
Generating Raster DEM from Mass Points

via TIN Streaming

Martin Isenburg1, Yuanxin Liu2, Jonathan Shewchuk1

Jack Snoeyink2, and Tim Thirion2

1 Computer Science Division, University of California at Berkeley
2 Computer Science, University of North Carolina at Chapel Hill

Abstract. It is difficult to generate raster Digital Elevation Models
(DEMs) from terrain mass point data sets too large to fit into mem-
ory, such as those obtained by LIDAR. We describe prototype tools for
streaming DEM generation that use memory and disk I/O very effi-
ciently. From 500 million bare-earth LIDAR double precision points (11.2
GB) our tool can, in just over an hour on a standard laptop with two
hard drives, produce a 50,394 × 30,500 raster DEM with 20 foot post
spacing in 16 bit binary BIL format (3 GB), using less than 100 MB of
main memory and less than 300 MB of temporary disk space.

1 Introduction

Paradoxically, advances in computing capability can make processing more dif-
ficult because they enable the acquisition of larger and larger data sets. For
example, modern airborne laser range scanning technology (LIDAR) makes it
possible to sample large terrains with unprecedented speed and accuracy, obtain-
ing gigabytes of mass points that subsequently must be inspected, processed, and
analyzed [1]. Doing so with existing tools requires powerful computers with very
large memories. To make this data accessible to the wider audience with com-
modity computing equipment, we need algorithms that can process large data
sets without loading them entirely into memory.

Programs that process large data sets must avoid thrashing—spending so
much time moving data between disk and memory that computation slows to
a crawl. Algorithms have been designed that guarantee the optimal number
of disk I/O operations for specific problems [2, 3], at the cost of greater pro-
gramming complexity. Data layouts have been proposed that are I/O-efficient
when accessed with sufficient locality [4, 5], at the cost of an expensive initial
re-ordering step. Instead, we advocate a streaming paradigm for processing large
data sets, wherein the order in which computations are performed is dictated by
the data’s order [6, 7]. We accomplish this by injecting “finalization tags” into
a data stream. These tags allow computations to complete early, results to be
written to the output immediately, and memory to be reused for incoming data.

For stream processing of triangle meshes, Isenburg and Lindstrom [8] pro-
pose a streaming mesh format that interleaves vertices, triangles, and vertex

Generation of DEMs via TIN Streaming Isenburg et al.

finalization tags. Each finalization tag indicates that all the triangles referenc-
ing a particular vertex have appeared in the stream, and no more will arrive in
the future. A simple stream processing application that benefits from streaming
mesh input is computing vertex normals: each incoming triangle adds its normal
vector to the vectors for its three vertices. The normal vector for a vertex (the
average of its adjoining triangles’ normals) can be computed and output as soon
as the vertex’s finalization tag is read from the stream.

This topological method of finalizing mesh geometry has many applications,
but does not provide a way to process a stream consisting solely of points. So
that we may develop streaming point-processing algorithms, we propose in a
companion paper [9] to enhance a stream of points with spatial finalization tags.
A spatial finalization tag indicates that all the points inside a spatial region
have appeared in the stream, and no more will arrive in the future. In Section 2
(and the companion paper), we show how equipping point streams with spatial
finalization enables us to compute Delaunay triangulations of huge point sets in
a streaming manner. Knowledge about finalized space makes it possible to certify
final triangles early, output them, and reuse the memory they were occupying.

In this paper, we use both finalized point streams and streaming meshes to
link several streaming software modules, which collectively read huge, LIDAR-
generated sets of mass points, produce giant TINs, and generate high-resolution
raster Digital Elevation Models (DEMs), with good I/O efficiency and the use
of only a small memory footprint.

Our processing pipeline is illustrated in Figure 1. It consists of three concur-
rently running processes linked by pipes. A finalizer module, called spfinalize,
reads a file of raw mass points and injects spatial finalization tags, producing a
finalized point stream. Without touching the disk, this stream is piped into our
streaming Delaunay triangulator spdelaunay2d, which writes a TIN in stream-
ing mesh format. As the triangles stream out of the triangulator they are—again
without touching the disk—piped into a rasterization module called tin2dem,
which uses the triangles and a user-selected interpolation method to estimate el-
evation values at the raster points of a user-specified elevation grid. Each raster
point, with its elevation value, is immediately written into one of many tempo-
rary files that are kept open simultaneously; each temporary file stores the raster
points for a few rows of the raster DEM. Finally, tin2dem loads these temporary
files one by one, sorts the raster points that each one contains into the correct
row-by-row ordering, and assembles them into a single, output DEM.

The streaming triangulator begins to output TIN data long before it has read
all the mass points. Thus it continually frees memory for immediate reuse, so
the memory footprint of the triangulator remains small, permitting us to cre-
ate seamless TINs far larger than the computer’s main memory. The rasterizer
writes out raster points as early as possible and, like the triangulator, discards
triangles and mass points that are no longer needed. For linear interpolation, it
rasterizes and discards each triangle immediately upon reading it. For quintic
interpolation, it rasterizes and discards each triangle as soon as all the trian-
gles within a surrounding two-ring have arrived in the input stream (enabling

2 of 13 appeared in GIScience’06

Generation of DEMs via TIN Streaming Isenburg et al.

Fig. 1. Our pipeline for generating a raster DEM from mass points. A streaming fi-
nalizer performs three read passes over the file of raw mass points, and produces a
spatially finalized point stream. A streaming Delaunay triangulator reads the finalized
mass points from a pipe and produces a streaming TIN mesh, as described in Section 2.
A streaming rasterizer reads the streaming TIN, interpolates raster points and stores
them to temporary disk files. Then it reads them back one at a time, sorts the points,
and produces a single raster DEM, as described in Section 3.

the computation of second-order derivatives at the triangle’s vertices, which are
needed for interpolation). When the finalizer, triangulator, and rasterizer run si-
multaneously, they together occupy a memory footprint that is a small fraction
of the sizes of the input and output streams.

The order in which the raster points are created depends on the order in which
the triangles can be interpolated, which depends on the order of the triangles’
appearance in the streaming TIN, which depends on the order in which regions of
space are finalized, which finally depends on the original order of the mass points.
For I/O efficiency, the rasterizer does not output raster elevation values directly

3 of 13 appeared in GIScience’06

Generation of DEMs via TIN Streaming Isenburg et al.

into the final, row-ordered DEM file; instead it writes raster points (i.e. row and
column) together with their corresponding elevation values into temporary files
on disk. Each file receives several rows’ worth of rasters.

After all the triangles are processed, the raster points in the temporary files
are read into memory one file at a time. The points in each file are sorted into
the correct row and column order, and the elevation values are written to the
final DEM in binary BIL format. A special “no data” value is written for those
parts of the DEM that did not receive any raster points. As only a few rows of
raster points are in memory at any given time, the raster DEM we create can
be far larger than the computer’s main memory.

This technique can also be used for streaming creation of a DEM from an
existing TIN, but requires converting the TIN to a streaming format [8].

2 Streaming Generation of TINs from Mass Points

In the introduction of the DEM Users Manual [1], David Maune says that raster
DEMs can be obtained photogrammetrically,

however, with most DEM technologies it is more common to first ac-
quire a series of irregularly spaced elevation points from which uniformly
spaced elevation points are interpolated. For example, to achieve a uni-
formly spaced DEM, data producers typically start with mass points and
breaklines, produce a TIN, and then interpolate the TIN triangles to
obtain elevations at the DEM’s precalculated x/y coordinates. . . .mass
points could have been carefully compiled by a photogrammetrist to
reflect key spot heights, for example. Alternatively one can imagine hun-
dreds or thousands of similar mass points randomly acquired by a LIDAR
or IFSAR sensor.

Our goal is to process hundreds of millions of mass points, which can be easily
gathered by LIDAR and IFSAR sensors. The technology that enables us to do
this is a new, streaming approach for computing Delaunay triangulations [9]
that makes it possible to produce billion-triangle TINs on an ordinary laptop
computer. A streaming computation reads data sequentially from a disk or a
pipe and processes it in memory, confining its operations to the active elements
of the stream maintained in a small memory buffer. To keep the size of this
buffer small, a streaming computation must be able to finalize elements (e.g.,
triangles and points) that are no longer needed so they can be written to the
output and freed. Unlike with most external memory algorithms, no information
is temporarily written to disk; only the output is written. (Our tin2dem module
makes a necessary exception to this rule; see Section 3.)

Our streaming Delaunay triangulation algorithm [9] is based on the idea of
enhancing a point stream with spatial finalization. Finalization is a technique for
improving the efficiency of streaming computation by including in the stream
some information about the future of the stream. The triangulator’s input stream
is not just a list of points—it also contains spatial finalization tags that inform

4 of 13 appeared in GIScience’06

Generation of DEMs via TIN Streaming Isenburg et al.

our Delaunay triangulator about regions of space for which the stream is free
of future points. The purpose of these tags is to give our algorithm (or other
point processing applications) guarantees that allow it to complete computation
in finalized regions, to output triangles (or other data) that can be certified to
be part of the correct solution, and to reuse the memory those triangles were
occupying—long before all the points in the input stream have been read.

We define a spatially finalized point stream to be a sequence of entities, of
which all but one are points or finalization tags. The first entity in the stream
is special: it specifies a subdivision of space into regions. We use a rectangular
2k × 2k grid of cells as our subdivision. Hence, the stream begins by specifying
a bounding box (which encloses all the points in the stream, and defines the
grid of cells) and the integer k (which defines the resolution of the grid). The
remainder of the stream is points and tags. Immediately after the last point that
falls in a given cell of the grid, we insert a finalization tag that certifies that no
subsequent point in the stream falls into that cell.

Our Delaunay triangulator uses the spatial finalization tags to certify trian-
gles as final. A triangle is final when its circumcircle is completely inside the
union of the finalized cells. When a triangle is final, it can be written to the
output and its memory can be freed to make room for more data to stream in.
Before a triangle is written we check whether its three vertices have already been
referenced before and if not, first write them to the output. Once all triangles
adjoining a vertex are final, the vertex can likewise have its memory freed. The
output is written in a streaming mesh format [8], described briefly in Section 1.

We have implemented streaming two- and three-dimensional Delaunay tri-
angulators by taking existing sequential Delaunay triangulators, based on the
well-known incremental insertion algorithm [10–12], and modifying them so that
they retain in memory only the active (non-final) parts of the triangulations
they are constructing. (We will discuss only the two-dimensional triangulator
in this paper.) Because the triangulator constantly outputs and deallocates tri-
angles and vertices, its memory footprint remains small throughout execution.
This makes it possible to compute seamless TINs for huge point sets.

Where do we get a finalized point stream? Ideally, we advocate that programs
that create huge point sets should include finalization tags in their outputs. We
believe that this option will become increasingly attractive as huge data sets
become more common, because it is usually easy to implement, and if it is not
implemented, users will not be able to process those data sets on commodity
computers without I/O heavy operation to prepare the data. However, we also
have written software called a finalizer that adds finalization tags to a point
stream as a preprocessing step. An important feature of our finalizer is that its
output can be piped directly to another application, notably our triangulator,
so there is no need to store the finalized point stream on disk.

Our finalizer makes three read passes over a raw point file, and writes a
finalized point stream to the output during the third pass. During the first
pass, it computes a rectangular, axis-aligned bounding box of the points. The
finalization regions are defined by the subdivision of this bounding box into a

5 of 13 appeared in GIScience’06

Generation of DEMs via TIN Streaming Isenburg et al.

2k× 2k grid of uniform cells. The second pass counts how many input points lie
in each cell. The third pass uses these counts to find the last point in each cell,
and to insert a finalization tag immediately after it.

The finalizer also reorders the points, so that all the points that lie in one
cell appear contiguously in the stream. Specifically, for each cell of the grid, the
finalizer stores the points that lie in the cell in a memory buffer until all the
cell’s points have arrived. Then it outputs all the cell’s points at once into the
finalized point stream, followed by a finalization tag for the cell. One motivation
for delaying points in the stream is the fact that each point inserted into a
triangulation adds far more memory (for triangulation data structures) to the
triangulator’s memory footprint than the point would occupy in the finalizer’s
memory buffers. Therefore, it is beneficial to put off inserting a point until it has
a chance to become final in the near future. Another motivation is to improve
the speed of point location in the incremental Delaunay insertion algorithm, by
keeping the number of triangles small.

We triangulate huge raw point sets by running our finalizer software, spfin-
alize, and our Delaunay triangulator, spdelaunay2d, concurrently while piping
the finalizer’s output, a finalized point stream, directly into the triangulator (see
Figure 1). The two processes together triangulate the 11.2 GB of bare-earth
LIDAR data for the Neuse River Basin of North Carolina, which consists of
over 500 million points (double-precision x, y, and elevation coordinates), in 48
minutes on an ordinary laptop computer, while using 70 MB of memory. This
time includes the finalizer’s three read passes over the raw input points stored
on disk, and the triangulator’s concurrent writing of a streaming mesh to disk.
It is about a factor of twelve faster than the previous best out-of-core Delau-
nay triangulator, by Agarwal, Arge, and Yi [3]. With our streaming Delaunay
software, we have constructed triangulations as large as nine billion triangles, in
under seven hours using as little as 166 MB of main memory [9].

3 Mass Points to DEM

In this section, we discuss our software pipeline for converting mass points into
a DEM. We assume that the user has specified the output raster grid, usually
by giving the northing, easting, and grid resolution. Our task is first to create a
seamless TIN, then to interpolate elevation values at the grid points and create
a single raster DEM for output. The first part of our pipeline is the streaming
Delaunay triangulator described in the previous section, which creates the TIN.
The second part is software that uses the TIN triangles to interpolate the ele-
vation at the raster points defined by the raster grid, then collects the resulting
raster points into a single global DEM in some standard order. We consider
rasterizing and ordering in the following two subsections.

3.1 Rasterizing the Streaming TIN

We make the following choices for our implementation.

6 of 13 appeared in GIScience’06

Generation of DEMs via TIN Streaming Isenburg et al.

– We take in points with UTM coordinates in a single zone. It is a simple mat-
ter of programming to customize the software to user requirements such as
generalizing to multiple zones or geographic (latitude/longitude) coordinate
systems. The selected interpolation function needs to match the coordinate
system, of course.

– We reject triangles that have an edge longer than a user-defined threshold
from being rasterized. This prevents interpolating the elevation across large
triangles that can only exist in areas without LIDAR data. These areas are
not LIDAR mapped but are inside the convex hull of the LIDAR points,
including water surfaces where LIDAR does not give any returns.

– We use linear or quintic interpolants based on TIN triangles. Other forms
of interpolation could also be supported, but these two are popular, and
they demonstrate key concepts. The linear interpolant requires information
from only a single triangle. It is primarily I/O-bound, so it shows the best
improvement from streaming. The quintic interpolant [13] requires neighbor
information to estimate first and second derivatives at each vertex. This
requires more computation and more buffering, as we need two rings of
surrounding triangles to compute estimates for the second derivative.

– We output the results to a single DEM in a binary format, primarily to show
that our computation is seamless. Of course, a 12 gigabyte raster DEM stored
as a single file in row-ordered BIL format is not useful for most applications
that use DEM files, because they do not (yet) use streaming computation. We
could instead produce tiled output that can be ingested by GIS systems, but
we decided to make a single DEM as a proof of concept and I/O-efficiency.
Writing tiles or other orderings as output is an easy modification.

3.2 Row-Ordering of Streaming Raster Points

The rasterizer produces the elevation values that make up a raster DEM, but
does not produce them in the order that they need to appear in the file—instead,
raster points are written out in the order triangles are interpolated, so that the
triangles’ memory can be freed up to make room for more incoming TIN data.

Since we know the file location where each raster point will ultimately go, we
could write it there using random access to a file (or equivalently, using memory
mapping and relying on the operating system to swap portions of the elevation
data between memory and disk). This strategy is slow because the file is stored
in a row-order layout and the interpolator accesses the rows in a random-access
manner, entailing many distant disk seeks. Thrashing can be reduced (but not
eliminated) by buffering several raster points per row before writing them to
disk. The approach has other disadvantages too: it entails an initial pass over
the entire file to initialize the entire DEM with “no data” raster points, and a
final pass if the DEM is to be stored in a compressed format. Moreover, some
computer systems limit main memory address space mapping and random file
access (e.g. fseek) to under 2 GB, which is not quite enough to store a 32,678
× 32,768 grid with 16-bit elevation values. We want to create larger DEMs.

7 of 13 appeared in GIScience’06

Generation of DEMs via TIN Streaming Isenburg et al.

Agarwal et al. [14] use an alternative approach. They write each interpolated
elevation raster point with its column and row address to a temporary file. After
all the raster points are written, they use an external sorting algorithm to bring
the raster points into their proper order. This strategy produces a temporary file
that is two or three times the size of the final DEM, as the column/row address
of a raster point often requires more bytes of storage than the actual elevation
value. Because this temporary file is used as input to a generic external sorting
algorithm it is not possible to store its contents in compressed form.

We found that a hybrid approach gives the best overall performance. We
maintain many temporary files, each representing a few consecutive rows of the
output DEM. In memory, we maintain for each temporary file a small buffer of
raster points and write out a buffer whenever it fills up. To save temporary disk
space, we devised a fast compression scheme that avoids redundant bits when
writing a full buffer to disk: raster points are grouped by row; within each row,
the raster points are sorted by column and runs of columns are combined (so
that a column number does not need to be stored for every point); and elevation
values are encoded as differences.

The contents of one temporary file are small enough to fit uncompressed in
main memory. After the rasterizer finishes processing the streaming TIN data,
it decompresses the temporary files one at a time, sorts the raster points into
the correct row and column ordering, and outputs them into the final DEM file
while putting “no data” values wherever there are no raster points. Our use of
multiple temporary files can be seen as a preliminary bucket sort step, which
makes the subsequent sorting steps fit in memory.

4 Experimental Results

In Table 1 we report performance, in terms of computation time, main mem-
ory use, and temporary disk space, for our streaming pipeline as it generates
raster DEMs of various resolutions from LIDAR-collected mass points. The mea-
surements are taken on a Dell Inspiron 6000D laptop with a 2.13 GHz mobile
Pentium processor and 1 GB of memory, running Windows XP. The point file is
read from, and the DEM file is written to, an external LaCie 5,400 RPM firewire
drive, whereas the temporary files are created on the 5,400 RPM local hard disk.

Each run takes as input a binary 11.2 GB file that contains 500,141,313
points in double precision floating-point format, and produces as output a raster
DEM in binary BIL format with 16-bit elevations. As points are read from
disk they are converted to single-precision floating-point format, which provides
sufficient precision for our purpose. Each run constitutes a pipeline of three
stream modules (see the command line in the table) that operate in four steps.
The first two steps could be omitted if the input points were stored in a format
that provides spatial finalization.

1st step. A read pass over the points by spfinalize allows it to compute the
bounding box. This pass is strictly I/O-limited as it takes 6 minutes to read
11.2 GB from disk.

8 of 13 appeared in GIScience’06

Generation of DEMs via TIN Streaming Isenburg et al.

number of points, file size 500,141,313 11.2 GB
LIDAR [minx ; maxx] [1,930,000; 2,937,860]
input mass points [miny; maxy] [390,000; 1,000,000]

[minz; maxz] [−129.792; +886.443]

spfinalize -i neuse.raw | spdelaunay2d -ispb -osmb | tin2dem -ismb -o neuse.bil -xydim 20

grid spacing 40 ft 20 ft 10 ft
DEM cols 25,198 50,394 100,788
output grid rows 15,250 30,500 61,000

output file size 750 MB 3.0 GB 12.0 GB

Time (hours:minutes) total 0:53 1:07 1:20
bounding box 1st step 0:06 0:06 0:06

finalization counters 2nd step 0:06 0:06 0:06
finalize, triangulate, raster, scratch 3rd step 0:40 0:43 0:48

read scratch, sort, write final 4th step 0:01 0:08 0:20

Memory (MB) maximum 55 64 91
spfinalize (1st step) .1 .1 .1
spfinalize (2nd step) 5 5 5
spfinalize (3rd step) 35 35 35

spdelaunay2d (3rd step) 10 10 10
tin2dem (3rd step) 10 19 35
tin2dem (4th step) 38 46 91

Scratch Files (MB) total size 82 270 868
(compressed) number of files 60 239 477

rows per file 256 128 128
number of written raster points in millions 111 444 1,767

storage & I/O savings—raw : compressed 8.0 : 1 9.6 : 1 11.9 : 1

Table 1. Statistics for an input data set of 500 million LIDAR-collected mass points
of the Neuse River Basin, from which we compute DEM grids with 40, 20, and 10 foot
spacing using linear interpolation. We give an example of how three processes are piped
together on the command line. We report time, memory use, and disk use for each step
of the computation and each module in the pipeline, at each resolution.

2nd step. Another read pass over the points by spfinalize is used to count
the mass points lying in each cell of a 29×29 grid derived from the bounding
box. These counts are used in the next step for spatial finalization. This pass
is also I/O-limited, and again takes 6 minutes. So far, relatively little main
memory is used.

3rd step. During the third read pass over the points, a pipeline of three pro-
cesses do the real work: spfinalize adds finalization tags to the stream
of points and pipes space-finalized points to spdelaunay2d, which immedi-
ately begins to triangulate the points and pipes a streaming TIN onward to
tin2dem, which begins to rasterize incoming triangles onto the DEM grid
as early as possible, and writes raster points grouped by rows into tempo-
rary files on the second hard drive. This step is CPU-limited, with the three
processes sharing the available CPU cycles. The proportion of the workload

9 of 13 appeared in GIScience’06

Generation of DEMs via TIN Streaming Isenburg et al.

carried by tin2dem increases as the DEM grid resolution becomes finer, as
more interpolation operations are performed per triangle.
The memory footprint is that of all three processes combined: spfinalize
requires 35 MB, most of which goes toward delaying the points in a cell
until all the cell’s points arrive. spdelaunay2d requires 10 MB for streaming
Delaunay triangulation. The memory requirements of tin2dem depend only
on how many raster points are accumulated per DEM row before they are
written to a temporary file in compressed form. For the results we report
in the table, each DEM row has its own memory buffer, whose contents
are compressed and written to disk when 64 raster points accumulate. Each
raster point occupies six bytes—two for the elevation and four for the column
index—so the 10-foot resolution DEM with 61,000 rows occupies a 35 MB
memory footprint. All three processes together occupy 104 MB.

4th step. In this step, only the tin2dem process is still running. It loads the
temporary files into memory, one at a time; sorts the rasters into the correct
row and column order; and outputs them to a binary file in BIL format, while
filling in missing raster points with the number −9999, which represents
“no data.” This final step, like the first two, is I/O-limited, and the disk
throughput is the bottleneck. We would significantly reduce the amount of
data written to disk, and realize faster running times, if we replaced the
uncompressed BIL format with a compressed format for DEMs.
The memory footprint of tin2dem is larger during the 4th step than during
the 3rd, because it must simultaneously store in memory all the raster points
from one temporary file. For the 10-foot resolution DEM, each temporary
file contains 128 rows of up to 100,788 rasters each, so the memory footprint
is 91 MB. (Some potential for memory reuse is left untapped.)

Fig. 2. Two snapshots during streaming construction of a DEM grid from the LIDAR-
collected mass points of the Neuse River Basin. Blue cells are unfinalized space, violet
triangles are non-final Delaunay triangles, color-shaded areas contain elevation rasters
that have already been generated, and the grey LIDAR points inside the blue cells have
not yet streamed into the triangulator.

Recent work by Agarwal et al. [14] also describes a method for constructing
DEM grids from huge LIDAR data sets. They report an end-to-end running

10 of 13 appeared in GIScience’06

Generation of DEMs via TIN Streaming Isenburg et al.

time of 53 hours for rasterizing the 20 foot DEM of the Neuse River Basin. This
is much slower than the one hour and 16 minutes we report, but most of the
difference is attributable to their much more complex interpolation method [15],
which takes 86% (46 hours) of their computation time. Most of the remaining
seven hours are spent finding neighboring mass points that are needed by the
interpolator. This is where we believe our data-driven approach can shine: we
do not have to spend any time gathering neighbor data for our computations.
The arrival of sufficient neighbor data is what determines when a computation
is performed. However, we are not yet in a position to make a direct comparison
between our DEM creation software and that of Agarwal et al.

5 Discussion

The prototype workflow described in this paper can take huge numbers of mass
points, build monstrously large, seamless TINs, and output high-resolution raster
DEMs. We achieve this with a streaming, data-driven paradigm of computation
and an off-the-shelf laptop, using main memory resources that are just a fraction
of the size of the input and the output. Our processing pipeline uses spatial
finalization of points to enable streaming Delaunay computation, and vertex
finalization in the resulting TINs to enable streaming interpolation of elevations
and the production of streams of raster points.

Streaming algorithms can succeed only if streams have sufficient spatial co-
herence—a correlation between the proximity in space of geometric entities and
the proximity of their representations in the stream. Fortunately, our experience
is that huge real-world data sets usually do have sufficient spatial coherence.
This is not surprising; if they didn’t, the programs that created them would have
bogged down due to thrashing. (Our finalizer also increases the stream’s spatial
coherence by reordering the points.) For data sets with no spatial coherence at
all, however, we advocate an external sort of the points before finalizing them.

Our tin2dem tool can process pre-existing TIN data. First, however, each
TIN needs to be converted to a streaming mesh format, with interleaved vertices,
triangles, and vertex finalization tags. For large TINs whose vertices and triangles
are ordered with little spatial coherence, this conversion can be expensive [8].
If a TIN is spatially coherent enough, however, a simple streaming conversion
method is to make one pass over the TIN file. As soon as a vertex is surrounded
by a complete star of triangles, we guess that the vertex can be finalized and
inject a finalization tag for it into the stream.

Many other GIS processing tasks could be implemented as streaming com-
putations, enabling them to handle huge data sets. Slope and aspect could be
produced immediately by the linear or quintic interpolator. Mass points could
come from photogrammetry, IFSAR, or contour lines, instead of from LIDAR.
To support breaklines, we plan to extend our streaming Delaunay triangulator
to construct constrained Delaunay triangulations. For this to remain efficient, we
will need streaming input files that encode both points and breaklines in a spa-

11 of 13 appeared in GIScience’06

Generation of DEMs via TIN Streaming Isenburg et al.

tially coherent order. We will also need to devise a method of spatial finalization
that takes into account both points and breaklines.

Other forms of interpolation could be streamed too. Streaming natural neigh-
bor (or area-stealing) interpolation [16–18] is straightforward to implement, as
the Delaunay triangulation is already available. Interpolation methods that com-
pute weighted averages of the k nearest neighbors (typically with 6 ≤ k ≤ 12)
can also be implemented in a streaming manner, but it takes some care to de-
vise an algorithm that ensures that the streaming interpolator does not hold
too many points in memory, yet does not discard a point that might be a near
neighbor of some future point in the stream.

Interpolation methods that use global radial basis functions are not suitable
for streaming, or even for global use on large data sets. They can be made a little
more suitable by building them into a quadtree, as is done for the regularized
spline with tension (RST) [15] implemented in GRASS. However, Agarwal et
al. [14] has an external memory implementation of a restricted variant of the
RST, which uses a bitmap to enforce the locality of the computation, and they
compare it to the RST implementation in GRASS. RSTs are not intended to
provide a fast, turnkey interpolant, so it is no surprise that they do not work ef-
fectively with massive data sets. Their real advantage is having many parameters
to tune, to help fit specific characteristics to portions of the landscape.

It will be more challenging to apply streaming to less local operations, such
as hydrological enforcement [19]. Hydrological enforcement adjusts elevations to
respect water flow, so that bridges and culverts do not look and behave like dams.
We think that these adjustments could be performed in a streaming manner if
summary information on water flow were collected and buffered.

We would like to hear from people who have a specific application and data
sets that could benefit from streaming. Suitable applications are those whose
operations have some spatial locality, although the degree of locality might be
determined by the data. Obvious candidates for streaming are filtering operations
that prepare the raw LIDAR data for subsequent processing, such as extraction
of bare-earth returns and point thinning for excessively dense data.

Acknowledgments.

We thank Kevin Yi for supplying the Neuse Basin data and Andrew Danner
for extensive information about his work [14]. This work was supported by Na-
tional Science Foundation Awards CCF-0430065 and CCF-0429901: “Collabora-
tive Research: Fundamentals and Algorithms for Streaming Meshes,” National
Geospatial-Intelligence Agency / Defense Advanced Research Projects Agency
Award HM1582-05-2-0003, and an Alfred P. Sloan Research Fellowship.

References

1. Maune, D.F., ed.: Digital elevation model technologies and applications: The DEM
users manual. ASPRS, Bethesda, MD (2001)

2. Vitter, J.S.: External memory algorithms and data structures: Dealing with MAS-
SIVE data. ACM Computing Surveys 33(2) (2001) 209–271

12 of 13 appeared in GIScience’06

Generation of DEMs via TIN Streaming Isenburg et al.

3. Agarwal, P.K., Arge, L., Yi, K.: I/O-efficient construction of constrained Delaunay
triangulations. In: Proceedings of the Thirteenth European Symposium on Algo-
rithms. Volume 3669 of LNCS., Mallorca, Spain, Springer Verlag (2005) 355–366

4. Cignoni, P., Montani, C., Rocchini, C., Scopigno, R.: External memory manage-
ment and simplification of huge meshes. IEEE Transactions on Visualization and
Computer Graphics 9(4) (2003) 525–537

5. Yoon, S., Lindstrom, P., Pascucci, V., Manocha, D.: Cache-oblivious mesh layouts.
ACM Transactions on Graphics 24(3) (2005) 886–893

6. Isenburg, M., Gumhold, S.: Out-of-core compression for gigantic polygon meshes.
ACM Transactions on Graphics 22(3) (2003) 935–942

7. Isenburg, M., Lindstrom, P., Gumhold, S., Snoeyink, J.: Large mesh simplification
using processing sequences. In: Visualization ’03 Proceedings. (2003) 465–472

8. Isenburg, M., Lindstrom, P.: Streaming meshes. In: Visualization ’05 Proceedings.
(2005) 231–238

9. Isenburg, M., Liu, Y., Shewchuk, J., Snoeyink, J.: Streaming computation of De-
launay triangulations. ACM Transactions on Graphics 25(3) (2006) Special issue
on Proceedings of ACM SIGGRAPH 2006.

10. Lawson, C.L.: Software for C 1 Surface Interpolation. In Rice, J.R., ed.: Mathe-
matical Software III. Academic Press, New York (1977) 161–194

11. Bowyer, A.: Computing Dirichlet Tessellations. Computer Journal 24(2) (1981)
162–166

12. Watson, D.F.: Computing the n-dimensional Delaunay Tessellation with Applica-
tion to Voronoi Polytopes. Computer Journal 24(2) (1981) 167–172

13. Akima, H.: A method of bivariate interpolation and smooth surface fitting for
irregularly distributed data points. ACM Transactions on Mathematical Software
4 (1978) 148–159

14. Agarwal, P.K., Arge, L., Danner, A.: From LIDAR to grid DEM: A scalable
approach. In: Proc. International Symposium on Spatial Data Handling. (2006)

15. Mitasova, H., Mitas, L.: Interpolation by regularized spline with tension: I. Theory
and implementation. Mathematical Geology 25 (1993) 641–655

16. Gold, C.M.: Surface interpolation, spatial adjacency and GIS. In Raper, J., ed.:
Three Dimensional Applications in Geographic Information Systems. Taylor and
Francis, London (1989) 21–35

17. Sibson, R.: A brief description of natural neighbour interpolation. In Barnett, V.,
ed.: Interpreting Multivariate Data. John Wiley & Sons, Chichester (1981) 21–36

18. Watson, D.F.: Natural neighbour sorting. Australian Computer Journal 17(4)
(1985) 189–193

19. Hutchinson, M.F.: Calculation of hydrologically sound digital elevation models.
In: Proceedings of the Third International Symposium on Spatial Data Handling.
(1988) 117–133

13 of 13 appeared in GIScience’06

