
Graph Coding and Connectivity Compression

Martin Isenburg† Jack Snoeyink‡

University of North Carolina at Chapel Hill

Abstract

This paper looks at the theoretic roots of current connectivity compression schemes to establish a visual framework
within which the differences and similarities of various scheme become intuitive. We show the intimate connections
between the classic work on planar graph coding by Turan and recent schemes, such as Edgebreaker, Face Fixer,
and the optimal coding by method of Poulalhon and Schaefer.
Furthermore we fit Touma and Gotsman’s valence coder into this classification. This helps to explain what infor-
mation is hidden in the "split offsets" and suggests a strategy for doing valence coding without using offsets.
Other results are an elegant method for reverse decoding of meshes encoded with Poulalhon and Schaefer’s opti-
mal coder, and the insight that the classic Keeler and Westbrook method and the Edgebreaker scheme are really
the same algorithm for the case of encoding planar triangulations.
Finally, we conjecture that (a) optimal encodings are never streamable and (b) encodings that avoid offsets nec-
essarily result in uncoherent mesh layouts.

1. Introduction

A polygon mesh is the most widely used primitive for repre-
senting three-dimensional geometric models. Such polygon
meshes consists of mesh geometry and mesh connectivity,
the first describing the positions in 3D space and the latter
describing how to connect these positions together to form
polygons that describe a surface. Typically there are also
mesh properties such as texture coordinates, vertex normals,
or material attributes that describe the visual appearance of
the mesh at rendering time.

The standard representation of a polygon mesh uses an
array of floats to specify the positions and an array of in-
tegers containing indices into the position array to specify
the polygons. A similar scheme is used to specify the var-
ious properties and how they are attached to the mesh. For
large and detailed models this representation results in files
of substantial size, which makes their storage expensive and
their transmission slow. The need for more compact rep-
resentations has motivated researchers to develop efficient
mesh compression schemes.

† isenburg@cs.unc.edu
‡ snoeyink@cs.unc.edu

A typical mesh compressor has different components for
dealing with the different types of mesh data. Compression
of mesh geometry is usually lossy because the original float-
ing point positions are initially quantized onto a uniform
grid. Compression of mesh connectivity is generally con-
sidered lossless as the incidences between the vertices are
recovered exactly. However, neither the original values of
the indices (e.g. the ordering of vertices) nor the original or-
der of the indices in the index array (e.g. the ordering and
rotation of triangles) are preserved.

Overall, the research efforts in mesh compression have
focused mostly on efficient encodings for mesh connec-
tivity 10, 52, 53, 40, 16, 44, 35, 23, 3, 24, 36, 48, 2, 19, 32. There are several
reasons for this: First, this is where the largest gains are
possible, second, the combinatorical nature of the prob-
lem has an irresistable appeal to researchers, and third, the
connectivity coder is the core component of the compres-
sion engine and usually drives the compression of geome-
try 10, 52, 53, 30, 20, 37, of properties 10, 51, 3, 27, and of how prop-
erties are attached to the mesh 51, 24, 26.

Connectivity compression has its roots in graph theory
where its foundations were laid 55, 54, 31. It was first brought
to the computer graphics community to speed up the ren-
dering of triangle meshes 10, was then improved for maxi-

2 Isenburg and Snoeyink / Graph Coding and Connectivity Compression

mum compression 52, 53, 40, 16, 44 and later generalized for non-
triangular meshes 39, 24, 36, 19, 32. It has traveled since into the
field of computational geometry where the focus shifted to-
wards algorithmic efficiency 45, 25 and guaranteed bounds
on the code size 34, 48. Its theoretic origins were revived by
the quest for provable optimal encodings for mesh connec-
tity 2, 32, 11 and planar graphs 17 with Poulalhon and Schae-
fer’s optimal method 42 finally joining the two communi-
ties. Recently, connectivity compression continued its voy-
age into the areas of out-of-core algorithms and stream pro-
cessing 21, 22 where not only compactness but also streama-
bility becomes an objective for the encoding.

In this paper we go back to the roots of graph coding and
establish a visual framework which can intuitively explain
the differences and similarities between various scheme. We
show the intimate connections between the classic work by
Turan 54 and recent schemes, such as Edgebreaker 44, Face
Fixer 24, and the optimal coding by method by Poulalhon and
Schaefer 42. We mostly follow the timeline of the research
that starts with Tutte’s results on the enumeration of trian-
gulations 55 and the coding of planar graphs with spanning
trees 54. Once these ideas are brought to the graphics com-
munity 10, 52 the coding strategy shifts away from explicit
spanning tree coding 54, 31, 52 to more elegant region-growing
approaches 53, 16, 39, 44 that are later generalized to the polyg-
onal case 24, 36, 19, 32.

While these schemes have been classified into face-
based 16, 44, edge-based 39, 24, and vertex-based 53, 23 schemes,
there has been little intuitive understanding about there dif-
ferences. We characterize their differences by fitting them
into the same visual framework, which makes clear in which
way these schemes are similar to the early work by Turan 54

and in which way they improve on it.

We form a second, parallel classification of these schemes
into one-pass 53, 16, 39 and multi-pass 52, 44, 24 coders. This di-
vides the existing body of compression schemes into those
that can be used out-of-core 21 and those that can not.

For the main part, we focus on the case of fully triangu-
lar meshes without holes or handles. This class of meshes
is homeomorphic to maximal planar graphs or planar tri-
angulations. We do not address the compression of geom-
etry or properties. Neither do we consider progressive com-
pression methods 50, 8, 41, 1, which encode a mesh incremen-
tally at multiple resolutions, nor shape compression meth-
ods 33, 12, 49, which do not encode a particular mesh, but a
highly regular remesh of its geometric shape.

2. Preliminaries

A triangle mesh or a polygon mesh is a collection of triangu-
lar or polygonal faces that intersect only along shared edges
and vertices. Around each face we find an oriented cycle of
vertices and edges. Each appearance of a vertex in this cy-
cle is called a corner. Each appearance of an edge in this

cycle is called an half-edge. It has an orientation that is de-
termined by the order of the vertices on either side. Around
each vertex we find one or more oriented rings of faces and
edges.

An edge is manifold if it is either shared by two faces of
opposite orientation or used only by one face, in which case
it is also a border edge. An edge shared by more than two
faces is non-manifold. A vertex is manifold if its incident
edges are manifold and connected across faces into a single
ring.

Topologically, a mesh is a graph embedded in a 2-
manifold surface in which each point has a neighborhood
that is homeomorphic to a disk or a half-disk. Points with
half-disk neighborhoods are on the boundary. A mesh has
genus g if one can remove up to g closed loops without dis-
connecting the underlying surface; such a surface is topo-
logically equivalent to a sphere with g handles. A mesh is
simple if it has no handles and no border edges. Euler’s rela-
tion says that a graph embedded on a sphere having f faces,
e edges, and v vertices satisfies f − e + v = 2. When all
faces have at least three sides, we know that f ≤ 2v−4 and
e ≤ 3v−6, with equality if an only if all faces are triangles.
For a mesh with g handles (genus g) the relation becomes
f − e + v = 2− 2g and the bounds on faces and edges in-
crease correspondingly.

3. Coding Mesh Connectivity

The standard approach that represents the connectivity of a
mesh with a list of vertex indices requires at least kn log2 n
bits, where n is the total number of vertices and k is the aver-
age number of times each vertex is indexed. For a simple tri-
angular mesh, Euler’s relation tells us that k will be about 6.
For typical non-triangular meshes that contain a mix of poly-
gons dominated by quadrangles, k tends to be around 4. The
problem with this representation is that the space require-
ments increase super-linearly with the number of vertices,
since log2 n bits are needed to index a vertex in an array of n
vertices.

Efficiently encoding mesh connectivity has been sub-
ject of intense research and many techniques have been
proposed. Initially most of these schemes were designed
for fully triangulated meshes 10, 52, 53, 40, 16, 44, 23, 3, 18, 48, 2, but
more recent approaches 35, 24, 36, 32, 19 also handle arbitrary
polygonal input. These schemes do not attempt to code the
vertex indices directly—instead they only code the connec-
tivity graph of the mesh. The mapping from graph nodes to
vertex positions is then established though an agreed upon
ordering derived from the connectivity graph.

Hence, mesh connectivity can be compressed by coding
the connectivity graph and by changing the order in which
the vertex positions are stored. They are arranged in the order
in which their corresponding graph node is encountered dur-
ing some deterministic graph traversal. Since encoding and

Isenburg and Snoeyink / Graph Coding and Connectivity Compression 3

5

1 2

3

7

4

6

8

9

(

(

))

(
(

)

)

(
(

(

(
(

)

+

+

+
+

+

+

+

+
–

–

–

–

–

–

–
–

)

)
)

)

)

)

((

))

(
(

start
sym #

v-1+
– v-1

2v-5(

12v-14 bits

2v-5)

code

00
01
10
11

1

2

3

7

4

6

8 9

4

8

7

4

9

5

9

7
+

+

+

+

+
+

+

+

(
(

(
(

((

(((

(
(

(
(

start

–

–
–

–

–

–

–

–sym #

v-1+
– v-1

2v-5(

6v-9 bits

code

00
01
1

Figure 1: To code planar graphs Turan performs a walk around a vertex spanning tree during which he records four different
symbols, +, -, (, and). It’s not too hard to see that for fully triangulated graphs we may omit either all opening or all closing
brackets. The respective other brackets can be derived from the fact that all faces are triangular. Turan’s illustrates his method
by “pulling open” the graph along the path around the vertex spanning tree. We will use this as a visual framework that
illustrates how recent connectivity coders manage to encode the same information with fewer bits.

decoding of the connectivity graph also requires a traversal,
the positions are often reordered as dictated by this encod-
ing/decoding process.

This reduces the number of bits needed for storing mesh
connectivity to whatever is required to code the connectivity
graph. This is good news: the connectivity graph of a poly-
gon mesh with sphere topology is homeomorphic to a planar
graph. It well known that such graphs can be coded with
a constant number of bits per vertex 54 and exact enumer-
ations exist 55, 56. If a polygon meshes has handles (i.e. has
non-zero genus) its connectivity graph is not planar. Coding
such a graph adds a logarithmic number of bits per handle 52,
but most meshes have only a very small number of handles.

Unfortunately the connectivity can only be coded this way
for manifold polygon meshes. One would expect polygo-
nal surfaces that describe solid objects to have this prop-
erty. However, non-manifoldness is often introduced by mis-
take when converting from other surface representations.
Also hand-authored content is frequently non-manifold, es-
pecially if the artist tried to optimize the mesh (e.g. minimize
its vertex count).

The problem of efficiently coding non-manifold graphs is
hard and there are no optimal solutions yet. Most schemes
either require the input mesh to be manifold or use a prepro-
cessing step that cuts non-manifold meshes into manifold
pieces 14. Cutting a non-manifold mesh replicates all ver-
tices that sit along a cut. Since it is generally not acceptable
to modify a mesh during compression, the coder needs to de-
scribe how to stitch the mesh pieces back together. Guéziec
et al. 13 report how to do this in an efficient manner and Isen-

burg 19 implements a simpler stitching scheme at the expense
of less compression. Although this scheme was originally in-
tended only for typical meshes with few non-manifold ver-
tices, it has also proved sufficient for highly non-manifold
models 21.

4. Coding Planar Graphs

Tutte’s early enumeration results 55, 56 imply that an unla-
beled planar graph can be represented with a constant num-
ber of 3.24 bits per vertex. Similarly, Itai and Rodeh 29 prove
that a triangular graph with v vertices may be represented by
4v bits. However, these existance proofs do not provide us
with an effective procedure to construct such a representa-
tion. Turan 54 is the first to report an efficient algorithm for
encoding planar graphs with a constant number of bits.

A planar graph with v vertices, f faces, and e edges can be
partitioned into two dual spanning trees. One tree spans the
vertices and has v− 1 edges, while its dual spans the faces
and has f − 1 edges. Summing these edge counts results in
Euler’s relation e = (v−1)+ (f −1) for planar graphs. Tu-
ran observed that the partition into dual spanning trees can
be used to encode planar graphs and reported an encoding
that uses 4 bits per edge (bpe) for general planar graphs. Ap-
plying his method to fully triangulated graphs results in an
encoding that uses 12 bits per vertex (bpv). This bit-rate,
which is often quoted in literature, is unnecessarily inflated.
We can improve the Turan’s bit-rate to 6 bpv simply by using
of the fact that every face is a triangle.

The encoding method of Turan walks around a vertex

4 Isenburg and Snoeyink / Graph Coding and Connectivity Compression

spanning tree and records four different symbols as illus-
trated in Figure 1. Two symbols “+” and “–” describe walk-
ing down and up the edges of the vertex spanning tree. Two
symbols “(” and “)” describe walking across edges that are
not part of the vertex spanning tree for the first and for
the second time. This information encodes both spanning
trees and is sufficient to reconstruct the original graph. There
are v − 1 symbols each of type “+” and “–”, one pair for
each edge of the vertex spanning tree. There are e− v + 1
symbols each of type “(” and “)”, one pair for each edge
not part of the vertex spanning tree. Coding each symbol
with 2 bits leads to an encoding for planar graphs that uses
4v−4+4e−4v+4 = 4e bits.

1 2

3

7

4

6

8

9 5

3

3

3

1
2

3

4

5

6
7

8

9

10

11 12

13
14

1516

17

18
19

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
EE

R R

C

L

R

C

S

R

R

R

C

C

C

C

C

C

C

C
C

C

R

C

CR

C

C
C

C

S

R

R

R R
E

E

L

C L E R S

Figure 2: To code triangulated planar graphs Keeler and
Westbrook construct a triangle spanning using a topological
depth-first sort. The nodes of this tree, which they classify as
types 1 to 5, are identical to the five cases C, L, E, R, and S
of the Edgebreaker encoding.

The straight-forward application of Turan’s method to
fully triangulated graphs where e = 3v− 6 results in an en-
coding that uses 12v−18 bits. However, when every face is
a triangle, we only need to include either all “(” or all “)”
symbols in the code. The respective other can be omitted as
it can be derived with some simple book-keeping. This ob-
servation leads to a much tighter bound of 6v − 9 bits by
encoding the v− 1 occurances of “+” and “–” with two bits
and the 2v−5 occurances of either “(” or “)” with one bit.

Given the choice about which of the two bracket types
to encode we would argue for keeping the closing brackets.
While this makes no difference to the implementation of the
encoding algorithm, it leads to a slightly more elegant imple-
mentation of the decoder. Using opening brackets requires
the decoder to check whether another triangle is to be formed
after each non-bracket symbol and also after each formed
triangle. When using closing brackets, however, we simply
form one triangle whenever the decoder reaches a bracket
symbol by connecting back to the vertex that is reached by
going two steps backwards along the last two edges.

Improving on Turan’s work, Keeler and Westbrook re-

port a 3.58 bpe encoding for general planar graphs, which
they specialize to a 4.6 bpv encoding if the graph is trian-
gulated 31. Again, a small oversight on the author’s part re-
sults in the latter bit-rate being unnecessarily inflated. We
can improve their bit-rate to 4 bpv simply by changing
their mapping from symbols to bit codes. This oversight has
also helped obscure the intimite similarities between Keeler
and Westbrook’s method 31 and Rossignac’s Edgebreaker
scheme 44. For the case of encoding planar triangulations
these schemes perform exactly the same traversal and dis-
tinguish exactly the same five cases. The main difference
between them is how they map each case to a bit code.

The encoding method of Keeler and Westbrook and its
equivalence to the Edgebreaker method are illustrated in Fig-
ure 2. Keeler and Westbrook construct a triangle spanning
tree using a topological depth-first sort in the dual graph. It
is the determinism with which this triangle spanning tree—
and the corresponding vertex spanning tree—is created that
allows them to improve on the bit-rates of Turan’s method,
which assumes no particular vertex spanning tree. Each dual
edge that is not part of the triangle spanning tree crosses a
primal edge that is part of the vertex spanning tree. It con-
nects two nodes of the triangle spanning tree and one of these
nodes will be an ancestor of the other. Keeler and Westbook
declare the ancestor node to have a missing child where this
dual edge connects (illustrated by a red dot in the figure)
and attach a leaf node to where this edge connects at the
other end (illustrated by a green dot). The resulting tree has
only five different types of non-leaf nodes and is encoded
through a pre-order traversal that maps them to different bit-
codes. The type of a non-leaf depends on its parenthood. A
non-leaf node can either have:

1. two non-leaf children (S).
2. a non-leaf left child and a missing right child (C).
3. a non-leaf left child and a leaf right child (L).
4. a leaf left child and a non-leaf right child (R).
5. two leaf children (E).

As indicated, these nodes are identical to the five cases dis-
tinguished in the Edgebreaker encoding. Keller and West-
brook observe that half of all nodes will have leaves, mean-
ing will be of type L, R, and E. They devise a mapping
from node types to bit codes that represents C as 00, S as
01 and either of L, R, or E with 1. To that encoding they ap-
pend a bitstring that distinguishes between L, R, and E using
log2(3) bits each. The total results in the reported bitrate of
4.6 bpv. Would the authors have instead noticed that half of
all nodes have a missing child, meaning are of type 2, they
could have easily formulated the more efficient 4 bpv encod-
ing that was therefore not discovered until Rossingac’s much
more elegant formulation of this algorithm termed Edge-
breaker 44.

Isenburg and Snoeyink / Graph Coding and Connectivity Compression 5

T T R T R

C R R

V5 -- --

focus

processed region

unprocessed region

boundary

boundary slots
focus

(widened)

processed region

unprocessed region

boundary

free
edge

free
face

free
vertex

focus

start slot

end slot

Figure 3: The three different approaches to
connectivity coding by region growing: edge-
based (top), face-based (middle), and vertex-
based (bottom). Every iteration of the edge-
based coder processes the free edge and de-
scribes its adjacency relation to the active
boundary. Similarly every iteration of the
face-based coder processes the free face and
describes the adjacency relation. For both
coders these descriptions specify how the ac-
tive boundary is updated. When the vertex-
based coder processes a face, it only needs to
describe what happens at the free vertex of this
face to specify the boundary update.

5. Compressing Mesh Connectivity

Taubin and Rossignac 52 introduced these graph coding tech-
niques to the graphics community for compressing triangle
meshes. Like Turan they encode triangular connectivity us-
ing a pair of spanning trees, but unlike Turan they code the
two trees seperately. When using run-length coding, this re-
sults in bit-rates of around 4 bpv in practice but leads to no
guaranteed bounds. Rossignac 43 later pointed out that using
a standard 2 bit per node encoding for each of the two trees
also guarantees a 6 bpv bound. Most importantly, their work
showed how to integrate topological surgery into the encod-
ing process for dealing with non-planar connectivity graphs.
This is done by identifying pairs of triangles in the triangle
spanning tree that are glued together to recreate a handle,
which can always be done with O(log2(v)) bits per handle.
Since most meshes have only a small number of handles, no
efforts have been directed at establishing tighter bounds.

Recently proposed encoding schemes 53, 16, 40, 44, 24 do not
explicitly construct the two spanning trees. Instead they tra-
verse the connectivity graph using a region growing ap-
proach during which they produce a symbol stream that im-
plicitely encodes both trees in an interleaved fashion.

These schemes maintain a set of boundary loops that sep-
arate a single processed region from all unprocessed regions.
The edges and vertices on the boundary are called boundary
edges and boundary vertices and they are considered visited.
Each boundary encloses an region containing unprocessed
edges, faces, and vertices. If the connectivity graph has han-
dles, these boundaries can be nested, in which case an unpro-
cessed region is enclosed by more than one boundary. Each
boundary has a distinguished edge or vertex called the focus.
These algorithms work on the focus of the active boundary,
while all other boundaries are kept in a stack.

At each step, these algorithms describe how the unpro-
cessed mesh element at the focus is adjacent to the active
boundary. Depending on the graph elements that the de-
scription of this update can be thought of as being associ-
ated with, these schemes have been classified as edge-based,
face-based, and vertex-based. Only for a non-zero genus
connectivity there will be one situation per handle in which
this description involves a boundary from the stack.

Face-based schemes 16, 44 describe all boundary updates
per face. The boundaries are loops of edges that separate
the region of processed faces from the rest. Each iteration
grows the processed region by the face adjacent to the focus
of the active boundary. It is adjacent to the active bound-
ary in one of five ways. Edgebreaker 44 describes the bound-
ary updates corresponding to these five configurations using
the symbols C, R, L, S, or E. The Cut-Border Machine 16

associates an additional split offset with each S that—from
a coding point of view—is redundant but allows streaming
compression and decompression. A number of guaranteed
worst-case bounds for coding triangular connectivity have
been established based on Edgebreaker’s CLERS 34, 48, 15.

Edge-based schemes 40, 24 describe all boundary updates
per edge. The boundaries are loops of half-edges that sepa-
rate the region of processed edges from the rest. Each itera-
tion grows the processed region by the edge adjacent to the
focus of the active boundary. It is either adjacent to an unpro-
cessed triangle or to the active boundary in one of four dif-
ferent ways. Face Fixer 18, 24 describes the boundary updates
corresponding to these five configurations using the symbols
T , R, L, S, or E. The Dual Graph method 39 does the same
but associates an additional split offset with each symbol that
represents a distance in number of edges along the boundary.

Vertex-based schemes 53 describe all boundary updates
per vertex. The boundaries are loops of edges that separate

6 Isenburg and Snoeyink / Graph Coding and Connectivity Compression

C

sym #

v-3

v-2

4v-9 bits

code

1

0L E
R S

x x

+

–

–

–

–

–

–

–

+–
–

–

+

+

+

+

+

+
+ +

CCC +

R
C

C

R
C

C R

S

C

L

R

R

R

E

E

–

C

7

11

2

410

5

6

12

7

4

11

10

5

6

68

3

1

1

9

1

8

start

12
3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

1819

+

–

–

–

–

–

–

–
+

–
–

–

+

+

+

+

+

+
+ +

+

–

TTT

T
R

T

T
T

R
T

T

T

R

T

T T
T R

T
R

L

T
T

T

R

T

R

L

7

11

2

410

5

6

12

7

4

11

10

5

6

68

3

1

1

9

1

8

123

4

56

7

8 9

10

11

12

13

14

15
16

17

18
19

20

21

22

23

24

25

26

27

28

29

30

T

sym #

2v-5

v-1

5v-8 bits

code

1

0L E
R S

x x

1 2

3

7

4

6

8

9 5

3

3

3

1

3

4

5

6

7

8

9
10

11

12

2

start
1

2
3

4

5

67

8

9
12

17

11

10

18

13
14

15

19

16

5

9

13

17
19

21
22

1

2
3

4

6

7

8

10

11
12 14

15

16 18
20

23
24

25
27

26

28
29

30

E

R

start

Figure 4: The Edgebreaker 44 (left) and the Face Fixer 24 (right) algorithms traverse mesh triangles in the same depth-first
order thereby constructing the same two spanning trees (middle). Because of their deterministic construction the labeling of
these spanning trees can be compressed more efficiently than Turan’s generic trees.

the region of processed faces from the rest. Furthermore,
they store for every boundary vertex the number of free de-
grees or slots, which are unprocessed edges incident to the
respective vertex. Each iteration grows the processed region
by the face adjacent to the widened focus of the active bound-
ary. The focus often needs to be widened such that there is a
start slot and an end slot for the face. Only if the processed
face has a free vertex that is not part of the widened focus,
the boundary update needs to be described. Two scenarios
are possible: either the free vertex has not been visited, in
which case its degree is recorded, or is has been visited, in
which case a distance in slots along the active boundary is
recorded and the active boundary is split.

A important classification for practical purposes is
whether an encoding allows a one-pass replay of the encod-
ing process during decoding or whether it performs multi-
pass decompression. We return to that in the last section.

Now we want to focus our attention on Figure 4. Just
like Turan’s original method both Edgebreaker 44, a face-
based scheme that does not use offsets, and Face Fixer 24, an
edge-based scheme that does not use offsets, label the two
spanning trees. They manage to do so using fewer bits be-
cause they use spanning trees with certain properties (e.g.
that are result of systematically traversing the graph in a
depth-first manner). The same can be said about Keeler and
Westbrook’s method 31 since the symbols it produces have
the same meaning as those produced by Edgebreaker.

Each Edgebreaker label C corresponds to a “+” and marks
an edge of the triangle spanning tree. Labels R and L corre-
spond to a “–” and mark an edge of the triangle spanning
tree. S marks two edges of the triangle spanning tree and E
corresponds to two “–”. Marking the edges of the triangle

spanning tree may be thought of corresponding to either an
opening or a closing bracket. There are two reason why the
Edgebreaker labels allow a tighter bound on the code size
than the Turan symbols: First, each of the five labels encodes
a pair of Turan symbols, which—encoded independently—
could form nine different combinations. Second, each C la-
bel pairs a “+” symbol with a bracket, which means that half
of all labels are of type C. Note that the up and down labels
“+” and “–” around the vertex spanning tree correspond ex-
actly to the zip-directions used in the Wrap&Zip decoding
method for Edgebreaker 45

Each Face Fixer label T marks an edge of the triangle
spanning tree. Again, marking the edges of the triangle span-
ning tree may be thought of corresponding to either an open-
ing or a closing bracket. Note that the original paper 24 uses
labels F3, F4, F5, ... in place of the T labels we use here. We
follow the notation from 18 and write T instead of F3 because
all our faces are triangles. Labels R, L, S, and E correspond
to nested pairs of symbols “+” and “–”. The reason that the
Face Fixer labels allow a tighter bound on the code size than
the Turan symbols is that pairs of “+” and “–” can be en-
coded with 3 bits whereas encoding them independently re-
quires two bits per symbols or 4 bits per pair.

6. Optimal coding of planar graphs

The field of graph theory has recently seen new efforts
towards optimal coding of planar graphs 17, 7. All these
schemes make use of specially ordered spanning trees in-
spired by the work of Schnyder 47. Poulahon and Schaef-
fer 42 finally show that a particular Schnyder decomposition
of a triangulation into three spanning trees can be used for
optimal coding.

Isenburg and Snoeyink / Graph Coding and Connectivity Compression 7

–

7

2

1

4

5

6

3

7

8

9

10

11

12

13
14

15

17

16

+
+

+

–

+

+

+

–

+
– –

–

–

+

+

–

–

–

–

+
+ start

8

7
5

6

1

3

1

6

9

11
9

6

5

12

10

12

5

7

4

2

4

6

18

19

20

l2

v1

v2

v1

v0

v0

sym #

v-1+
– v-1

2v-5

~ 3.24…bpv

code

1
0
0

start

4

7

2

12
1

3

5

6

8

9
10

11

1

2

3

4

56

7

8

9

10

11

12

1314

15

16

17

18

19

v1 v2

v0

l2

Figure 5: Poulahon and Schaeffer construct a very particular vertex spanning tree. It has the property that when we walk
around it we cross at each node exactly two triangle spanning tree edges for the second time. The visualization on the right
shows that this corresponds to a Turan-style labeling that uses closing brackets. Note that the original algorithm 42 walks the
opposite direction which corresponds to the use of opening brackets.

Starting from a triangulation with an embedded maximal
realizer † Poulahon and Schaeffer construct a very particu-
lar vertex spanning tree that is shown in Figure 5. This ver-
tex spanning tree has the property that a counterclockwise
walk that starts at the root crosses at each node (but the first
three) exactly two non-spanning tree edges for the second
time. The original algorithm suggests to walk in clockwise
direction with the similar result that at each node (but the
first three) exactly two non-spanning tree edges are crossed
for the first time.

The right illustration in Figure 5 shows that this corre-
sponds to a Turan-style labeling that uses only closing brack-
ets (or only opening brackets when using the walk direction
employed in the original algorithm). The reason that Poula-
hon and Schaeffer’s encoding gives a tighter bound on the
code size than the Turan symbols is that they manage to get
away using just a single bit for each symbol “+”, “–”, “)”.
This is because their algorithm knows that in this particular
spanning tree, the first and the second occurance of a zero
bit at a node corresponds to a closing bracket, whereas the
third zero bit must signal the “–”. Therefore the one bit can
be reserved to express the “–” symbols.

The resulting bit string contains 4n bits of which n bits
are ones while the the remaining 3n bits are zero. There
are 4novern different such strings and they can be encoded
in linear time into a representation that uses only 246n/27
or 3.24n bits 5. This coincides with the optimal worst-case

† An intuitive algorithm for constructing the maximal realizer of a
triangulation is described in Enno Brehm’s Diploma Thesis 6.

bounds for encoding planar triangulation that can be derived
from Tutte’s enumeration work 55. Hence, because Poulahon
and Schaeffer’s choice in vertex spanning tree is even more
particular than that of Edgebreaker or Face Fixer, they are
able to improve the worst-case bound for the code-size to
the optimum of 3.24 bpv.

7. Coding with Vertex Degrees

In this section we investigate how the vertex-based coding
scheme by Touma and Gotsman 53 fits into all this. This is
especially interesting given recent claims that valence cod-
ing is optimal—at least under the assumption that some part
of the code, namely the split operations and their associ-
ated offsets, have no significant impact on the total code
size. If no splits occur, the encoding is merely a sequence
containing the degree of every vertex. A result by Alliez
and Desbrun 2 gave reason to believe that the entropy of
this sequence asymptotically approaches the number of bits
needed to encode an arbitrary triangulated planar graph as
found by Tutte’s enumeration 55. However, while it is possi-
ble to significantly reduce the number of splits using some
sophisticated region growing strategies 2, 19, it was shown
that these types of heuristics cannot guarantee to avoid splits
completely 19. Further evidence that a significant amount of
information is captured in the split operations is due to Gots-
man 11. He shows that the average entropy of the distribution
of vertex degrees is strictly less than what is required to en-
code all possible triangulations and concludes that “Apart
from the sequence of vertex degrees, another essential piece
of information is needed.” Since there is no upper bound on
the size of this extra piece of information, his result implies

8 Isenburg and Snoeyink / Graph Coding and Connectivity Compression

+

–

–

–

–

–

–

–
+–

–
–

+

+

+

+

+

+
+ +

+

5

–

5
654

5

8

5

5

4
S4

3

4

start

7

4

5

6

12

7

4

11

10

5

6

68

3

1

1

9

1

8

2

11
10 discover

new vertices

complete
old vertices

restart

discover
new vertices

complete
old vertices

1 2

3

7

4

6

8

9 5

3

3

3

1

3

4

7

8

9
12

2

start

11

5

10

S4

6

discover
new vertices

complete
old vertices

restart

Figure 6: The TG coder encodes triangulated graphs by writing down the vertex degrees along a spiraling vertex spanning tree.

that “the question of optimality of valence-based connectiv-
ity coding is still open.”.

For several years it has been speculated whether it is pos-
sible to modify the TG coder to operate without using ex-
plicit split offsets. This comes from the observation that
the Cut-border machine 16 essentially operates like Edge-
breaker 44 with the difference that an explicit offset is stored
with each split label. Similarly, the Dual Graph method 39

operates like Face Fixer 44 but also stores explicit split off-
sets. In both cases the offsets seem redundant because they
could easily be pre-computed during an initial pass over the
label sequence. The offsets used by the TG coder however
do not seem to have this quality. There is no obvious way
of precomputing them with an initial pass over the degree
sequence.

First of all, it should be noted that the split offsets of the
Cut-border machine 16 and the Dual Graph method 39 can
only be precomputed if these coders perform a recursive,
depth-first traversal. This means that after a split they must
first complete one boundary loop in its entirety before con-
tinuing on the other part. Should the coders use a different
traversal their offsets cannot be precomputed. This suggests
that in order for a degree-based coder to avoid split symbols
it must operate in a depth-first manner. Similarly, the fact that
Edgebreaker 44 and Face Fixer 44 both have reverse decoding
schemes 25 that can reconstruct the connectivity in a single
pass suggests that this offset-free degree coder will also al-
low reverse decoding. This is essentially the same argument
since the reverse decoder implicitely computes these offsets.

Furthermore, the explicit split offsets of the TG coder
seem to have a different quality than those of the Cut-border
machine or the Dual Graph method. Despite explicit offsets,
the Cut-border machine and the Dual Graph method still

need explicit end symbols. The TG coder, however, does not
need any end symbols. The end of a boundary loop can be
detected as the moment in which there are no more slots on
the boundary. Buth these end symbols are crucial for both
precomputing split offsets as well as for decoding in reverse.
This suggests that a degree-based encoding without offsets
will at least need to use end symbols.

In Figure 6 we illustrate that the TG coder can also be
thought of encoding a planar graph through an interleaved
labeling of both spanning trees a la Turan. Already here we
want to point out that the TG coder does significant more
bookkeeping than other schemes, which makes it somewhat
more complicated to show how its symbols map to an inter-
leaved spanning tree labelling. The TG coder records vertex
degrees along a spiraling vertex spanning tree that is con-
structed by a same depth-first traversal. But it does not im-
mediately encode the occurance of a branch in the vertex
tree. Instead it waits until the spiraling traversal requires di-
rection because the determinitic rule of choosing the next
vertex picked a previously seen vertex that is already part of
the vertex tree. If this happens it a special split symbols is
output instead of a vertex degree. Associated with this is an
offset that descibes how to reach that previously seen vertex
by traversing along the unused slots along the boundary.

In may cases these splits are exactly the same as those
occuring in Edgebreaker. However, not for every situation
where Edgebreaker produces an S symbol will the TG coder
run into a split ... only for those S symbols that result in two
regions containing unprocessed vertices. The reason for this
is that Edgebreaker leaves warts on the compression bound-
ary that eventually lead to additional splits. If a boundary
vertex has only one unprocessed triangle and this triangle in
not adjacent to the gate then this triangle is a wart 28.

Isenburg and Snoeyink / Graph Coding and Connectivity Compression 9

8. Streamable Coding Schemes

Traditionally, research in connectivity coding has aimed at
objectives ranging from optimal code size 42, algorithmic
simplicity 9, 46, linear decoding times 45, 25, to lowest pub-
lished bit-rate on commonly used example models 48, 2

Little attention was given to (a) whether the compres-
sion and/or the decompression algorithms can operate in
a streaming manner and (b) whether the layout of a de-
compressed mesh is coherent. However, with the arrivial of
gigabyte-sized data sets 38, 4 this has become a new design
criteria.

Current coding schemes do not preserve the vertex and tri-
angle ordering of an indexed mesh since they store only an
unlabeled connectivity graph. The layout of the compressed
mesh is dictated by the compression scheme used. Although
compressing an initially incoherent mesh will usually im-
prove its coherence, traversal heuristics really aim at lower-
ing the bit-rates with good layouts being coincidental and not
part of the design. On the contrary, the classic stack-based
approaches 53, 44, 24 systematically generate incoherent trian-
gle orderings.

Based on all we’ve learned so far we conjecture that (a)
optimal encodings are not streamable and (b) encodings that
avoid offsets necessarily result in uncoherent mesh layouts.
Conjecture (a) is the stronger of the two and requires more
investigation—especially a clear definition of what we mean
with an encoding is streamable. The intuition behind conjec-
ture (b) is that approached that avoid offsets have to perform
a spanning tree traversal from which these offsets can be de-
rived. These traversals cannot operate in a breadth first man-
ner as this requires a priori knowledge about the branching
structure of the tree, which has yet to be derived. The fi-
nal version of the paper will elaborate on this part but more
thinking is required.

Acknowledgements

Special thanks go to the Committee for Graduate Studies for
making me put together this integrative paper. Without the
constant pressure for fulfillment of this requirement I might
have never gone to the library to look up those old refer-
ences 29, 54 that really helped me understand how all these
encoding schemes relate.

References

1. P. Alliez and M. Desbrun. Progressive encoding for lossless
transmission of 3D meshes. In SIGGRAPH’01 Conference
Proceedings, pages 198–205, 2001. 2

2. P. Alliez and M. Desbrun. Valence-driven connectivity encod-
ing for 3D meshes. In Eurographics’01 Conference Proceed-
ings, pages 480–489, 2001. 1, 2, 7, 9

3. C. Bajaj, V. Pascucci, and G. Zhuang. Single resolution com-
pression of arbitrary triangular meshes with properties. In

Data Compression Conference’99 Conference Proceedings,
pages 247–256, 1999. 1, 2

4. F. Bernardini, I. Martin, J. Mittleman, H. Rushmeier, and
G. Taubin. Building a digital model of michelangelo’s flo-
rentine pieta. IEEE Computer Graphics and Applications,
22(1):59–67, 2002. 9

5. N. Bonichon, C. Gavoille, and N. Hanusse. An information-
theoretic upper bound of planar graphs using triangulations. In
STACS, 2003. 7

6. E. Brehm. 3-orientations and schnyder 3-tree-decompositions.
Technical Report Diploma Thesis, Freie Universität Berlin,
2000. 7

7. Y.-T. Chiang, C.-C. Lin, and H.-I Lu. Orderly spanning trees
with applications to graph encoding and graph drawing. In
Symposium on Discrete Algorithms (SODA), pages 506–515,
2001. 6

8. D. Cohen-Or, D. Levin, and O. Remez. Progressive compres-
sion of arbitrary triangular meshes. In Visualization’99 Con-
ference Proceedings, pages 67–72, 1999. 2

9. L. de Floriani, P. Magillo, and E. Puppo. A simple and efficient
sequential encoding for triangle meshes. In Proceedings of
15th European Workshop on Computational Geometry, pages
129–133, 1999. 9

10. M. Deering. Geometry compression. In SIGGRAPH’95 Con-
ference Proceedings, pages 13–20, 1995. 1, 2

11. C. Gotsman. On the optimality of valence-based connectivity
coding. Computer Graphics Forum, 22(1):99–102, 2003. 2, 7

12. X. Gu, S. Gortler, and H. Hoppe. Geometry images. In SIG-
GRAPH’02 Conference Proceedings, pages 355–361, 2002. 2

13. A. Guéziec, F. Bossen, G. Taubin, and C. Silva. Efficient
compression of non-manifold polygonal meshes. In Visual-
ization’99 Conference Proceedings, pages 73–80, 1999. 3

14. A. Guéziec, G. Taubin, F. Lazarus, and W. Horn. Converting
sets of polygons to manifold surfaces by cutting and stitching.
In Visualization’98 Conference Proceedings, pages 383–390,
1998. 3

15. S. Gumhold. New bounds on the encoding of planar trian-
gulations. Technical Report WSI–2000–1, Wilhelm-Schikard-
Institut für Informatik, Tübingen, mar 2000. 5

16. S. Gumhold and W. Strasser. Real time compression of tri-
angle mesh connectivity. In SIGGRAPH’98 Conference Pro-
ceedings, pages 133–140, 1998. 1, 2, 5, 8

17. X. He, M.-Y. Kao, and H. Lu. Linear-time succint encodings
of planar graphs via canonical orderings. Discrete Applied
Mathematics, 12(3):317–325, 1999. 2, 6

18. M. Isenburg. Triangle Fixer: Edge-based connectivity com-
pression. In Proceedings of 16th European Workshop on Com-
putational Geometry, pages 18–23, 2000. 2, 5, 6

19. M. Isenburg. Compressing polygon mesh connectivity with
degree duality prediction. In Graphics Interface’02 Confer-
ence Proceedings, pages 161–170, 2002. 1, 2, 3, 7

10 Isenburg and Snoeyink / Graph Coding and Connectivity Compression

20. M. Isenburg and P. Alliez. Compressing polygon mesh geom-
etry with parallelogram prediction. In Visualization’02 Con-
ference Proceedings, pages 141–146, 2002. 1

21. M. Isenburg and S. Gumhold. Out-of-core compression for
gigantic polygon meshes. In SIGGRAPH’03 Conference Pro-
ceedings, 2003. to appear. 2, 3

22. M. Isenburg and P. Lindstrom. Streaming meshes. In submit-
ted for publication, 2004. 2

23. M. Isenburg and J. Snoeyink. Mesh collapse compression.
In Proceedings of SIBGRAPI’99 - 12th Brazilian Symposium
on Computer Graphics and Image Processing, pages 27–28,
1999. 1, 2

24. M. Isenburg and J. Snoeyink. Face Fixer: Compressing poly-
gon meshes with properties. In SIGGRAPH’00 Conference
Proceedings, pages 263–270, 2000. 1, 2, 5, 6, 9

25. M. Isenburg and J. Snoeyink. Spirale reversi: Reverse de-
coding of the Edgebreaker encoding. In Proceedings of 12th
Canadian Conference on Computational Geometry, pages
247–256, 2000. 2, 8, 9

26. M. Isenburg and J. Snoeyink. Compressing the property map-
ping of polygon meshes. In Pacific Graphics’01 Conference
Proceedings, pages 4–11, 2001. 1

27. M. Isenburg and J. Snoeyink. Compressing texture coordinates
with selective linear predictions. In Proceedings of Computer
Graphics International’03, pages 126–131, 2003. 1

28. M. Isenburg and J. Snoeyink. Early-split coding of triangle
mesh connectivity. pages 1–10, 2004. manuscript. 8

29. A. Itai and M. Rodeh. Representation of graphs. Acta Infor-
matica, 17:215–219, 1982. 3, 9

30. Z. Karni and C. Gotsman. Spectral compression of mesh ge-
ometry. In SIGGRAPH’00 Conference Proceedings, pages
279–286, 2000. 1

31. K. Keeler and J. Westbrook. Short encodings of planar graphs
and maps. In Discrete Applied Mathematics, pages 239–252,
1995. 1, 2, 4, 6

32. A. Khodakovsky, P. Alliez, M. Desbrun, and P. Schroeder.
Near-optimal connectivity encoding of 2-manifold polygon
meshes. Graphical Models, 64(3-4):147–168, 2002. 1, 2

33. A. Khodakovsky, P. Schroeder, and W. Sweldens. Progressive
geometry compression. In SIGGRAPH’00 Conference Pro-
ceedings, pages 271–278, 2000. 2

34. D. King and J. Rossignac. Guaranteed 3.67v bit encoding of
planar triangle graphs. In Proceedings of 11th Canadian Con-
ference on Computational Geometry, pages 146–149, 1999. 2,
5

35. D. King, J. Rossignac, and A. Szymczak. Connectivity com-
pression for irregular quadrilateral meshes. Technical Report
TR–99–36, GVU Center, Georgia Tech, November 1999. 1,
2

36. B. Kronrod and C. Gotsman. Efficient coding of non-
triangular meshes. In Proceedings of Pacific Graphics, pages
235–242, 2000. 1, 2

37. H. Lee, P. Alliez, and M. Desbrun. Angle-analyzer: A triangle-
quad mesh codec. In Eurographics’02 Conference Proceed-
ings, pages 198–205, 2002. 1

38. M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller,
L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg,
J. Shade, and D. Fulk. The digital michelangelo project.
In SIGGRAPH’00 Conference Proceedings, pages 131–144,
2000. 9

39. J. Li and C. C. Kuo. A dual graph approach to 3D triangular
mesh compression. In Proceedings of ICIP’98, pages 891–
894, 1998. 2, 5, 8

40. J. Li, C. C. Kuo, and H. Chen. Mesh connectivity coding by
dual graph approach. Technical report, March 1998. 1, 2, 5

41. R. Pajarola and J. Rossignac. Compressed progressive meshes.
IEEE Transactions on Visualization and Computer Graphics,
6(1):79–93, 2000. 2

42. D. Poulalhon and G. Schaeffer. Optimal coding and sampling
of triangulations. In 30th International Colloquium on Au-
tomata, Languages and Programming (ICALP), pages 1080–
1094, 2003. 2, 6, 7, 9

43. J. Rossignac. Just-in-time upgrades for triangle meshes. In
3D Geometry Compression, Course Notes 21, SIGGRAPH’98,
pages 18–24, 1998. 5

44. J. Rossignac. Edgebreaker: Connectivity compression for tri-
angle meshes. IEEE Transactions on Visualization and Com-
puter Graphics, 5(1):47–61, 1999. 1, 2, 4, 5, 6, 8, 9

45. J. Rossignac and A. Szymczak. Wrap&zip: Linear decoding
of planar triangle graphs. The Journal of Computational Ge-
ometry, Theory and Applications, 1999. 2, 6, 9

46. A. Safonova, A. Szymczak, and J. Rossignac. 3d compression
made simple: Edgebreaker on a corner table. In Proceedings
of Shape Modeling International’01, pages 278–283, 2001. 9

47. W. Schnyder. Embedding planar graphs on the grid. In 1st
Symposium on Discrete Algorithms (SODA), pages 138–148,
1990. 6

48. A. Szymczak, D. King, and J. Rossignac. An Edgebreaker-
based efficient compression scheme for connectivity of regu-
lar meshes. In Proceedings of 12th Canadian Conference on
Computational Geometry, pages 257–264, 2000. 1, 2, 5, 9

49. A. Szymczak, J. Rossignac, and D. King. Piecewise regular
meshes: Construction and compression. Graphical Models,
64(3-4):183–198, 2002. 2

50. G. Taubin, A. Guéziec, W.P. Horn, and F. Lazarus. Progres-
sive forest split compression. In SIGGRAPH’98 Conference
Proceedings, pages 123–132, 1998. 2

51. G. Taubin, W.P. Horn, F. Lazarus, and J. Rossignac. Geometry
coding and VRML. Proceedings of the IEEE, 86(6):1228–
1243, 1998. 1

52. G. Taubin and J. Rossignac. Geometric compression
through topological surgery. ACM Transactions on Graphics,
17(2):84–115, 1998. 1, 2, 3, 5

53. C. Touma and C. Gotsman. Triangle mesh compression. In
Graphics Interface’98 Conference Proceedings, pages 26–34,
1998. 1, 2, 5, 7, 9

Isenburg and Snoeyink / Graph Coding and Connectivity Compression 11

54. G. Turan. Succinct representations of graphs. Discrete Applied
Mathematics, 8:289–294, 1984. 1, 2, 3, 9

55. W.T. Tutte. A census of planar triangulations. Canadian Jour-
nal of Mathematics, 14:21–38, 1962. 1, 2, 3, 7

56. W.T. Tutte. A census of planar maps. Canadian Journal of
Mathematics, 15:249–271, 1963. 3

