
Eurographics Symposium on Geometry Processing (2005)
M. Desbrun, H. Pottmann (Editors)

Streaming Compression of Triangle Meshes

Martin Isenburg1† Peter Lindstrom2 Jack Snoeyink1

1 University of North Carolina at Chapel Hill 2 Lawrence Livermore National Labs

Abstract
Current mesh compression schemes encode triangles and vertices in an order derived from systematically travers-
ing the connectivity graph. These schemes struggle with gigabyte-sized mesh input where the construction and the
usage of the data structures that support topological traversal queries become I/O-inefficient and require large
amounts of temporary disk space. Furthermore they expect the entire mesh as input. Since meshes cannot be
compressed until their generation is complete, they have to be stored at least once in uncompressed form.
We radically depart from the traditional approach to mesh compression and propose a scheme that incrementally
encodes a mesh in the order it is given to the compressor using only minimal memory resources. This makes
the compression process essentially transparent to the user and practically independent of the mesh size. This is
especially beneficial for compressing large meshes, where previous approaches spend significant memory, disk,
and I/O resources on pre-processing, whereas our scheme starts compressing after receiving the first few triangles.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Boundary representations

1. Introduction

Modern technology enables the creation of three-
dimensional polygonal models with incredible precision
and the resulting data sets easily reach file sizes of sev-
eral gigabytes. The St. Matthew model from Stanford’s
Digital Michelangelo Project [LPC∗00], for example, is
more than six gigabytes of data if stored in a standard
indexed mesh format. The need for more compact mesh
representations has motivated research on mesh compres-
sion and since 1995 many efficient schemes have been
proposed [Dee95, TG98, GS98, Ros99, LAD02, KPRW05].

However, current mesh compression schemes are not par-
ticularly suited to deal with gigabyte-sized meshes. All these
schemes struggle for the same three reasons with large in-
put meshes: First, they expect the entire uncompressed mesh
to be available as input. This means that a newly generated
mesh needs to be stored at least once in uncompressed form
(i.e. in order to hand it to the compressor) and that com-
pression cannot start until mesh generation has completed.
Second, prior to compression they need to construct tempo-
rary data structures in the size of the mesh that support topo-
logical adjacency queries. For gigabyte-sized input, the con-
struction of such structures requires enormous amounts of
memory resources. Third, they completely reorder the input

† isenburg@cs.unc.edu http://www.cs.unc.edu/ ˜ isenburg/smc

mesh based on a deterministic traversal of the connectivity
graph. For large meshes, this requires reorganizing gigabytes
of data on a global scale—an overall expensive operation.

Most compression schemes can simply not be used for
large meshes as constructing the required data structures is
not possible given the limited memory resources on com-
mon PCs. Addressing this issue, Ho et. al [HLK01] suggest
cutting large meshes into manageable pieces, encoding each
separately using previous techniques, and recording addi-
tional information that specifies how to stitch the pieces back
together. Instead, to avoid the cutting step and compress gi-
gantic meshes in one piece, Isenburg and Gumhold [IG03]
propose a dedicated external memory data structure that sup-
ports the topological adjacency queries of their compressor.
However, both these approaches are highly I/O-inefficient
and require large amounts of temporary disk space.

We radically depart from the traditional approach to mesh
compression and propose a streaming compression scheme
that incrementally encodes a mesh in the order it is given to
the compressor using only minimal memory resources. This
makes the compression process basically transparent to the
user and practically independent of the mesh size. This is es-
pecially beneficial for compressing large meshes where all
previous approaches need to spend significant amounts of
main memory, temporary disk space, and file I/O on pre-
processing the input mesh, whereas our scheme can start
compressing after having been given the first few triangles.

c© The Eurographics Association 2005.



Isenburg, Lindstrom, Snoeyink / Streaming Compression of Triangle Meshes

We have implemented a writer (see Figure 1) and a corre-
sponding reader through which compressed meshes can be
written and read in increments of single vertices and trian-
gles. The only requirement is that vertices are written only
shortly before being referenced by a triangle and that ver-
tices are “finalized” with the triangle that references them for
the last time (e.g. by a boolean flag). Outputting vertices and
triangles in an interleaved fashion while providing explicit
“finalization” information means that the mesh is written in
a streaming format, or that it is a streaming mesh [IL05].

The required changes for writing meshes to a streaming
instead of to a standard indexed format are minimal. Most
mesh generating applications that operate with limited mem-
ory naturally output streaming meshes. For example, an out-
of-core implementation of iso-surface extraction from regu-
lar grids that processes the volume layer by layer will natu-
rally produce vertices and triangles in an interleaved fashion
and can trivially finalize vertices from the last layer before
moving on to the next. For such applications it is, in fact, dif-
ficult to output meshes into standard noninterleaved formats.

One fundamental disadvantage of streaming connectivity
compression is that there are no guarantees on the bit-rates.
The achieved compression strongly depends on the order in
which the triangles are compressed and incoherent orderings
give poor results. When our compressor follows the exact
order in which the triangles are written, it generally needs
to store at least log2(width) bits per triangle, where width
is the number of previously referenced, yet unfinalized ver-
tices. However, since all previous compression schemes are
allowed to globally reorder the mesh triangles, it seems only
fair to allow our compressor at least some local reordering.

We can significantly improve compression rates by em-
ploying a small delay buffer within which the compressor
can locally reorder the triangles. It greedily brings them into
a vertex-connected order that often allows avoiding those
log2(width) bits. A delay buffer of 10,000 triangles, for ex-
ample, does not significantly increase the overall memory
requirements. But it leads to connectivity rates of around 4
to 5 bits per vertex for reasonably coherent input meshes,
which is within a factor of two of previous schemes.

2. Preliminaries and Related Work

Standard indexed mesh formats store an array of floats
triplets to specify the vertex positions (i.e. the geometry) and
an array of integers triplets that index into the vertex array to
specify the triangles (i.e. the connectivity). In this format, the
cost for storing connectivity increases super-linearly in the
number of vertices v as each index requires at least log2(v)
bits. The overall storage costs are about 6 log2(v) bits per
vertex as each vertex is indexed an average of six times.

An indexed format not only specifies the connectivity but
also the particular order in which vertices and triangle ap-
pear in their respective array. A mesh with v vertices and t
triangles can be listed in v! · t! · 3t ways by chosing any per-
mutation of all vertices and of all triangles, and then chosing

typedef Type enum {SM_VERTEX, SM_TRIANGLE, SM_EOF};
class SMwriter_smc {

// may optionally be set if known in advance
void set_bounding_box(float* min, float* max);
void set_num_verts(int nverts);
void set_num_faces(int nfaces);
// finalize vertices used for the last time
bool open(FILE* file, int bits = 16);
bool write_vertex(float* v_pos);
bool write_triangle(int* t_idx, bool* t_final);
bool close();

}
class SMreader_smc {

int bits;
float *bb_min, *bb_max; // only optionally known
int nverts, nfaces; // only optionally known
bool open(FILE* file);
Type read_element();
bool close();
float* v_pos; // position of read vertex
int* t_idx; // indices of read triangle ...
bool* t_final; // ... and their finalization

}

Figure 1: API for writing and reading compressed meshes.

the rotation of each triangle. The log-factor in the storage
cost comes from specifying one of these many orderings.

Current connectivity coders [TG98, GS98, Ros99] en-
code mesh connectivity with a practically constant 1 to 4
bits per vertex. They completely disregard the original el-
ement order of the input mesh by encoding the triangles
in an order that is derived from systematically traversing
the connectivity graph, and the vertex positions in the or-
der they are first encountered. This way they basically elim-
inate the storage costs for specifying a particular order-
ing of the mesh elements. For planar triangulations, Poulal-
hon and Schaeffer [PS03] show how to entirely eliminate
these costs by constructing a truly “canonical” ordering. Re-
cent schemes further improve connectivity coding with mesh
traversals that adapt to the topological [AD01] or geometri-
cal [LAD02, KPRW05] regularity found in most meshes.

Although compression strategies based on systematic
traversals can achieve the best possible connectivity bit-
rates, they struggle with large meshes. Before compression
can start they need to construct data structures that support
the topological adjacency queries that are needed for travers-
ing the connectivity graph. For meshes that contain hundreds
of millions of triangles, such as the 3D scans of Michelan-
gelo’s statues [LPC∗00], the construction of these temporary
data structures is difficult given the limited main memory
available on common PCs . Either the meshes must be cut
into smaller pieces [HLK01] or external memory data struc-
tures [IG03] must be used. Both these approaches are I/O-
inefficient and require a lot of temporary disk space.

Streaming meshes [IL05] provide interleaved access to
vertices and triangles and “finalize” vertices that are no
longer used by subsequent triangles. This information allows
I/O-efficient parsing and processing of large meshes that can
not be entirely loaded into memory as one can safely com-
plete operations on finalized vertices and deallocate their
associated data structure. One example of this type of I/O-
efficient processing is streaming simplification [ILGS03].
Another example is streaming compression.

c© The Eurographics Association 2005. 2 of 8 appeared in SGP’2005



Isenburg, Lindstrom, Snoeyink / Streaming Compression of Triangle Meshes

Streaming compression is fundamentally different from
non-streaming compression as the compressor is no longer
free to globally reorder the mesh. It has to compress the tri-
angles more or less in the order they arrive—either in the ex-
act order or within a small, user-defined delay of d triangles.
How much compression is possible will now also depend
on the input triangle order. This adversely affects compres-
sion rates since at least some ordering information has to be
stored, but it also “enforces” I/O-efficiency: at any time only
the active elements of the input stream (and possibly a few
delayed elements) need to be kept in memory.

2.1. Streaming Meshes
A streaming mesh logically interleaves vertices and the tri-
angles that reference them and provides explicit information
about when vertices are “finalized” or “referenced for the
last time”. Vertices become active when they appear in the
stream and cease to be active when they are finalized. The
width is the maximal number of concurrently active vertices.
It gives a lower bound on the memory requirements for pro-
cessing a streaming mesh as we must minimally maintain all
active vertices (e.g. in a hash table). The span is the maximal
index difference between two active vertices and intuitively
measures the longest duration a vertex remains active.

Streaming formats allow efficient storage of indexed con-
nectivity because they only need a unique index for every
active vertex and not for every vertex of the mesh. Final-
ization tells us that a vertex is not referenced by subsequent
triangles—effective “freeing up” its index to be used again.

Relative Indexing references a vertex as the difference of
the currently highest index to the absolute index of that ver-
tex. Each index can then be stored with log2(span) bits as
the maximal index difference equals the span of the stream-
ing mesh. Using the “current” span makes the total storage
costs an integral of the logarithm of the span over the stream.

Dynamic Indexing references each of the w active vertices
with an index that is within the range 0 to w− 1. Each in-
dex can then be stored with log2(width) bits as the maximal
number of active vertices equals the width of the streaming
mesh. Using the “current” width makes the storage cost an
integral of the logarithm of the width over the stream.

To compare relative and dynamic indexing with standard
indexing (see Table 1) we must add one bit per index needed
to specify finalization. Relative indexing is at least as expen-
sive as dynamic indexing, with equality being reached only
if vertices are introduced and finalized in the same order. The
storage costs for dynamic indexing are in general still super-
linear. Even if we reorder the mesh to minimize its width,
we are subject to the worst-case bound Θ(

√
v) on the width

of a mesh with v vertices [BYG96] so that the best we can
guarantee is Θ(log2

√
v) = Θ(log2 v) bits per vertex.

3. Streaming Compression

Departing from the traditional approaches to mesh compres-
sion, which globally reorder mesh triangles based on a de-

mesh bits per index largest index range
(ordering) abs rel dyn rel (= span) dyn (= width)

armadillo
(vcompact) 17.4 17.4 16.1 172,715 51,951

(spectral) 17.4 10.6 9.3 4,405 638
(geometric) 17.4 11.0 10.0 3,796 1,042

(breadth) 17.4 10.2 10.1 1,197 1,129
(depth) 17.4 16.9 10.3 171,845 1,457

(rendering) 17.4 16.5 10.1 143,589 904
dragon
(vcompact) 18.7 15.4 12.5 54,825 4,586

(spectral) 18.7 11.7 9.5 11,617 668
(geometric) 18.7 12.9 10.7 9,243 1,274

(breadth) 18.7 11.1 10.8 1,994 1,671
(depth) 18.7 18.4 12.8 436,834 8,587

(rendering) 18.7 16.2 9.8 126,152 944
lucy
(vcompact) 23.7 23.3 18.4 13,500,197 255,446
(geometric) 23.7 13.6 12.8 20,362 4,985

david1mm

(vcompact) 24.7 23.8 14.8 15,821,388 26,383
(geometric) 24.7 13.5 13.1 36,421 8,919

st. matthew
(vcompact) 27.5 25.2 15.2 29,189,836 31,931
(geometric) 27.5 15.2 14.8 157,920 33,207

Table 1: Average number of bits per index for absolute, rel-
ative, and dynamic indexing in differently ordered streaming
meshes. Also reported is the largest index range for relative
and dynamic indexing, which correspond to span and width.

terministic traversal of the connectivity graph, we describe a
streaming compression scheme that can encode the triangles
of the mesh in whatever order they are given to the compres-
sor. Because such an encoding not only encodes the connec-
tivity but also one of t! ≈ (2v)! possible triangle orderings,
it requires in the worst case Θ(log2 v) bits per vertex. The
expected coding costs, however, are much lower, especially
if we allow the compressor to locally reorder triangles.

What we gain for moderate losses in connectivity com-
pression rates is the ability to encode meshes while they
are produced and store them directly in compressed form
to disk. We avoid having to wait for the entire mesh before
compression can begin, having to build temporary data struc-
tures in the size of the mesh, and having to reorder the data
on a global scale. Meshes can be compressed in increments
of single vertices and triangles (see Figure 1), which makes
compression essentially transparent to the user and practi-
cally independent of the mesh size, and therefore easier to
integrate into the mesh processing pipeline.

The only requirement for compression is that the input is
pre-order (i.e. each vertex is written before it is referenced
by a triangle) and that finalization is immediate (i.e. each ver-
tex is finalized with the last triangle that references it). Given
such input, our compressor encodes the triangles in the ex-
act order they are written and the vertices in the order they
are first referenced. When vertices are written they are sim-
ply inserted into a hash table using their index as key. There
they remain until the first triangle is written that references

c© The Eurographics Association 2005. 3 of 8 appeared in SGP’2005



Isenburg, Lindstrom, Snoeyink / Streaming Compression of Triangle Meshes

add

v0 v1

v2

fill

v0

v1

v2

join

v0
v1

v2

v0

v1

v2

fill

start2

v0

v1

v2

start1

v0

v1

v2

start0

v0

v1

v2

start3

v0

v1

v2

5/2

4/2

1/2

2/2

4/2

2/2

3/2

1/2

2/2

1/2

1/2
2/2

2/2
3/2

3/4
3/2

1/2

1/2

1/2

3/2
3/2

2/4

3/2
4/4

3/23/2

2/2

2/2 2/2

2/2

3/4

5/2

3/4

2/2 3/4

3/4

3/4

5/2

3/2
4/2

2/2

4/2
5/2

2/2

3/2
3/2 3/2

2/2

2/2

4/2
4/2 3/2

3/4

2/2

4/2

3/4

4/2 3/2

2/2

4/2

4/2

5/2 3/2

3/2

end

v0

3/4 v2

v1

3/2
6/2

5/2

4/2

3/2

add

v0 v1

v2

3/2
4/1

1/2

4/2

1/1

processed region

unprocessed region

written triangle

introduced

finalized 

active vertex 

active edge 

neither 
number of triangles / number of active edges 

mesh border

1/2

Figure 2: The eight possible adjacency configurations between the written triangle and the active vertices and half-edges
maintained by the compressor: a startx triangle is not adjacent to any active half-edge, but may be adjacent to zero, one, two, or
even three active vertices; an add triangle is only adjacent to one active half-edge, with the third vertex being newly introduced;
for the similar join configuration this third vertex is already active; a fill triangle is adjacent to two half-edges and an end
triangle is adjacent to three half-edges. The small boxes show the triangle count and number of active half-edges.

them. This effectively delays vertices that were written “too
early” and brings them into an ordering that is compact with
respect to the triangle order. Hence, the compressed output
mesh is always vertex-compact [IL05]. Meshes that are not
pre-order or that do not immediately finalize vertices can be
piped through a user-transparent on-the-fly converter.

3.1. Compression Details
The compressor maintains a set of active vertices and a set of
active half-edges. A vertex becomes active when the first tri-
angle that references it is written, and remains active until fi-
nalized by the last triangle that references it. Up to three half-
edges can become active when a triangle is written. They
remain active until their counterpart of opposite orientation

appears or one of their incident vertices is finalized. Each ac-
tive vertex stores a list of pointers to its incident half-edges.
Each active half-edge stores pointers to its incident vertices
and a copy of the position of its across vertex, which is the
non-incident third vertex of the triangle that created this half-
edge, that is required for predictive coding of positions.

Whenever a triangle is written the compressor checks
which of the triangle’s vertices and half-edges of opposite
orientation are already active. The eight different configu-
rations that can arise, namely start0, start1, start2, start3,
end, add, join, and fill, are illustrated in Figure 2. The com-
pressor encodes the current configuration with an arithmetic
coder using four different symbols: START, ADD, JOIN,

c© The Eurographics Association 2005. 4 of 8 appeared in SGP’2005



Isenburg, Lindstrom, Snoeyink / Streaming Compression of Triangle Meshes

FILL_END. Because startx configurations are infrequent for
reasonably coherent orderings (especially after local reorder-
ing of triangles) only one symbol is used for all four, and x
is compressed in a separate context. The fill and end config-
urations can be distinguished at the decoding end.

Next all the active vertices of the triangle (or none in a
start0 configuration) are referenced. If w is the current num-
ber of active vertices, then this can be done with dynamic
indexing using log2(w) bits per vertex. But because consec-
utive triangles often share vertices (especially after local re-
ordering of triangles), we first check whether a vertex was
used by the previous triangle and if so encode which of the
three vertices it was. This often avoids the log2(w) bits that
are the most expensive part of our connectivity encoding.

For an add, join, fill, or end configuration the current tri-
angle is also adjacent to one or more active half-edges. We
can reference other active vertices using the list of half-edges
maintained with the first referenced vertex. Since this list
typically contains only one half-edge with the correct orien-
tation, we often avoid storing any further information. Only
vertex v2 of a join configuration cannot be referenced this
way and instead requires dynamic indexing, which makes a
join the most expensive configuration to encode.

For an add configuration we predict the position of the
newly introduced vertex with the parallelogram rule [TG98],
using the two incident vertices and the across vertex of the
adjacent active half-edge. For all startx configurations we
predict the positions of newly introduced vertices as that
of a known neighboring vertex. Since the first vertex of a
start0 configuration has no known neighbor, we simply use
the most-recently compressed vertex position as the predic-
tion. We compress the resulting corrective vectors with dif-
ferent arithmetic contexts depending on whether parallelo-
gram, neighbor, or most-recent prediction was used.

Finalization information is specified for all three vertices
of the written triangle with binary flags that can be efficiently
compressed with context-sensitive arithmetic coding. The
context is chosen based on the current number of triangles
and active half-edges around this vertex. As most vertices
are finalized when they are surrounded by a closed ring of
triangles there is a strong correlation between the moment
a vertex no longer has active half-edges and its finalization.
Border vertices, which will still have one or two active half-
edges tend to be surrounded by fewer triangles.

The vertices are maintained in two data structures: a hash
table and a dynamic vector. The hash table is used to look up
vertices by their index. A vertex is added to the hash table
when it is written, it is looked up when a triangle that refer-
ences it is written, and it is removed when it is finalized. The
dynamic vector is used to explicitly reference active vertices
(if necessary) with dynamic indices between 0 and w−1 that
can then be stored with log2(w) bits. A vertex is added to the
dynamic vector when it is referenced for the first time, its in-
dex is looked up whenever the encoder needs to reference it
explicitly, and it is removed when it is finalized.

bool write_vertex(float* v_pos) {
Vertex* v = allocVertex(v_pos);
hash->insert(v, v_count);
v_count++;

}

bool write_triangle(int* t_idx, bool* t_final) {
Vertex* v[3];
for (i = 0; i < 3; i++) {

v[i] = hash->get(t_idx[i]);
if (v[i] == 0) return false; // must be pre-order

}
determine and compress configuration;
rotate triangle so vertex v0 of Figure 2 is in v[0];
if (STARTx configuration) {

compress which STARTx it is;
for (i = 0; i < 3; i++) {

if (x- -) { // v[i] is an old vertex
if (v[i] was used by previous triangle) {
compress which of its vertices is re-used;

} else {
index = dvector->get_index(v[i]);
store dynamic index of v[i];

}
} else { // v[i] is a new vertex

dvector->add(v[i]);
compress position of v[i];

}
}
create three new half-edges;

} else if (ADD or JOIN configuration) {
if (v[0] or v[1] was used by previous triangle) {

compress which of its vertices is is re-used;
} else {

index = dvector->get_index(v[0]);
store dynamic index of v[0];

}
compress which half-edge of v[0] leads to v[1];
if (ADD configuration) {

dvector->add(v[2]);
compress position of v[2];

} else {
index = dvector->get_index(v[2]);
store dynamic index of v[2];

}
create two new and delete one old half-edge;

} else if (FILL or END configuration) {
if (v[0] or v[1] or v[2] was used by prev. triangle) {

compress which of its vertices is re-used;
} else {

index = dvector->get_index(v[0]);
store dynamic index of v[0];

}
compress which half-edge of v[0] leads to v[1];
compress which half-edge of v[0] leads to v[2];
create new and delete old half-edges;

}
for (i = 0; i < 3; i++) {

compress (which context) if v[i] is finalized
if (t_final[i]) {

dvector->remove(v[i]);
hash->erase(v[i]);
delete all half-edges of v[i];
deallocVertex(v[i]);

}
}

}

Figure 3: An implementation of our streaming compression
algorithm (without delay buffer) in C-like pseudocode.

The dynamic vector implements constant-time insertion
and deletion of vertices and constant-time lookup of dy-
namic indices by making new vertices the last entry and by
replacing deleted entries with the currently last entry. This
means that the indices with which active vertices can be ref-
erenced in the dynamic vector change over time, but they do
so in a consistent manner at both encoder and decoder.

Reading the pseudo-code of Figure 3 may further clarify
the compression algorithm that we have just described.

c© The Eurographics Association 2005. 5 of 8 appeared in SGP’2005



Isenburg, Lindstrom, Snoeyink / Streaming Compression of Triangle Meshes

mesh configurations [%] use details for conn [bpv] totals [bpv] time mem
(ordering) s a j f e [%] fig pre dyn adj fin conn geom [sec] [MB]

armadillo
(vcompact) 20 15 15 30 20 10 4.2 1.3 32.7 1.1 .00 39.35 22.24 1.4 9.3

(spectral) .0 50 .9 48 .5 49 1.3 1.1 8.5 .04 .01 11.04 19.15 .8 .8
(geometric) .7 49 4.3 42 4.3 51 2.0 2.0 9.2 .14 .01 13.26 19.16 .8 .8

(breadth) .0 50 1.4 47 1.4 97 1.8 0.9 0.6 .01 .01 3.27 19.14 .7 .9
(depth) .0 50 2.5 45 2.5 97 2.0 0.1 0.5 .03 .01 2.66 19.17 .7 1.0

(rendering) .5 49 4.7 41 4.6 91 2.5 3.1 1.7 .14 .01 7.45 19.35 .7 .8
dragon
(vcompact) 15 24 9.6 37 14 50 3.9 3.9 13.0 .83 .04 21.62 21.49 2.6 1.6

(spectral) .4 50 1.5 47 1.5 49 1.8 1.2 8.8 .07 .04 12.02 22.04 1.8 .8
(geometric) 1.1 48 3.7 43 3.8 57 2.2 2.4 8.7 .14 .04 13.45 21.86 1.8 .9 ooc-compressor [IG03]

(breadth) .0 50 3.1 44 3.1 94 2.1 1.8 1.3 .05 .04 5.23 21.98 1.8 .9 [bpv] time mem
(depth) .0 50 5.1 40 5.1 94 2.3 0.5 1.4 .09 .04 4.35 21.96 1.9 1.8 conn prepro. disk

(rendering) .6 49 5.1 40 4.9 90 2.5 3.1 1.8 .15 .04 7.62 22.13 1.8 .8 geom compr. main
lucy lucy ooc
(vcompact) 1.6 47 8.1 34 8.7 77 2.5 2.2 8.6 .35 .00 13.60 14.70 77 37 1.88 19 min 0.9 GB
(geometric) .5 49 2.1 46 2.1 53 1.9 1.9 11.3 .07 .00 15.18 14.58 65 1.6 14.60 5 min 128 MB

david1mm david ooc
(vcompact) 12 28 5.8 44 9.4 66 2.8 2.6 9.9 .60 .02 15.94 10.95 126 4.8 1.79 36 min 1.7 GB
(geometric) .8 49 2.0 47 2.0 67 1.9 2.8 8.0 .07 .02 12.71 11.63 131 2.4 11.32 14 min 192 MB

st. matthew st. matthew ooc
(vcompact) 11 31 6.2 44 8.5 67 2.7 2.4 10.0 .53 .02 15.62 8.22 865 5.2 1.84 7 hrs 11 GB
(geometric) .9 48 2.2 46 2.3 69 1.9 2.9 8.6 .08 .02 13.60 8.97 907 4.0 8.83 4 hrs 384 MB

Table 2: For streaming compressing we report the percentages of start, add, join, fill, and end configurations and of subsequent
triangles that re-use vertices. We give itemized coding costs for triangle configuration, previous and dynamic references, edge
adjacency, and vertex finalization. Total bit-rates for connectivity and geometry (quantized at 16 bits) and both time and
memory footprint for reading, compressing, and writing the meshes on a 1.1 GHz Dell Inspiron laptop are listed.

3.2. Quantization without Bounding Box
Most data sets do not make use of full floating-point pre-
cision so that the lowest-order bits are noise and not actual
data. For effective compression, floating-point positions are
usually quantized onto a uniform grid. To support quantiza-
tion for streaming meshes whose bounding box is not known
in advance, we use a scheme that quantizes conservatively
using a bounding box that is learned as the mesh streams
by. The first two vertex positions are compressed without
quantization and their distance gives the initial guess on the
number of mantissa bits that need to be preserved to guar-
antee the user-requested precision. This maximum distance
is updated with every compressed vertex position and will
eventually match the extent of the actual bounding box. How
long quantization is overly conservative depends on the or-
der in which of the vertex positions are compressed.

This scheme is part of our current API and works reason-
ably well, but we still need to analyze and optimize compres-
sion speeds and bit-rates. Since conservative quantization
encodes many positions with more precision than needed,
thereby inflating compression rates, we want to use bound-
ing box information if possible. For the results reported in
this paper we assume that advance knowledge about the
bounding box is available. Our streaming mesh writer also
supports lossless floating-point compression [ILS05]. This
is less efficient since the low-order bits of the mantissa
typically contain incompressible noise. But providing this

functionality makes it possible to use compression when
quantization—for whatever reason—is not an option.

3.3. Results
Detailed performance measurements of our streaming com-
pressor for meshes written in different triangle orderings are
listed in Table 2. The vcompact meshes have the triangles
in their original order, the geometric meshes have the tri-
angles sorted along one coordinate axis, and the spectral
meshes have the triangles in a spectral order that minimizes
the width [IL05]. The breadth meshes have the triangles in
an order derived from a breadth-first ordering of the vertices,
the depth meshes have the triangles in depth-first order, and
the rendering meshes have a triangle order created by the re-
cursive cut algorithm of Bogomjakov and Gotsman [BG01].

The rates for connectivity compression are, as anticipated,
much higher than those of schemes that globally reorder tri-
angles, whereas the rates for geometry compression are sim-
ilar. We need to encode many dynamic indices when the re-
use of vertices among subsequent triangles is low, which re-
sults in poor compression rates. Re-use is low when triangles
appear “randomly”, as in some vcompact orderings, but also
when they “hop around” the advancing front, as in the spec-
tral and geometric orderings. Topological breadth- or depth-
first sorts derive triangle orders from local adjacency of mesh
elements, which give high percentages of vertex re-use and,
therefore, the best compression rates.

c© The Eurographics Association 2005. 6 of 8 appeared in SGP’2005



Isenburg, Lindstrom, Snoeyink / Streaming Compression of Triangle Meshes

The biggest advantage of our compressor are the high
speed and the small memory footprint in which it can com-
press even the largest models. The only other method that
can compress models as large as, for example, the “St.
Matthew” statue is the ooc-compressor by Isenburg and
Gumhold [IG03], for which we report compression rates and
time and memory consumption in Table 2. On a 2.8 GHz
Pentium IV processor, they spent 7 hours creating an 11 gi-
gabyte data structure on disk before the actual compression,
which then took another 4 hours and 384 megabytes of main
memory. In contrast, running on a 1.1 GHz mobile Pentium
III we complete compression after 15 minutes while using
only 6 megabytes of main memory and no temporary disk
space. Their 11 hour and 11 gigabyte effort pays off with
state-of-the-art connectivity compression rates that make the
connectivity size 20% of the geometry size, instead of 150%.
But so far we have not reordered a single triangle.

4. Reordering in a Delay Buffer

If we allow the compressor to locally reorder triangles with
a greedy strategy that increases the vertex re-use among sub-
sequent triangles, we can significantly improve the compres-
sion rates. We give our compressor the option to store a user-
specified number of triangles in a delay buffer from which it
can choose any triangle for output. To globally preserve the
stream order we place a strict constraint on the maximum
delay with which a triangle can leave the buffer. Setting this
delay to be the size of the buffer allows to efficiently imple-
ment buffering and delay control with a simple ring buffer.

Our streaming compressor uses a greedy strategy that
picks the next triangle with the following priority order from
the buffer: First are triangles that share two vertices with the
previous triangle. Ties between candidates are broken by us-
ing the triangle with the “oldest” shared vertex (i.e. that has
the lowest index). Second are triangles that share only one
vertex but also finalize some vertex. Third are triangles that
that share one vertex and have only one active vertex. Ties
between candidates are broken by using the triangle with
the “newest” active vertex (i.e. that has the highest index).
Fourth are triangles that that share one vertex and have two
active vertices (neither of which is finalized, or such trian-
gles would come second). Distinguishing this case as the
fourth priority disfavors expensive join operations. Fifth are
triangles that share one vertex but have no other active ver-
tex. Sixth is the oldest triangle in the delay buffer.

4.1. Results
We have implemented this greedy reordering scheme and
report in Table 3 what effect different delay buffer sizes,
ranging from 25 to 50,000 triangles, have on the compres-
sion rates. Probably the biggest surprise is the enormous im-
provement in connectivity compression we can get with a
delay buffer as small as 25 triangles. For the “David” and
“St. Matthew” models, which contain 56 and 372 million
triangles, a maximal delay of 25 from the original triangle
order improves the bit-rates from around 16 down to around

mesh bit-rates for delay buffers of different size [bpv]
(ordering) none 25 100 500 1,000 5,000 10,000 50,000

armadillo
(vcompact) 39.4 34.7 31.5 29.3 28.6 23.7 20.5 12.9

(spectral) 11.0 10.3 8.9 5.5 4.4 3.7 3.6 3.5
(geometric) 13.3 10.2 8.3 5.6 4.5 3.6 3.5 3.5

(breadth) 3.3 2.5 2.6 3.1 3.3 3.6 3.6 3.5
(depth) 2.7 2.7 2.9 3.4 3.8 3.6 3.6 3.5

(rendering) 7.5 6.0 4.9 4.2 4.0 3.7 3.7 3.6
dragon
(vcompact) 21.6 15.2 12.1 11.2 11.1 9.5 7.4 4.8

(spectral) 12.0 11.0 9.5 6.3 5.3 4.4 4.3 4.3
(geometric) 13.5 9.7 8.3 6.8 6.1 4.7 4.5 4.4

(breadth) 5.2 3.7 3.7 3.8 4.0 4.6 4.5 4.4
(depth) 4.4 4.5 4.5 4.6 4.9 5.1 4.9 4.6

(rendering) 7.6 6.1 5.2 4.7 4.6 4.5 4.4 4.4
lucy
(vcompact) 13.6 12.7 12.3 12.0 11.8 9.7 8.4 6.0
(geometric) 15.2 13.6 13.3 12.1 10.5 6.2 5.0 3.8

david1mm

(vcompact) 15.9 7.1 5.5 4.6 4.5 4.0 3.8 3.5
(geometric) 12.7 7.6 6.8 6.1 5.7 4.8 4.2 3.7

st. matthew
(vcompact) 15.6 6.8 5.5 4.5 4.3 4.0 3.9 3.6
(geometric) 13.6 7.7 6.9 6.4 6.2 5.4 5.2 3.9

Table 3: Bit-rates for streaming connectivity compression
with delay buffers of different size. Respecting the maximal
allowed delay, triangles are greedily chosen from the buffer
to maximize vertex re-use among subsequent triangles.

7 bits per vertex. The bit-rates of all mesh orderings seem to
converge towards 4 to 5 bpv as the buffer size is increased to
50,000 triangles. For the breadth and depth orderings adding
a larger delay buffer slightly worsens the bit-rates. Local
greedy decisions in the buffer can destroy the overall reg-
ularity that such global topological orderings possess. Only
for the completely random triangle orderings that are some-
times found in smaller models like the “Armadillo” or the
popular “Stanford bunny”, local reordering is not sufficient.

Delay buffer of 10,000 to 50,000 triangles constitute a
comparatively minor amount of main memory for compress-
ing models of several hundred million triangles. A delay
buffer of 10,000 triangles, for example, increases the mem-
ory footprint by only 5 MB (not optimized yet) while slow-
ing down compression speeds by a factor of two (not op-
timized yet). However, it gives connectivity compression
rates that are within a factor of two of those of the ooc-
compressor [IG03]. Memory usage and timings can easily
be improved by integrating the delay buffer into the com-
pressor. Currently the delay buffer is implemented as a fil-
ter through which the mesh is piped before being given to
the compressor. This allows a modular implementation but
requires a second hash table and other duplicate data struc-
tures.

5. Alternate Approaches to Streaming Compression

This paper has addressed a slightly different problem than
previous works in mesh compression, in particular, in terms

c© The Eurographics Association 2005. 7 of 8 appeared in SGP’2005



Isenburg, Lindstrom, Snoeyink / Streaming Compression of Triangle Meshes

of connectivity coding. While the connectivity of the mesh is
compressed, a pre-existing ordering of the triangles has to be
preserved, either exactly or within a certain tolerance (e.g. a
maximal allowed delay). We have presented one possible so-
lution to this problem that makes use of a greedy re-ordering
technique. But given the large number of different schemes
for non-streaming mesh compression, there surely are many
alternate approaches for streaming compression yet to be in-
vestigated. We experimented with one other approach.

The described SMC compressor needs to encode at least
one reference per triangle to an active vertex—either to a
vertex of the previous triangle or with a dynamic index. In
contrast to non-streaming schemes it lacks the determinism
of choosing “on its own” where (i.e. adjacent to which half-
edge) to encode the next triangle. Our experimental SMD
compressor deterministically chooses where to encode the
next triangle but corrects the choice with a special command
if the respective triangle is not yet in the delay buffer.

Obviously there is no deterministic strategy that can avoid
corrections altogether, unless we buffer all the triangles
(which is exactly how standard compressors operate). Our
SMD compressor implements a simple breadth-first strategy
on the half-edges, which are kept in a traversal queue. At ev-
ery step the compressor tries to compress the triangle adja-
cent to the next half-edge in the queue. If this triangle is not
available, a skip command is encoded and the compressor
encodes the oldest triangle in the delay buffer instead. Initial
results indicate that if there are less than two percent of skip
commands, the SMD compressor can beat the SMC com-
pressor and give bit-rates nearly as good as those of the ooc-
compressor [IG03]. However, for higher percentages of skip
commands the compression rates can also be much worse.

6. Summary and Conclusion

We have described a streaming compression scheme that
allows encoding meshes on-the-fly by operating on a
partial representation of the connectivity that is created and
deleted as the mesh is fed in increments of single triangle
and vertices to the compressor. In contrast, all previous
schemes [TG98, GS98, Ros99, LAD02, IG03, KPRW05]
expect the entire mesh up front, and first construct tempo-
rary data structures that allow them to traverse the mesh
connectivity at will before the actual compression can start.

The advantage of a streaming compressor grows with
the size of the input mesh, as both construction and use
of these temporary representations become increasingly
cumbersome. For the 372 million triangle “St. Matthew”
statue, the compressor by Isenburg and Gumhold [IG03] first
spends 7 hours creating an 11 gigabyte data structure on disk
before the actual compression starts, which then takes an-
other 4 hours and uses 384 megabytes of main memory. In
contrast, we complete compression in 15 minutes using only
6 megabytes of main memory and no temporary disk space.

When we preserve the exact triangle order our connectiv-
ity compression rates are considerably worse than those of

Isenburg and Gumhold [IG03]. However, employing a small
buffer within which we delay triangles to put them into an
order that is more “compressible” allows us to significantly
improve compression. While streaming connectivity com-
pression will in general not be able to rival rates achieved by
non-streaming approaches, streaming I/O makes compres-
sion a more useful tool in a typical mesh processing pipeline
because it remains transparent to the user.

References
[AD01] ALLIEZ P., DESBRUN M.: Valence-driven connectiv-

ity encoding for 3D meshes. In Eurographics’01 Proceedings
(2001), pp. 480–489. 2

[BG01] BOGOMJAKOV A., GOTSMAN C.: Universal rendering
sequences for transparent vertex caching of progressive meshes.
In Graphics Interface’01 Proceedings (2001), pp. 81–90. 6

[BYG96] BAR-YEHUDA R., GOTSMAN C.: Time/space trade-
offs for polygon mesh rendering. ACM Transactions on Graphics
15, 2 (1996), 141–152. 3

[Dee95] DEERING M.: Geometry compression. In SIG-
GRAPH 95 Conference Proceesings (1995), pp. 13–20. 1

[GS98] GUMHOLD S., STRASSER W.: Real time compression of
triangle mesh connectivity. In SIGGRAPH’98 Conference Pro-
ceesings (1998), pp. 133–140. 1, 2, 8

[HLK01] HO J., LEE K., KRIEGMAN D.: Compressing large
polygonal models. In Visualization 2001, pp. 357–362. 1, 2

[IG03] ISENBURG M., GUMHOLD S.: Out-of-core compression
for gigantic polygon meshes. In SIGGRAPH 2003 Proceedings
(2003), pp. 935–942. 1, 2, 6, 7, 8

[IL05] ISENBURG M., LINDSTROM P.: Streaming Meshes. Tech-
nical Report, UCRL-CONF-201992, LLNL, 2005. 2, 4, 6

[ILGS03] ISENBURG M., LINDSTROM P., GUMHOLD S.,
SNOEYINK J.: Large mesh simplification using processing se-
quences. In Visualization’03 Proc. (2003), pp. 465–472. 2

[ILS05] ISENBURG M., LINDSTROM P., SNOEYINK J.: Lossless
compression of predicted floating-point geometry. Computer-
Aided Design 37, 8 (2005), 869–877. 6

[KPRW05] KÄLBERER F., POLTHIER K., REITEBUCH U.,
WARDETZKY M.: FreeLence - Coding with free valences. to
appear in Eurographics’05 Proceedings (2005). 1, 2, 8

[LAD02] LEE H., ALLIEZ P., DESBRUN M.: Angle-analyzer:
A triangle-quad mesh codec. In Eurographics’02 Proceedings
(2002), pp. 198–205. 1, 2, 8

[LPC∗00] LEVOY M., PULLI K., CURLESS B., RUSINKIEWICZ

S., KOLLER D., PEREIRA L., GINZTON M., ANDERSON S.,
DAVIS J., GINSBERG J., SHADE J., FULK D.: The Digital
Michelangelo Project. In SIGGRAPH’00, pp. 131–144. 1, 2

[PS03] POULALHON D., SCHAEFFER G.: Optimal coding and
sampling of triangulations. In 30th Intern. Colloq. on Automata,
Languages and Program. (ICAZLP) (2003), pp. 1080–1094. 2

[Ros99] ROSSIGNAC J.: Edgebreaker: Connectivity compression
for triangle meshes. IEEE Transactions on Visualization and
Computer Graphics 5, 1 (1999), 47–61. 1, 2, 8

[TG98] TOUMA C., GOTSMAN C.: Triangle mesh compression.
In Graphics Interface’98 Proceedings (1998), pp. 26–34. 1, 2,
5, 8

c© The Eurographics Association 2005. 8 of 8 appeared in SGP’2005


