
Coding Polygon Meshes as Compressable ASCII

Martin Isenburg
∗

University of North Carolina
at Chapel Hill

isenburg@cs.unc.edu

Jack Snoeyink
University of North Carolina

at Chapel Hill

snoeyink@cs.unc.edu

ABSTRACT
Because of the convenience of a text-based format 3D con-
tent is often published in form of a gzipped file that contains
an ASCII description of the scene graph. While compressed
image, audio, and video data is kept in seperate binary files,
polygonal data is usually included uncompressed into the
ASCII description, as there is no widely-accepted standard
for compressed polygon meshes.
In this paper we show how to incorporate compression of
polygonal data into a purely text-based scene graph descrip-
tion. Our scheme codes polygon meshes as ASCII strings
that compress well with standard compression schemes such
as gzip. The coder is lossless when only the position and
texture coordinate indices are coded. If loss is acceptable,
positions and texture coordinates can be quantized and delta
coded, which reduces the file size further. The gzipped scene
graph description files decrease by a factor of two (six) in
size when the polygon meshes they contain are coded with
the lossless (lossy) ASCII coder.
Furthermore we describe in detail a proof-of-concept im-
plementation that uses the Shout3D [18] pure java API—a
plugin-less Web3D player that downloads all required java
classes on demand. Our prototype is an extremely light-
weight implementation of the decoder that can be distributed
at minimal additional cost. The size of the compiled decoder
class is less than 6KB by itself and less than 3KB if included
into a compressed archive of java class files. It makes no use
of specific features of the Shout3D API. Hence, our method
will work for any scene graph API that allows (a) to extend
the node set and (b) to store the scene graph as ASCII.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling—surface, solid, and object representations

Keywords
Mesh compression, ASCII scene descriptions, non-manifold
mesh encoding, fast and extremely light-weight decoding.

∗http://www.cs.unc.edu/˜isenburg/asciicoder

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Web3D’02, February 24-28, 2002, Tempe, Arizona, USA.
Copyright 2002 ACM 1-58113-468-1/02/0002 ...$5.00.

1. INTRODUCTION
A polygon mesh is the most widely used primitive for rep-
resenting three-dimensional geometric models. Such poly-
gon meshes consists of mesh geometry and mesh connectiv-
ity, the first describing the positions in 3D space and the
latter describing how to connect these positions together to
form polygons that describe a surface. Typically there are
also mesh properties such as texture coordinates, shading
normals, material attributes, etc. that describe the visual
appearance of the mesh at rendering time.
The standard representation for a polygon mesh uses an
array of floats to specify the positions and an array of inte-
gers that contains indices into the position array to specify
the polygons. Additional properties such as texture coor-
dinates are specified in a similar way (see Figure 8 for an
example). Storing polygon meshes in this representation re-
sults in files of substantial size, which makes their archival
expensive and their transmission slow. In the form of long
downloading times over bandwidth-limited Internet connec-
tions this becomes a significant problem for the distribution
of 3D content on the web. This has motivated the develop-
ment of compact representations for polygon meshes.
Despite many years of mesh compression research, the
Web3D community has been very hesitant to use compressed
polygonal data. Reason for this is the lack of a widely sup-
ported compression standard in the way JPEG is for image
data and MPEG is for audio and video data. Several at-
tempts to establish similar standards for compressed poly-
gon meshes (e.g. MPEG-4, compressed-binary VRML) have
not succeeded. Although these compression schemes have
been approved and are now supported by some 3D players,
they are not much used in practice.
The difficulty in finding acceptance for such a standard
has to do with the complex structure of polygonal data.
While audio data is always a sequence of numbers, image
data is always a block of numbers, and video data is always
a block of numbers that changes over time, polygonal data
comes in many flavours. Besides positions and polygons
(or maybe only triangles) there can be a layer of texture
coordinates. Or two. Maybe three and soon up to eight.
There can be shading normals (often), material attributes
(sometimes), pre-computed colors (rarely), one or multiple
smoothing groups, weighted attachment of vertices to one,
two, three, or more bones, and so on. Finding a single com-
pressed format that suits everybody’s needs is difficult.
However, compressed 3D content has recently found its
way onto the Web in the proprietary industry formats of
someWeb3D companies like Virtue3D, MacroMedia’s Shock-

Coding as Compressable ASCII, Isenburg, Snoeyink 1 appeared in Web3D’2002

wave3D, Cult3D, and others. These companies provide the
tools to create and publish the content and the software to
view it. Since only a companies’ own software needs to be
able to understand the compressed format, they have the
freedom to tailor the compression to the specific type(s) of
polygon mesh(es) supported by their scene graph. Usually
the entire scene graph is published as one or several com-
pact binary files that can only be read and modified with
the corresponding authoring software.
Another popular approach is to publish the scene graph
description in form of a human-readable ASCII file. Only
the data-heavy scene graph nodes (e.g. images, audio, video,
geometry) are stored in a binary format, which are then
referred to in the ASCII file. This approach is more author-
friendly: When the scene graph description is in a textual
format it can be viewed, understood, and modified with any
text editor. Most importantly, anyone can do this, even
without knowledge about the specific software package that
generated the scene graph description file.
Because of the convenience of a text-based file format,
most scene graph APIs allow to store the description of the
scene graph in ASCII. Rather than supporting two different
input formats, some scene graph APIs only support ASCII
input. In order to read the binary formats of standard com-
pressed image, audio and video data they use the capabili-
ties of the browser. However, since there is no compression
standard for polygonal data, all polygon meshes appear in
an uncompressed textual representation in the scene graph.
In this paper we show how to incorporate compression
of polygonal data into a purely text-based scene graph de-
scription. We present a scheme that codes a polygon mesh
as a compressable ASCII string. The resulting string com-
presses well with any of the standard compression algorithms
(e.g. gzip) that are typically used to compress text-based
Web content. Our ASCII coder extends the Face Fixer
scheme [10] to code position indices and borrows ideas from
coding with vertex and corner bits [11] to code texture coor-
dinate indices. We also describe a simple mechanism to deal
with non-manifold situations. In addition, optional quan-
tizing and delta coding of positions and texture coordinates
can reduce the file size further, if loss is acceptable. The
gzipped scene graph description files decreases by a factor
of two (six) in size when the polygon meshes they contain
are coded with the lossless (lossy) ASCII coder.
Furthermore we describe in detail a proof-of-concept im-
plementation that uses the Shout3D pure java API [18]. The
Shout3D API realizes a plugin-less 3D player that is dis-
tributed together with the data. While this guarantees that
the 3D content is always readable, all required java classes
have to be (automatically) downloaded. For fast downloads
these classes should be as compact as possible. Our pro-
totype is an extremely light-weight implementation of the
decoder that can be distributed at minimal additional cost.
The size of the compiled decoder class is less than 6KB by it-
self and less than 3KB if included into a compressed archive
of java class files. It extends the IndexedFaceSet node to
the CodedIndexedFaceSet node, but makes no use of specific
features of the Shout3D API. Hence, our method will work
for any scene graph API that allows (a) to extend the node
set and (b) to store the scene graph as ASCII.

2. INDEXED FACE SETS
Commonly used ASCII formats like VRML and its vari-

ants specify polygonal geometry in form of an indexed face
set. In the scope of this paper we will only be concerned
with polygon meshes that have one (optional) layer of tex-
ture coordinates. The indexed face set representation of
such a mesh contains two arrays of floats and two arrays of
integers. Given a mesh with p positions, t texture coordi-
nates, and f faces that have a total of c face corners, these
arrays will contain the following:

• An array of 3p floats that specifies the x, y, and z
coordinate for each of the p positions.

• An array of 2t floats that specifies the u and v coordi-
nate for each of the t texture coordinates.

• An array of c+f integers that specifies a position index
for each corner of each face. The position indices of
the corners of each face are listed in (usually counter-
clockwise) order around the face followed by a special
value of −1 that acts as a face delimiter. The order
on the faces is arbitrary. Thus, the array contains c
position indices and f face delimiters.

• An array of c+f integers that specifies a texture coor-
dinate index for each of the c face corners. The order
on the corners follows that of the position index array
and the face delimiters are also used the same way.

The first scene description file in Figure 8 contains a typ-
ical example of an indexed face set. In this paper we mostly
focus on encoding the array of position indices and the array
of texture coordinate indices. These indices can be encoded
in a very compact manner without affecting the quality of
the polygon mesh (e.g. lossless coding). Encoding the po-
sitions and texture coordinates, on the other hand, affects
the quality of the mesh. In order to efficiently code these
floating point values they are first quantized using a fixed
number of bits. This introduces quantization error because
the decoder will no longer be able to reconstruct the original
floating point values exactly (e.g. lossy coding).

3. CODING POSITION INDICES
Efficient encodings for the position indices of polygonal
meshes have been the subject of intense research and many
techniques have been proposed. Initially most of these schemes
were designed for fully triangulated meshes [3, 21, 22, 15, 7,
17, 9, 19, 1], but more recent approaches [13, 10, 14, 8, 12]
handle arbitrary polygonal input.
These schemes do not attempt to code the position indices
directly. Instead they code only the connectivity graph of
the mesh and then change the order in which the positions
are stored in the position array. The positions are arranged
in the order in which their corresponding vertex in the con-
nectivity graph is encountered during some deterministic
traversal. Since encoding and decoding of the connectiv-
ity graph is also done by traversing the graph, the positions
are usually reordered as dictated by the connectivity coder.
This reduces the number of bits needed for storing all
position indices to whatever is required to code the connec-
tivity graph of the mesh. This is good news; for a manifold
polygon mesh of genus zero the connectivity graph is home-
omorphic to a planar graph and it is well known that such
graphs can be coded with a constant number of bits per ver-
tex (bpv) [23]. The coding schemes mentioned above need

Coding as Compressable ASCII, Isenburg, Snoeyink 2 appeared in Web3D’2002

somewhere between 0.5 to 4.0 bpv depending on the regu-
larity of the connectivity graph. In comparison, the list of
position indices of the indexed face set representation uses
at least k log2 n bpv, where n is the number of positions and
k is the average number of times each position is indexed. If
a mesh has handles (i.e. has non-zero genus) its connectiv-
ity graph is not planar. Coding a graph with handles adds
a linear number of bits per handle, but most meshes have
only a very small number of handles. Our ASCII coder uses
the Face Fixer scheme [10] to code the connectivity graph,
because it handles arbitrary polygonal meshes, is simple to
implement, and produces a symbol stream that easily maps
into a compressable ASCII string.
Unfortunately polygon meshes are not always manifold.
A mesh is manifold if the neighborhood of each vertex is
homeomorphic to a disk or a half-disk. Polygonal models
that describe solid objects tend to have this property. How-
ever, when generating polygon meshes from other surface
representations (i.e. trimmed NURBS) non-manifoldness is
often introduced. Also hand-authored content is frequently
non-manifold, especially if the author tried to optimize a
mesh (i.e. minimize the polygon count).
Optimally coding non-manifold graphs directly is hard
and there are no efficient solutions yet. Most schemes either
require the input mesh to be manifold or use a preprocessing
step that cuts non-manifold meshes into manifold pieces [5].
A notable exception is the layering scheme proposed by Ba-
jaj et al. [2], but this seems quite complicated to implement.
Cutting a non-manifold mesh into manifold pieces replicates
all vertices that sit along a cut. Since it is generally not ac-
ceptable to modify a mesh during compression, the coder
also needs to report how to stitch the manifold pieces back
together. Guéziec et al. [4] report how to do this in an ef-
ficient manner. Our ASCII coder uses a less sophisticated
approach that allows a simple and robust implementation
at the expense of less efficiency. However, the fact that the
number of non-manifold vertices is typically small justifies
the use of a simpler scheme.

4. ASCII CODING OF POSITION INDICES
We will now describe how we code the position indices of
a polygon mesh as a string of ASCII symbols: First we cut
the connectivity graph of the mesh into manifold pieces and
mark the vertices along each cut as non-manifold. Then
we encode each manifold piece of the connectivity graph
using the Face Fixer scheme [10]. During encoding we record
additional information whenever a non-manifold vertex is
encountered that allows the decoder to recover the original
non-manifold connectivity.
The Face Fixer scheme [10] encodes a manifold and polyg-
onal connectivity graph as a sequence of labels R, L, S, E,
Mi,k,l, Fn, and Hn. The sequence of labels basically de-
scribes the sequence of operations used by the encoder to
grow one or more loops of edges on the connectivity graph.
Each operation includes a face/hole (Fn and Hn) or removes
an edge (R, L, S, E, and Mi,k,l) until the entire connectivity
graph was processed. For the details on the encoding pro-
cess we refer the reader to the original paper and the source
code of the available reference implementation [10].
The connectivity graph can be decoded by processing the
sequence of labels in reverse and by performing the corre-
sponding decode operation shown in Figure 1. Each decode
operation performs the reverse of the encode operation. The

hole

offset k

offset l

gate inserted
into stack at

position i

operation R

operation L

gate popped
from stack

operation E

gate pushed
on stack

operation H5

operation F4

operation M

new vertex

new vertex

new vertices

operation S

Figure 1: An illustration of the decoding operations R, L,
S, E, Mi,k,l, Fn, and Hn. The black arrow denotes the active
gate, the grey arrows represent gates of boundaries on the
stack, the thin red arrows show how the edges are organized
into one or more cyclic-linked boundary loops. Notice that
only the operations R, L, and E introduce new vertices.

Coding as Compressable ASCII, Isenburg, Snoeyink 3 appeared in Web3D’2002

resulting sequence of decode operations reverses the encod-
ing process and thereby decodes the connectivity graph.
The ASCII coding of the connectivity graph is any unique
ASCII representation of the reversed label sequence that en-
coder and decoder agree upon. We choose a simple mapping
from labels to integer codes for two reasons: One one hand
the conversion between the ASCII string and the array of in-
teger codes is really simple (i.e. efficient conversion routines
already exist). And on the other hand we sometimes use the
integer value of a label directly for subsequent computation
(i.e. as a counter).
We map R, L, S, E, and M to 0, 1, 2, 3, and 4 respectively.
The three numbers i, k, and l associated with label M simply
follow the corresponding 4. Even if their value equals that of
the integer code of another label there will be no ambiguity.
The state of the decoder at the moment an integer value is
evaluated makes a difference on how it is interpreted. Three
integers following an integer 4 that was interpreted as label
M will always be used as the three numbers i, k, and l
associated with this label—whatever their value might be.
Furthermore we map Fn and Hn to the integer value n+2. In
order to distinguish the typically infrequent occurring holes
from the faces, we let this integer be followed by a −1 in
case of a hole.
For each of the three operations R, L, and E the Face
Fixer decoder introduces new vertices. The operations R
and L introduce one new vertex and operation E introduces
two new vertices as illustrated in Figure 1. We let the order
in which vertices are introduced define the order in which
the corresponding positions are stored in the position array.
Then the vertex that is introduced first is assigned the posi-
tion index 0. Subsequently introduced vertices are assigned
by simply incrementing a position index counter.
Although each copy of a non-manifold vertex is introduced
once, only the copy introduced first is given a new position
index. All other copies are explicitly given the position index
of the first copy (i.e. the ASCII representation of this index
appears in the code). How will the decoder know when an
introduced vertex is just another copy of a non-manifold
vertex? Whenever a vertex is introduced the decoder looks
at the next integer code. In most cases this will represent
the next label. However, a special code is used to indicate
that the introduced vertex is indeed just another copy of a
non-manifold vertex. Then the integer code following this
special code represents the position index that was given to
the first copy of the non-manifold vertex.
The pseudo code in Figure 2 describes our implementa-
tion for decoding the position indices from the code words
array that contains the integer codes produced by the ASCII
coder. We use an enhanced twin-edge structure [6] to build
and store the connectivity graph and to maintain the bound-
aries during decoding. Besides pointers to a next and an
inverse twin-edge, we have two pointers to a next and a pre-
vious boundary edge. This way we organize all twin-edges of
the same boundary into a cyclic doubly-linked list. When-
ever a face was decoded (e.g. after each operation Fn) the
decoder enters the position indices of all its corners in coun-
terclockwise order into the position index array followed by
a -1. If the mesh has texture coordinates it also records for
each corner at which entry in the position index array its
position index was stored. This is needed later to enter the
decoded texture coordinate indices at the right place into
the texture coordinate index array. Following the example

decoding process illustrated in Figure 6 will be helpful to
fully understand how the decoder works.

void decode indices() {
do {

do {
int code = code words[code count++];
if (code > 4) {

if (code words[code count] != -1) {
do operation Fcode−2;
fill indices array with position indices;

} else {
do operation Hcode−2;
code count++;

}
} else if (code == 0) {

do operation R;
gate.inv.position = get position index(-1);

} else if (code == 1) {
do operation L;
gate.position = get position index(-1);

} else if (code == 2) {
do operation S;

} else if (code == 3) {
do operation E;
gate.position = get position index(-1);
gate.inv.position = get position index(-2);

} else if (code == 4) {
i = code words[code count++];
k = code words[code count++];
l = code words[code count++];
do operation Mi,k,l;

}
} while (piece not completely decoded);

} while (code words[code count] != 2);
}

int get position index(int non manifold) {
if (code words[code count] != non manifold) {

return position count++;
else {

code count++;
return code words[code count++];

}
}

Figure 2: Pseudo code illustrating how to implement the
decoding of position indices. The inner do ... while loop
repeats until a manifold piece of the connectivity graph is
completely decoded and the outer do ... while loop repeats
for all pieces. After every operation Fn the position indices
of the decoded face are written into the position index array.

5. CODING TEXCOORD INDICES
The indexed face set representation uses one texture coor-
dinate index for every face corner. However, there is usually
a strong correlation between position indices and texture co-
ordinate indices. Namely, for every position index there are
one or more texture coordinate indices. Unfortunately this is
not always the case. Sometimes corners of different vertices
(e.g. of vertices with different position indices) use the same
texture coordinate index. Especially in hand-authored con-
tent one often encounters such non-manifold texture map-
pings. For example when the author tried to minimize the
number of texture coordinates by re-using them for different
parts of the mesh.
All previously proposed methods for encoding texture co-
ordinate indices [7, 20, 10, 11] try to exploit the correlation
existing in a manifold texture mapping. Later we will de-

Coding as Compressable ASCII, Isenburg, Snoeyink 4 appeared in Web3D’2002

scribe how these methods can be modified to also support
the non-manifold case. But first a few definitions to char-
acterize the different configurations that can arise for the
texture coordinate mapping:

smooth
corner

crease
vertex

corner
vertex

smooth
vertex

crease
corner

Figure 3: Different shaded corners have different texture
coordinate indices. A smooth corner has the same texture
coordinate index as the previous corner, while a crease cor-
ner has a different one. Smooth vertices have no crease cor-
ner, crease vertices have two crease corners, corner vertices
have three or more crease corners.

Around every vertex of the connectivity graph is a cycle of
face corners and edges. From each edge incident to a vertex
there is a unique traversal of the face corners surrounding
the vertex. The traversal starts with the corner following
the respective edge and ends with the corner preceding it.
In this paper we use a counterclockwise order to talk about
a next (following) and a previous (preceding) edge or corner.
We say a corner is a smooth corner if it has the same texture
coordinate index as the previous corner, otherwise we call
it a crease corner (see also the illustrations in Figure 3). A
smooth vertex has only smooth corners; it has one texture
coordinate index that is used by all corners. A crease vertex
has two crease corners; it has two different texture coordi-
nate indices each used by a set of adjacent corners. And
finally, a corner vertex has three or more crease corners; it
has three or more different texture coordinate indices each
used by a set of adjacent corners.
In the manifold case there is a one-to-one mapping from
smooth vertices and crease corners to texture coordinate in-
dices. It is sufficient to code this mapping in order to specify
all texture coordinate indices. Based on this observation we
proposed in [10] a simple scheme that improved on earlier
work by Taubin et al. [20]. We suggested the use of vertex
bits and corner bits. One bit per vertex is needed to distin-
guish smooth vertices (“1”) from crease and corner vertices
(“0”). In addition one bit per corner is needed for the cor-
ners around a crease or corner vertex to distinguish smooth
corners (“0”) from crease corners (“1”). The texture coordi-
nates associated with smooth vertices and crease corners are
stored in the order the corresponding “1” bits appear in the
bit sequence. The texture coordinate indices are assigned
by incrementing a texture coordinate index counter.
Furthermore we noticed that often not all vertex and cor-
ner bits are necessary. In [11] we suggested the following
four simple rules to save vertex and corner bits that are also
illustrated in Figure 4:

rule R1 Vertices that have only one corner do not need a vertex
bit. Such vertices are always smooth vertices.

rule R2 Crease vertices that have only two corners do not need
corner bits. The vertex bit already determines whether it

?

?
0

?

?
0 0

? 0
00

?

0?
0

?

01
0

0 1

? 0
0

? ?
0

?

rule R1

rule R2

rule R3

0

if a vertex has only one
corner, then it must be a
smooth vertex

if a crease vertex has
only two corners, then
both of them must be
crease corners

each crease vertex
must have at least two
crease corners, this has
only one so far

saves 1 vertex bit

saves 2 corner bits

saves 1 corner bit

rule R4
each crease vertex
must have at least two
crease corners, this has
none so far

saves 2 corner bits

marks current vertex
 and corner

vertex bit

corner bits

 currently
processed
 bit (s)

 already processed
 corners

Figure 4: Simple rules to save vertex and corner bits. Using
rule R1 avoids unnecessary vertex bits, rules R2, R3, and R4

avoid unnecessary corner bits.

is a smooth vertex and both corners are smooth corners, or
a crease vertex and both corners are crease corners.

rule R3 If all but one corner of a vertex have been marked and
there has been only one crease corner, then there is no need
for the last corner bit. Because corner bits are only used for
crease and corner vertices and such vertices have at least
two crease corners, the last corner must be a crease corner.

rule R4 Similarly, if all but two corners of a vertex have been
marked and there has been no crease corner, then there is
no need for the last two corner bits.

Notice that rule R1 never and rule R2 rarely apply for
meshes without holes or boundary, since usually only ver-
tices on the boundary have as few as one or two corners.
If the texture coordinate mapping is non-manifold, then
there is no one-to-one mapping from smooth vertices and
crease corners to texture coordinate indices. Some smooth
vertices and/or crease corners will map to the same texture
coordinate index. We code these non-manifold situations
the same way it was done for position indices. Only the
first occurrence is given a new texture coordinate index. All
others are marked and given the texture coordinate index of
the first one explicitly.

6. ASCII CODING OF TEXCOORD INDICES
We will now describe how we code the texture coordinate
indices of a polygon mesh into the string of ASCII repre-
sented integer codes: We encode/decode the texture coordi-
nate indices of all corners of a vertex in the moment that all
its surrounding faces and holes have been encoded/decoded.
We need to check this during the operations Fn and Hn. The
decoder will then call the function decode texcoord binding(edge)
(see Figure 5).
The argument to this function is some twin-edge incident
to the respective vertex that encoder and decoder agree

Coding as Compressable ASCII, Isenburg, Snoeyink 5 appeared in Web3D’2002

upon. This function first counts the number of face cor-
ners. This information is necessary to find out if one of the
bit-saving rules R1 to R4 applies. Vertex bits and corner
bits are then read as necessary from the code words array.
Vertex bits and corner bits are coded with integers that are
already frequently used for other things. This will reduce
the entropy of the ASCII stream for better gzip compres-
sion results. The vertex bit indicating a smooth vertex and
the corner bit indicating a smooth corner are coded with a
0. This code is already used for label R, which also appears
very frequent. The vertex and corner bits that indicate the
respective opposite are coded with either a 5 for triangle
meshes or with a 6 for meshes containing mostly quadrilat-
erals. The exact value does not matter since we only test
for (in-)equality with 0.
Whenever a new texture coordinate index is requested
the decoder makes sure that the next code word does not
indicate a non-manifold situation. If it does, it uses the next
code word as the texture coordinate index. The decoded
texture coordinate indices are immediately entered into the
texture coordinate index array. Which entry they need to be
written to was recorded in the moment the position indices
where entered into position index array. This recoding of
entries is illustrated in the example run of Figure 6 with
little red numbers.

7. POSITIONS AND TEXTURE COORDINATES
The ASCII format of an indexed face set specifies the

x, y, and z coordinate of each position and the u and v
component of each texture coordinate as an ASCII repre-
sentation of a floating point numbers. Although in theory it
would be possible to represent them at the full precision of
an IEEE 32 bit floating point number, in practice one finds
fixed point representation that use between 3 and 6 decimal
digits. A polygon model is usually specified in respect to
the local coordinate system it was modeled in. Therefore
the x, y, z position coordinates typically range around the
origin somewhere between −10.0 and +10.0. The u and v
component of a texture coordinate tend to lie between 0.0
and 1.0 as this is sufficient to address any (sub-)pixel loca-
tion in the texture image. However, they are not restricted
to this. An integer component above or below zero can be
used to achieve repeating or clamping effects, depending on
the chosen texturing mode.
The common approach for coding positions and texture
coordinates first quantizes the floating point numbers uni-
formly and then applies some form of predictive coding.
Quantization with k bits of precision maps each floating
point number to an integer value between 0 and 2k − 1,
which could then be stored using k bits. Predictive cod-
ing reduces the variation and thereby the entropy of the
resulting sequence of k bit numbers. Rather than specifying
each position individually, previously decoded information
is used to predict the next coordinate and only a correcting
term is stored. The simplest prediction method that pre-
dicts the next position as the last position was suggested
by Deering [3]. This is also known as delta coding. Better
methods are the spanning tree predictor by Taubin et al. [21]
and the parallelogram predictor introduced by Touma and
Gotsman [22].
Generally people that author 3D content dislike the idea
of quantization, because it changes the mesh slightly. How-
ever, storing a 32-bit floating point number as an ASCII

void decode texcoord binding(TwinEdge edge) {
int corners = 0;
TwinEdge spin = edge;
do {

if (spin.entry != -1) { // if not a hole corner
corners++;

}
spin = spin.next;

} while (spin != edge);
if (corners == 1 || code words[code count++] == 0) {

int texcoord = get texcoord index(-1);
do {

if (spin.entry != -1) { // if not a hole corner
texindices[spin.entry] = texcoord;

}
spin = spin.next;

} while (spin != edge);
} else {

int texcoord = -1;
int creases = 2;
int unindexed = 0;
do {

if (spin.entry != -1) { // if not a hole corner
if (creases == corners ||

code words[code count++] != 0) {
texcoord = get texcoord index(-1);
texindices[spin.entry] = texcoord;
creases--;

} else {
if (texcoord != -1) {

texindices[spin.entry] = texcoord;
} else {

unindexed++;
}

}
corners--;

}
spin = spin.next;

} while (spin != edge);
while (unindexed > 0) {

if (spin.entry != -1) { // if not a hole corner
texindices[spin.entry] = texcoord;
unindexed--;

}
spin = spin.next;

}
}

}

int get texcoord index(int non manifold) {
if (code words[code count] != non manifold) {

return texcoord count++;
} else {

code count++;
return code words[code count++];

}
}

Figure 5: Pseudo code illustrating how to implement the
decoding of texture coordinate indices around a vertex. The
first do .. while loop only counts the number of face corners.
This count is needed to apply the rules R1 to R4. The
following if statement decides whether the vertex is smooth
or not and processes it accordingly.

string in fixed point notation using for example 5 decimal
digits also quantizes its value, namely into one of 199999
possible values. This corresponds to a quantization with
roughly 18 bits of precision if the entire range from −9.9999
to +9.9999 is used. We can always quantize with enough
bits to achieve the precision of a float in ASCII represented

Coding as Compressable ASCII, Isenburg, Snoeyink 6 appeared in Web3D’2002

holeholehole

holehole

0
1

01

12

2
2

0
1

a

2

0
1

3

4

5

67

01

0

1

2

2

0
1

3

4

5

67

4

01

2

2
2

0

1

o
2

0
1

3

4

5

67

4

01

0

1

2

n

2

0
1

3

4

5

67

4

01

0

1

2

2

0
1

3

4

5

67

4

01

0

1

2

2

0
1

3

4

5

67

0

1

2
3

2

0
1

3

4

5

67

0

1

2
3

2

0
1

3

4

5

6

0

1

2
3

2

0
1

3

4

5

0

1

2
3

2

0
1

3

4

5

0

1

2
3

2

0
1

3

4
0

1

2
3

2

0
1

3
0

1

2
3

2

0
1

3c
2

0
1

b d

fe g

6

8

7

5

6

8

7

5

h

6

8

7

5

i

hole

6

8

7

5

j

6

7

5

k
6

7

5

l

6

7

5

m

10
11

12

6

7

5

10
11

12

16

14

15

6

7

5

10
11

16

14

code_words [] =

indices[] = [• • • • • • • • • • • • • • • • • • •

indices[] = [3 2 1 0 -1 5 4 3 0 -1 4 7 1 -1 4 1 2 -1 •

texindices[] = [• • • • • • • • • • • • • • • • • • •

texindices[] = [• • 2 1 -1 • • • 0 -1 • • 2 -1 • 2 • -1 •

 • • •]

 • • •]

 • • •]

 • • •]

before:

after:

code_count = 1 index_count = 0 position_count = 0 texcoord_count = 0

code_count = 20 index_count = 18 position_count = 8 texcoord_count = 3

E R R F4

R R F4 R

R H5 R

F3 F3

 [438 3 0 0 6 0 0 6 0 0 7 -1 6 0 -1 4 5 5 0 …]

• • • •

size of
index
arrays

F4

E H5

vertex bit
indicating

crease
vertex

vertex bit
indicating
smooth
vertex

F3F3

indicates
non-manifold
vertex: next
code word is
position index

R R

F4

R R R R R

Figure 6: This example illustrates how position and texture coordinate indices are decoded from the code words array of
integers. These are the integers that are stored in standard ASCII format separated by white-spaces in the code field of the
CodedIndexedFaceSet (see Figure 8). The first integer is used during initialization to allocate the memory for the array indices
of position indices and the array texindices of texture coordinate indices. It specifies the length of these two arrays. Its value
equals the total number of face corners plus the total number of faces of the mesh, because there is one index per face corner
and one face delimiter −1 per face. Besides the three arrays there are four other global variables that are counters. Their
values before and after processing the first 18 code words are reported. We will now explain step by step how the algorithm
proceeds: (a) the next code word is 3, do operation E, and get position indices for the two new vertices. (b) the next code
word is 0, do operation R, and get a position index for the new vertex. (c) same as previous. (d) the next code word is 6,
do operation F4, then walk ccw around the face and fill the indices array with the position indices, while recording for each
corner the entry in the indices array at which its position index was stored. (e) the next code word is 0, do operation R, and
get a position index for the new vertex. (f) same as previous. (g) the next code word is 6, do operation F4, then walk ccw
around the face and fill the indices array with position indices. again record at which entry they were stored. (h) the next
code word is 0, do operation R, and get a position index for the new vertex. (i) same as previous. (j) the next code word
is 7 and it is followed by −1, do operation H5 (k) all faces/holes around the vertex with the position index 0 are decoded,
therefore we decode the texture coordinate binding around that vertex, the next code word is 6 which indicates a crease
vertex, the number of corners around this vertex is 2, that means no corners bits are necessary, they are both crease corners,
get two texture coordinate indices and store them in the entries of the texindices array corresponding to these corners. (l)
the next code word is 0, do operation R, and get a position index for the new vertex. since the next code word is −1 this
vertex is non-manifold. use the next code word as its position index. (m) the next code word is 5, do operation F3, then fill
the indices array. (n) same as previous. (o) all faces/holes around the vertex with the position index 1 are decoded, therefore
we decode the texture coordinate binding around that vertex, the next code word is 0 which indicates a smooth vertex, get a
texture coordinate index and store it in all entries of the texindices array that correspond to these corners.

Coding as Compressable ASCII, Isenburg, Snoeyink 7 appeared in Web3D’2002

Figure 7: The eight example models used in this paper are all textured and have non-triangular connectivity.

mesh characteristics size of ASCII file size of gzipped ASCII file
name indices positions texcoords polygons plain coded quantized plain coded quantized
lion 82310 16302 16652 16738 1359.5 679.0 310.8 441.6 206.1 66.2
wolf 36354 7068 7234 7454 568.7 295.2 135.0 183.1 84.5 29.4
raptor 37992 7454 6984 7808 585.6 312.2 154.3 199.8 100.7 34.9
fish 24045 4685 4685 4901 374.8 195.9 91.0 122.9 55.4 22.8
snake 56054 11137 11610 11268 909.1 472.5 210.5 312.3 138.1 34.8
horse 46917 9199 9988 9518 749.1 397.3 188.6 266.4 124.3 40.9
cat 50118 9627 10350 10340 791.3 413.3 192.4 267.3 128.4 39.9
dog 41010 6650 6522 9278 586.3 283.5 143.4 186.2 87.3 34.6

Table 1: The index, position, texture coordinate, and polygon count for all example models and the resulting size in Kilobytes
of ASCII and gzipped ASCII scene description files are reported. We compare file sizes without compression (plain), after
coding the indices (coded), and after coding the indices plus quantizing and delta coding of positions and texture coordinates
(quantized). The reported file sizes do not include the texture image.

fixed point notation. Nevertheless, in order to publish 3D
content on the web, 16, 12, or even 10 precision bits are
often sufficient.

Our prototype implementation uses simple delta coding to
code the quantized positions and texture coordinates. We
quantize the positions using 12 bits of precision and the

Coding as Compressable ASCII, Isenburg, Snoeyink 8 appeared in Web3D’2002

texture coordinates using 8 bits of precision. The order in
which the positions and texture coordinates are stored in
the array makes a difference for the delta coder. Ideally
subsequent entries are close to each other so that the cor-
rection deltas are small. This will be true for the positions,
since in most cases neighboring position entries correspond
to vertices that are connected by an edge in the connec-
tivity graph. Unfortunately this will often not be true for
neighboring texture coordinate entries. The two texture co-
ordinates used around a crease vertex are stored one after
the other in the texture coordinate array. However, they can
address completely different locations in the texture image.

8. IMPLEMENTATION AND RESULTS
We have implemented an extremely light-weight decoder
based on the coding scheme described in this paper. Our
prototype implementation uses the Shout3D pure java API [18]
and extends the IndexedFaceSet node to the CodedIndexed-
FaceSet node. This way it can be used as a custom node
of the VRML style Shout3D’s scene graph structure, which
gives us the ability to download our decoder class on-demand.
The node automatically decodes itself once loading has com-
pleted. This process decodes the data that make it a render-
able IndexedFaceSet node and discards the code. The size
of the compiled decoder class file is less than 6KB by itself
and less than 3KB if included into a zipped archive of java
class files.
In Table 1 we report compression results when applying
ASCII coding to simple scene description files that each con-
tain one of the eight textured polygon models shown in Fig-
ure 7. We compare the (gzipped) size of an ASCII scene
description file that uses the standard IndexedFaceSet node
(plain) to one that uses the proposed CodedIndexedFaceSet
node. In the lossless case (coded) only the position indices
and the texture indices are coded. The precision of positions
and texture coordinates is not affected, only their ordering
in the arrays changes. In the lossy case (quantized) the po-
sitions are quantized with 12 bits precision and the texture
coordinates with 8 bits.
The important result is the improvement in compression
when gzip is applied. The lossless coded scene description
files compresses roughly two times better than before, while
the lossy coded scene description files are about six times
smaller. The time consumed for decoding is negligible com-
pared to the time needed to download and parse the scene
description file. The ASCII coded polygon meshes reduce
the size of the scene description file significantly for both
lossless and lossy coding, also when the required download
of the decoding software (3KB) is taken into account.
You can find an interactive demo that decodes the models
used in this paper on the fly at this web address:
http://www.cs.unc.edu/˜ isenburg/asciicoder.

9. CURRENT WORK
There is still a significant gap between the compression
rates that are achievable with dedicated coders that com-
press polygon meshes into binary bit-streams and the coder
we have presented here. The main reason is that such coders
apply arithmetic coding to compress the produced symbol
stream into as few bits as possible. Arithmetic coding will
always outperform the gzip coding that is applied to our
ASCII symbol string. This is because arithmetic coding

Shape {
appearance Appearance {

material Material {
modulateTextureWithDiffuse true
diffuseColor 1 1 1

}
texture ImageTexture {

url fish.jpg
}

}
geometry IndexedFaceSet {

coord Coordinate {
point [-0.0715 ... -0.4479 -4.5153 4.5304]

}
coordIndex [7 6 209 204 -1 4 ... 4423 4222 -1]
texCoord TextureCoordinate {

point [0.3735 ... 0.2666 0.4990 0.1082]
}
texCoordIndex [0 1 2 3 -1 4 ... 4293 4683 -1]

}
}

Shape {
...
...

geometry CodedIndexedFaceSet {
coord Coordinate {

point [-0.1195 ... 4.5304 -0.4689 -4.4092 4.4136]
}
texCoord TextureCoordinate {

point [0.0150 ... 0.2581 0.3825 0.2520]
}
code [24045 3 0 3 1 ... 5 0 6 0 0 0 0 2]

}
}

Shape {
...
...

geometry CodedIndexedFaceSet {
coord Coordinate {

point [-2 ... -21 24 37 -0.469 -4.409 4.414]
}
texCoord TextureCoordinate {

point [0 0 0 0 0 -4 ... 0 2 2 0.3825 0.252]
}
code [24045 3 0 3 1 ... 5 0 6 0 0 0 0 2]
pos 4.884e-3
tex 3.8234e-3

}
}

Figure 8: Three simple Shout3D scene description files that
describe the same scene: a textured polygon model of a fish.
The first file uses the standard IndexedFaceSet node to de-
scribe the polygonal geometry (122.9 KB gzipped). The
second file uses our CodedIndexedFaceSet node to describe
it more compactly yet still lossless. Only the order of posi-
tion and texture coordinates has changed (55.4 KB gzipped).
The third file in addition quantizes and delta codes the po-
sitions and the texture coordinates. However, the resulting
loss in precision in not visible (22.8 KB gzipped).

approximates the optimal compression possible in respect
to the (context-based) information entropy of a symbol se-
quence [16].
We can combine the advantages of arithmetic coding with
that of a non-binary ASCII coding by letting the arithmetic
coder produce an ASCII string of zeros and ones instead
of a binary bit-stream. The Lempel-Ziv coder [24] used by

Coding as Compressable ASCII, Isenburg, Snoeyink 9 appeared in Web3D’2002

the standard gzip coders is able to compress the resulting
ASCII string of zeros and ones into roughly the same num-
ber of bits. Although there might be no more correlation
in this string, it only contains two different symbols. No
coder should use more than n bits to code a sequence of n
of these two symbols (apart from a small overhead for the
symbol table). We have already implemented an arithmetic
coder that compresses into and uncompresses from ASCII
and initial results are promising. The disadvantage of this
approach is the additional computation and the additional
java classes required for the arithmetic decoding.
However, for many polygon mesh representations this ad-
ditional effort may be well worth it. There are representa-
tions that allow meshes to have more than just positions and
texture coordinates such as theMultiMesh node of Shout3D.
These meshes can have per-face information about material
properties, per-vertex information about attached bones,
per-edge information about visibility in wire-frame mode,
and per-corner information about more than one texture
coordinate. We are currently developing a CodedMultiMesh
node that makes heavy use of the arithmetic coder we men-
tioned above. For such meshes that are rich in properties
arithmetic coding is especially important since we can then
use predictive techniques for compressing the property map-
ping as proposed in [11].
Recently we have also developed a better compression
scheme for coding polygonal connectivity. Our degree du-
ality coder [8] achieves the best compression rates for poly-
gon mesh connectivity reported so far1, but requires the
use of a context-based arithmetic coder to achieve this. We
have proof-of-concept java implementation of this connec-
tivity coder that already demonstrates the ASCII produc-
ing arithmetic coder we mentioned above. This interactive
demo can be found at at this web address:
http://www.cs.unc.edu/˜ isenburg/degreedualitycoder.

10. ACKNOWLEDGMENTS
We thank Paul Isaacs from Shout3D for the fruitful dis-
cussion at SIGGRAPH’01 which gave us the idea that an
ASCII coder would be useful for text-based Web3D scene
graph APIs. We also thank Curious Labs for the permission
to use their polygon models in our experiments.

11. REFERENCES
[1] P. Alliez and M. Desbrun. Valence-driven connectivity
encoding for 3D meshes. In Eurographics’01 Conference
Proceedings, pages 480–489, 2001.

[2] C. Bajaj, V. Pascucci, and G. Zhuang. Single resolution
compression of arbitrary triangular meshes with prop-
erties. In Data Compression Conference’99 Conference
Proceedings, pages 247–256, 1999.

[3] M. Deering. Geometry compression. In SIGGRAPH’95
Conference Proceedings, pages 13–20, 1995.

[4] A. Guéziec, F. Bossen, G. Taubin, and C. Silva. Ef-
ficient compression of non-manifold polygonal meshes.
In Visualization’99 Conference Proceedings, pages 73–
80, 1999.

[5] A. Guéziec, G. Taubin, F. Lazarus, and W. Horn. Con-
verting sets of polygons to manifold surfaces by cutting

1A similar coder was developed independently and during
the same time period by a group of researchers at CalTech
and USC [12].

and stitching. In Visualization’98 Conference Proceed-
ings, pages 383–390, 1998.

[6] L. Guibas and J. Stolfi. Primitives for the manipulation
of general subdivisions and the computation of Voronoi
Diagrams. ACM Transactions on Graphics, 4(2):74–
123, 1985.

[7] S. Gumhold and W. Strasser. Real time compression of
triangle mesh connectivity. In SIGGRAPH’98 Confer-
ence Proceedings, pages 133–140, 1998.

[8] M. Isenburg. Compressing polygon mesh connectivity
with degree duality prediction. In Graphics Interface’02
Conference Proceedings, pages 161–170, 2002.

[9] M. Isenburg and J. Snoeyink. Mesh collapse compres-
sion. In Proceedings of SIBGRAPI’99 - 12th Brazilian
Symposium on Computer Graphics, pages 27–28, 1999.

[10] M. Isenburg and J. Snoeyink. Face Fixer: Compress-
ing polygon meshes with properties. In SIGGRAPH’00
Conference Proceedings, pages 263–270, 2000.

[11] M. Isenburg and J. Snoeyink. Compressing the prop-
erty mapping of polygon meshes. In Pacific Graphics’01
Conference Proceedings, pages 4–11, 2001.

[12] A. Khodakovsky, P. Alliez, M. Desbrun, and
P. Schroeder. Near-optimal connectivity encoding of 2-
manifold polygon meshes. In Graphic Models, 2002.

[13] D. King, J. Rossignac, and A. Szymczak. Connectivity
compression for irregular quadrilateral meshes. Tech-
nical Report TR–99–36, GVU Center, Georgia Tech,
Nov. 1999.

[14] B. Kronrod and C. Gotsman. Efficient coding of non-
triangular meshes. In Proceedings of Pacific Graphics,
pages 235–242, 2000.

[15] J. Li and C. C. Kuo. A dual graph approach to 3D tri-
angular mesh compression. In Proceedings of ICIP’98,
pages 891–894, 1998.

[16] A. Moffat, R. M. Neal, and I. H. Witten. Arithmetic
coding revisited. ACM Transactions on Information
Systems, 16(3):256–294, 1998.

[17] J. Rossignac. Edgebreaker: Connectivity compression
for triangle meshes. IEEE Transactions on Visualiza-
tion and Computer Graphics, 5(1):47–61, 1999.

[18] Shout3D. a pure Java 3D API, version 2.5.9,
www.shout3d.com.

[19] A. Szymczak, D. King, and J. Rossignac. An
Edgebreaker-based efficient compression scheme for
connectivity of regular meshes. In Proceedings of 12th
Canadian Conference on Computational Geometry,
pages 257–264, 2000.

[20] G. Taubin, W. Horn, F. Lazarus, and J. Rossignac.
Geometry coding and VRML. Proceedings of the IEEE,
86(6):1228–1243, 1998.

[21] G. Taubin and J. Rossignac. Geometric compression
through topological surgery. ACM Transactions on
Graphics, 17(2):84–115, 1998.

[22] C. Touma and C. Gotsman. Triangle mesh compression.
In Graphics Interface’98 Conference Proceedings, pages
26–34, 1998.

[23] G. Turan. Succinct representations of graphs. Discrete
Applied Mathematics, 8:289–294, 1984.

[24] J. Ziv and A. Lempel. A univeral algorithm for sequen-
tial data compression. IEEE Transactions on Informa-
tion Theory, 1977.

Coding as Compressable ASCII, Isenburg, Snoeyink 10 appeared in Web3D’2002

