming Tet Mesh Compression, Isenburg et al. 6 of 7 appeared in Graphics Interface’06



mesh
conventional streaming

conn geom total time mem conn geom total time mem
[bpt] [bpv] [KB] [sec] [MB] [bpt] [bpv] [KB] [sec] [MB]

torso 2.14 25.4 807 9 50 3.98 25.0 1,043 3.4 5
fighter 1.82 20.3 947 11 70 3.49 18.5 1,177 4.7 8

rbl 1.92 18.0 2,514 32 220 3.50 16.8 3,162 12 5
f16 1.95 10.5 2,942 53 313 3.75 8.8 4,110 21 18
sf1 1.72 19.8 8,888 100 645 3.48 13.5 9,989 44 20

Table 5: Comparing a state-of-the-art non-streaming compressor [4] with our
streaming compressor. Processing times are in seconds, memory use is in MB.

ventional methods—would still have to be stored at least once in
uncompressed form. Our streaming compressor makes it possible
to write the output of a streaming Delaunay triangulator directly
in compressed form to disk. For example, triangulating 30 mil-
lion points generates 200 million tetrahedra resulting in 3.5 GB of
streaming mesh output. Using less than 200 MB of memory we
directly compress this mesh into a 220 MB file. This avoids the
additional I/O and temporary disk space that would be needed if we
first had to store this 3.5 GB mesh to disk before compressing it.

7 CONCLUSION

We have described the first streaming algorithm for compressing
tetrahedral volume meshes. Our streaming compressor can cre-
ate compressed meshes that are only 25 to 40 percent larger than
the state of the art. For large meshes, the reduced effectiveness of
compression is more than offset by higher processing speeds and
drastically reduced memory footprints. Although our compressed
“f16” is 4 MB compared to the 3 MB size achieved by Gumhold et
al. [4], our streaming compressor only needs 21 seconds of process-
ing time and 18 MB of memory, versus 53 seconds and 313 MB.
Moreover, we can handle meshes of significantly larger size. A
conventional encoder quickly exhausts the main memory and starts
thrashing because its memory requirements grow with the size of
the input mesh. Our compressor’s memory footprint depends only
on the width of the input stream and the delay buffer size.

Several components of our compressor have yet to be optimized.
Timings and memory usage could be improved by integrating the
delay buffer into the compressor. This buffer is implemented as a
filter through which the mesh is piped before reaching the compres-
sor. This allows modular implementation but requires extra compu-
tation time, a second hash table, and other duplicate data structures.
Further speed-up is possible by improving our implementation for
picking the next tetrahedron from the delay buffer, which currently
consumes 30 percent or more of the total computation time.

Furthermore, we have shown that—contrary to what is reported
by Gumhold et al. [4]—geometry compression rates can be im-
proved further by adding a height component to the midpoint pre-
dictor. The extra component consistently lowers the prediction error
across our set of test meshes and (usually) improves compression.

Conceptually, our algorithm operates in the same spirit as the
streaming triangle mesh compressor of Isenburg et al. [14]. How-
ever, the extension from triangular surface meshes to tetrahedral
volume meshes is not straightforward. When we began this work,
it was not clear what connectivity compression rates would be pos-
sible, given the irregular nature of tetrahedral connectivity. This
paper establishes the first benchmark in streaming compression for
future research to measure itself against.

ACKNOWLEDGEMENTS

This research was supported in part by NSF grant CCF-0429901: “Collabo-
rative Research: Fundamentals and Algorithms for Streaming Meshes,” and
in part by the Max Planck Center For Visual Computing and Communica-
tion in Saarbrücken, Germany. Parts of this work were performed under
the auspices of the U.S. DOE by LLNL under contract no. W-7405-Eng-48.
The “torso” data set is courtesy of the SCI Institute. The “fighter” data set
comes from a wind tunnel model of a fighter jet and is courtesy of Neely

and Batina from NASA. The “rbl” data set is a portion of an endoplasmic
reticulum in a cell and courtesy of Alex Smith and Bridget Wilson from
University of New Mexico and Jason Shepherd and Shawn Means of San-
dia National Laboratory. The “f16” data set is courtesy of Udo Tremel from
EADS-Military. The “sf1” data set is courtesy of the Quake Project at CMU.

REFERENCES

[1] U. Bischoff and J. Rossignac. Tetstreamer: Compressed back-to-front
transmission of delaunay tetrahedra meshes. In Proceedings of Data
Compression Conference, pages 93–102, 2005.

[2] D. Chen, Y.-J. Chiang, N. Memon, and X. Wu. Geometry compression
of tetrahedral meshes using optimized prediction. In Proceedings of
European Conference on Signal Processing, 2005.

[3] M. Deering. Geometry compression. In SIGGRAPH 95 Conference
Proceesings, pages 13–20, 1995.

[4] S. Gumhold, S. Guthe, and W. Strasser. Tetrahedral mesh compression
with the cut-border machine. In Visualization’99, pages 51–58, 1999.

[5] S. Gumhold and W. Strasser. Real time compression of triangle mesh
connectivity. In SIGGRAPH’98 Proceedings, pages 133–140, 1998.

[6] J. Ho, K. Lee, and D. Kriegman. Compressing large polygonal models.
In Visualization’01 Proceedings, pages 357–362, 2001.

[7] M. Isenburg. Compressing polygon mesh connectivity with degree du-
ality prediction. In Graphics Interface’02 Proc., pages 161–170, 2002.

[8] M. Isenburg and P. Alliez. Compressing polygon mesh geometry with
parallelogram prediction. In Visualization’02, pages 141–146, 2002.

[9] M. Isenburg and P. Alliez. Compressing hexahedral volume meshes.
Graphical Models, 65(4):239–257, 2003.

[10] M. Isenburg and S. Gumhold. Out-of-core compression for gigantic
polygon meshes. In SIGGRAPH 2003 Proc., pages 935–942, 2003.

[11] M. Isenburg and P. Lindstrom. Streaming meshes. In Visualization’05
Proceedings, pages 231–238, 2005.

[12] M. Isenburg, P. Lindstrom, S. Gumhold, and J. Snoeyink. Large mesh
simplification using processing sequences. In Visualization’03 Pro-
ceedings, pages 465–472, 2003.

[13] M. Isenburg, P. Lindstrom, and J. Snoeyink. Lossless compression of
predicted floating-point geometry. JCAD - Journal for Computer-Aided
Design, 37(8):869–877, 2005.

[14] M. Isenburg, P. Lindstrom, and J. Snoeyink. Streaming compression
of triangle meshes. In Proceedings of 3rd Symposium on Geometry
Processing, pages 111–118, 2005.

[15] M. Isenburg, Y. Liu, J. Shewchuk, and J. Snoeyink. Streaming com-
putation of Delaunay triangulations. manuscript under review, preprint
available at http://www.cs.unc.edu/ ˜isenburg/sd/.

[16] M. Isenburg and J. Snoeyink. Face Fixer: Compressing polygon
meshes with properties. In SIGGRAPH’00 Proc., pages 263–270, 2000.

[17] F. Kälberer, K. Polthier, U. Reitebuch, and M. Wardetzky. Freelence -
coding with free valences. In Eurographics’05, pages 469–478, 2005.

[18] B. Kronrod and C. Gotsman. Optimized compression of triangle mesh
geometry using prediction trees. In International Symposium on 3D
Data Processing Visualization and Transmission, pages 602–608, 2002.

[19] H. Lee, P. Alliez, and M. Desbrun. Angle-analyzer: A triangle-quad
mesh codec. In Eurographics’02 Proceedings, pages 198–205, 2002.

[20] A. Mascarenhas, M. Isenburg, V. Pascucci, and J. Snoeyink. Encoding
volumetric grids for streaming isosurface extraction. In Proceeding of
2nd Symposium on 3D Data Processing, Visualization and Transmis-
sion, pages 665–672, 2004.

[21] J. Rossignac. Edgebreaker: Connectivity compression for triangle
meshes. IEEE Trans. on Vis. and Computer Graph., 5(1):47–61, 1999.

[22] A. Szymczak and J. Rossignac. Grow & fold: Compression of tetra-
hedral meshes. In ACM Solid Modeling and App., pages 54–64, 1999.

[23] C. Touma and C. Gotsman. Triangle mesh compression. In Graphics
Interface’98 Proceedings, pages 26–34, 1998.

[24] H. Vo, S. Callahan, P. Lindstrom, V. Pascucci, and C. Silva. Streaming
simplification of tetrahedral meshes. Technical Report UCRL-CONF-
208710, LLNL, 2005.

[25] J. Wu and L. Kobbelt. A stream algorithm for the decimation of mas-
sive meshes. In Graphics Interface’03 Proc., pages 185–192, 2003.

[26] C. Yang, T. Mitra, and T. Chiueh. On-the-fly rendering of losslessly
compressed irregular volume data. In Visualization’00 Proceedings,
pages 101–108, 2000.

Streaming Tet Mesh Compression, Isenburg et al. 7 of 7 appeared in Graphics Interface’06


