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Abstract
We present a simple linear time algorithm for decoding

Edgebreaker encoded triangle meshes in a single traversal.
The Edgebreaker encoding technique, introduced in [5], en-
codes the connectivity of triangle meshes homeomorphic to
a sphere with a guaranteed 2 bits per triangle or less. The en-
coding algorithm visits every triangle of the mesh in a depth-
first order. The original decoding algorithm [5] recreates the
triangles in the same order they have been visited by the en-
coding algorithm and exhibits a worst case time complex-
ity of O(n2). More recent work [6] uses the same traver-
sal order and improves the worst case to O(n). However,
for meshes with handles multiple traversals are needed dur-
ing both encoding and decoding. We introduce here a sim-
pler decoding technique that performs a single traversal and
recreates the triangles in reverse order.

Key words: Triangle mesh compression, Edgebreaker, con-
nectivity encoding, linear decoding.

1 Introduction

Efficiently encoding the connectivity of triangular meshes
has recently been the subject of intense study [8, 9, 5, 2, 3]
and many representations have been proposed. The sudden
interest in this area is fueled by the emerging demand for
transmitting 3D data sets over the Internet. Since transmis-
sion bandwidth is a scarce resource, compact encodings for
3D models are of great advantage.

The Edgebreaker encoding technique, introduced in [5],
encodes the connectivity of triangle meshes homeomorphic
to a sphere with a guaranteed 2 bits per triangle or less.
The encoding algorithm visits each triangle of the mesh in a
depth-first order using five different operations called C, L,
E, R, and S. Each triangle is labeled according to the opera-
tion that processes it. The resulting CLERS string is a com-
pact encoding of the connectivity of the mesh.

The original decoding algorithm [5] recreates the triangles
in the same order as they have been visited by the encoding
algorithm. This decoding algorithm has an asymptotic worst
case time complexity of O(n2). These costs are a result of
the look-ahead procedure that is necessary for decoding sub-
sequences in the CLERS sequence. These subsequences,
which are encapsulated by a S operation and a correspond-
ing E operation, reflect recursions in the Edgebreaker encod-
ing scheme. More recent work [6] eliminates the need for
this look-ahead procedure and improves the worst case time

complexity to O(n). However, this algorithm requires mul-
tiple traversals of the mesh triangles for meshes with handles
and an initial traversal of the CLERS string for meshes with
boundary.

We introduce here a simpler decoding technique which
recreates the triangles in reverse order. The CLERS se-
quence is processed backwards starting at the last label. This
completely eliminates the look-ahead procedure of [5] or the
zipping procedure of [6]. Following a suggestion by Jarek
Rossignac we call this decoding scheme Spirale Reversi.

In the next section we explain the Edgebreaker encod-
ing scheme. A detailed description of the algorithm can be
found in [5]. The original Edgebreaker decoding scheme is
covered in Section 3 and the Wrap&Zip decoding scheme
in Section 4. We introduce our Spirale Reversi decoding
scheme in Section 5. These sections describe encoding and
decoding only for simple meshes. We explain how the algo-
rithms generalize to meshes with boundary in Section 6, with
holes in Section 7 and with handles in Section 8.

2 Edgebreaker encoding

Before we describe the Edgebreaker encoding scheme, we
define what properties the input mesh is expected to have:

1. The mesh is a surface composed of topological triangles
(e.g. every face is bound by three edges).

2. The mesh has no boundary and no holes (e.g. every
edge is bound by two faces).

3. The mesh has no handles (e.g. the mesh is topologically
equivalent to a sphere).

4. The mesh is 2-manifold (e.g. the local surface around
every vertex is homeomorphic to a disk).

The Edgebreaker encoding process starts with a triangulated
mesh and produces a CLERS string. It visits every trian-
gle of the mesh by including it into an active boundary. Ini-
tially the active boundary is an arbitrary triangle of the mesh.
The encoding uses five different operations called C, L, E, R,
and S to include a triangle into the active boundary. Which
operation is chosen depends on how the respective triangle
is attached to the active boundary at the moment it is pro-
cessed. This expands (operation C), shrinks (operation R
and L), splits (operation S), or ends (operation E) the active
boundary. The CLERS string that describes the sequence of

Spirale Reversi, Isenburg, Snoeyink 1 appeared in CGTA’2001



Figure 1: The Edgebreaker encoding operations.

traversal operations is a compact encoding of the mesh con-
nectivity. Now the details:

The encoding process starts off with picking an arbitrary
triangle of the mesh as the initial active boundary. It has
three boundary edges, which are directed clockwise around
the triangle. The triangle itself is declared to be inside, the
remaining mesh to be outside of the boundary. One of the
three initial boundary edges is defined to be the gate of the
boundary. The gate is directed in the same way as the bound-
ary edges. The triangle right of the gate is inside, the triangle
left of the gate is outside of the boundary. The active gate is
the gate of the active boundary. The active triangle is the tri-
angle left of the active gate. An initially empty stack is used
to temporarily store boundaries.

With every operation of the encoding process the active
triangle moves from outside to inside of the active bound-
ary. A triangle that lies outside of some boundary is not yet
encoded. A triangle that lies inside of all boundaries is al-
ready encoded. This process terminates after t � 1 opera-
tions, with t being the number of mesh triangles. Each trian-
gle is included into the active boundary by one operation—
except the one that defines the initial active boundary.

Which operation is chosen to include the active triangle
depends on how it is attached to the active boundary (see
Figure 1). If its third vertex is not on the active boundary
then operation C is used. If its third vertex is the next bound-

ary vertex on the active boundary then operation R is used.
(Remember that the boundary edges are directed clockwise
around the inside.) If its third vertex is the previous bound-
ary vertex on the active boundary then operation L is used. If
its third vertex is some other boundary vertex on the active
boundary then operation S is used. If its third vertex is the
previous and the next boundary vertex on the active bound-
ary then operation E is used. This can only happen for an
active boundary of length three.

With each operation the active boundary and the active
gate are updated. These updates are as follows:

� The C operation inserts two and removes one boundary edge.
The old gate is the removed boundary edge, the new gate is
the inserted boundary edge right of the old gate.

� The R and L operation both insert one and remove two
boundary edges. The new gate is the inserted boundary edge,
the old gate is one of the removed boundary edges. The two
operations differ by whether the old gate is on the right (R) or
on the left (L) as seen from the new gate.

� The S operation splits the active boundary into two bound-
aries that share a vertex. It inserts two and removes one
boundary edge. Both inserted boundary edges become gates
for the boundary they belong to. The one left of the old gate is
pushed on the stack. The other becomes the active boundary.

� The E operation removes the last three boundary edges. If
the stack is empty the encoding process terminates, otherwise
it continues on a boundary popped from the stack.

The example in Figure 9 leads step by step through the fi-
nal twelve operations of Edgebreaker encoding a mesh.

For triangle meshes with v vertices and t triangles that are
homeomorphic to a sphere t equals 2v � 4. The traversal of
the mesh triangles reaches new vertices only with the C oper-
ation. Since there are two times more triangles than vertices,
half of all operations will be of type C. A straight-forward
compression scheme that codes a C operation with one bit
and the remaining four operations with three bits is guaran-
teed to use no more than 2t or 4v bits. More elaborate com-
pression schemes for the CLERS sequence guarantee even
lower bounds of 3:67v bits [4] or 3:55v bits [1].

3 Edgebreaker decoding

The Edgebreaker decoding process starts with a CLERS
string and produces a triangulated mesh. Two traversals of
the CLERS string are needed: A preprocessing phase that
computes offset values. And a generation phase that creates
the triangles in the order in which they were encoded by the
Edgebreaker encoding process.

The preprocessing phase computes an offset value for ev-
ery S operation. The Edgebreaker encoding uses the S op-
eration whenever the third vertex of the active triangle is a
vertex on the active boundary other than the previous or the
next. When the Edgebreaker decoding creates this triangle,
it needs to know which vertex on the active boundary to use
as the triangle’s third vertex. The offset value that is com-
puted in this preprocessing phase is the distance between the
active gate and this vertex along the active boundary.
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Figure 2: Computing the offset of each S operation during
the preprocessing phase of Edgebreaker decoding.

Figure 3: Using the offset of the S operation during the gen-
eration phase of Edgebreaker decoding.

The computation of these offset values is simple. The re-
sulting change in boundary length is added up for all opera-
tions following an S operation until and including its corre-
sponding E operation. Since pairs of S and E operations are
always nested, the offset values for all S operations can be
computed in a single traversal (see Figure 2).

The generation phase starts with creating the initial trian-
gle. The active boundary and the gate are identified and the
CLERS string is processed. What follows is an almost ex-
act replay of the encoding algorithm. With every operation
a new triangle is created and included into the active bound-
ary. The triangle is always attached to the left of the active
gate. Which vertex is used as the triangle’s third vertex de-
pends on the current operation. Only for the C operation a
new vertex is created. For all other operations a vertex from
the active boundary is used. For the R operation this is the
next and for the L operation the previous vertex on the active
boundary. For the S operation it is some other boundary ver-
tex. The precomputed offset value specifies its distance from
the active gate along the boundary. When the E operation
occurs, the active boundary consists of only three boundary
edges—leaving no choice for the third vertex.

The operations C, R, L, and E of Edgebreaker decoding
perform the same updates on boundary and gate as during
encoding (see Figure 1), only operation S is more complex
since it needs to use the precomputed offset (see Figure 3).

The example in Figure 10 leads step by step through the
final twelve operations of Edgebreaker decoding a mesh.

Although in practice only a small fraction of operations
are of type S, they imply an asymptotic worst case time com-
plexity of O(n2) for the Edgebreaker decoding, if the active
boundary is maintained in a linear data structure (such as a
double linked list). Each S operation requires a linear search
for the vertex specified by the offset. This cost may be re-
duced to O(n logn) if the active boundary is maintained in
a data structure with a logarithmic instead of a linear search
time. However, the more complex update operations of a
data structure with logarithmic search time (such as a bal-
anced binary tree) would increase the expected time com-
plexity from O(n) to O(n logn).

Figure 4: The Wrap&Zip decoding operations.

4 Wrap&Zip decoding

The Wrap&Zip decoding process starts with a CLERS string
and produces a triangulated mesh. Only one traversal of the
CLERS string is needed. It starts with creating three vertices
that form the initial triangle. The active boundary and the
gate are identified and the CLERS string is processed. What
follows is a modified replay of the encoding algorithm. With
every operation a new triangle is created. This triangle is al-
ways attached to the left of the active gate. But the decision
which vertex is the triangle’s third vertex is postponed for the
operations R, L, S, and E. Only for the C operation a newly
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Figure 5: Single zipping after an L operation (top) and recursive zipping after an E operation (bottom).

created vertex is used. This is the wrapping part—during the
zipping part the unlabeled vertices will eventually be identi-
fied with a previously created vertex.

All boundary edges except for the gate have an additional
zip direction assigned that depends on the operation that cre-
ated them. Which operation assigns which zip direction to
which edge is shown in Figure 4. Each time the zip direc-
tions of two adjacent boundary edges point to a common ver-
tex, they are zipped together by identifying their other ends.
This zipping continues recursively if the resulting vertex ex-
hibits the same property. Whether a zip is necessary needs
only to be checked after L and E operations. No immediate
zipping is possible after C, R, and S operations. A zip after
an L operation never starts recursive zipping, whereas a zip
after an E operation always does. In Figure 5 we illustrate
single zipping after an L operation and recursive zipping af-
ter an E operation.

The example in Figure 11 leads step by step through the
final twelve operations of Wrap&Zip decoding a mesh.

The wrapping and zipping technique improves on the
worst case time complexity of the Edgebreaker decoding as
it avoids the vertex search for the S operation. It can be
shown that the number of zip operations equals the num-
ber of edges in the vertex-spanning tree. Therefore the
Wrap&Zip decoding algorithm has linear time complexity.

5 Spirale Reversi decoding

The Spirale Reversi decoding process starts with a CLERS
string and produces a triangulated mesh. Only one reverse
traversal of the CLERS string is needed. This completely
eliminates any overhead involved with the S and E operation
pairs. It can be seen as a step by step reversal of the Edge-
breaker encoding process.

The Spirale Reversi decoding scheme uses similar bound-
ary definitions as the Edgebreaker encoding scheme. It starts
with creating a triangle with three unlabeled vertices as the
initial boundary. The boundary edges are directed coun-
terclockwise around this triangle, which is declared to be
outside of the boundary. One of the three boundary edges
is picked as the initial active gate. Inside of the boundary
is right of the gate, outside of the boundary is left of the
gate. The Edgebreaker encoding was growing the inside un-
til there was no unencoded triangle left outside. The Spi-
rale Reversi decoding, however, is growing the outside until
there is no undecoded triangle left inside. This reflects the
reverseness of the Spirale Reversi decoding.

With every operation of the Spirale Reversi decoding
scheme the triangle left of the active gate moves from inside
to outside of the active boundary. A triangle that lies out-
side of some boundary is already decoded. A triangle that
lies inside of all boundaries is not yet decoded. The CLERS
sequence is processed in reverse order. Depending on the
operation the active boundary is shrunk (operation C), is ex-
panded (operation R and L), is merged with a stack boundary
(operation S), or is created new (operation E).

Reversing the encoding algorithm works as follows: Each
operation creates a new triangle. For operations C, R, L,
and S this triangle is attached to the right of the active gate.
Which vertex is used as the triangle’s third vertex depends
on the operation (see Figure 6). For the C operation it is the
previous vertex along the active boundary. The R and the L
operation use a new unlabeled vertex. For the S operation a
vertex from a boundary popped from the stack is used. More
exactly it is the vertex at the origin of this boundary’s gate.
Simultaneously the vertex at the destination of this gate and
the vertex at the origin of the active gate are identified. For
operation E a new triangle with three unlabeled vertices is
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Figure 6: The Spirale Reversi decoding operations.

created that is not attached to anything previously decoded.
The updates of the boundary and the gate are as follows:

� The C operation removes two and inserts one boundary edge.
The new gate is the inserted boundary edge, the old gate is the
removed boundary edge right of the new gate.

� The R and L operation both remove one and insert two
boundary edges. The old gate is the removed boundary edge,
the new gate is one of the inserted boundary edges. The two
operations differ by whether the new gate is on the right (R)
or on the left (L) as seen from the old gate.

� The S operation merges the active boundary with a boundary
that is popped from the stack, thereby identifing one of their
vertices. This removes two and inserts one boundary edge.
Both removed boundary edges are old gates of the respective
boundary. The new gate is the inserted boundary edge.

� The E operation creates a new active boundary with three
boundary edges, one of which is the new gate. The current
active boundary is pushed on the stack.

The example in Figure 12 leads step by step through the
first twelve operations of Spirale Reversi decoding a mesh.

We use a half-edge structure to store the mesh connectiv-
ity and to maintain the boundaries during decoding. Besides
pointers to the origin, the next half-edge, and the inverse
half-edge, we have two pointers to reference a next and a pre-
vious boundary edge. This way we organize all half-edges
of the same boundary into a cyclic double linked list. Since

each operation performs only a constant number of pointer
updates, Spirale Reversi decodes the triangle mesh connec-
tivity in linear time.

6 Encoding meshes with boundary

A triangle mesh with a single hole is often refered to as a
mesh with boundary. A small variation makes Edgebreaker
capable of encoding meshes with a single hole: Instead of
the loop of edges around a mesh triangle we use the loop of
edges around the hole as the initial active boundary. An ar-
bitrary edge from this boundary is declared to be the initial
active gate and encoding proceeds as before.

Both the Edgebreaker decoding and the Wrap&Zip de-
coding need additional information to decode a mesh with
boundary. They need to know the length of the initial active
boundary (e.g. the size of the hole). This can be precom-
puted during an initial traversal of the CLERS string. The
Spirale Reversi decoding needs no additional information.
After decoding the last label of the reversed CLERS string,
the active boundary loops around the hole.

Figure 7: Encoding and decoding of a hole with Edgebreaker
(top) and Spirale Reversi (bottom) respectively.

7 Encoding meshes with holes

For every additional hole the Edgebreaker encoding runs
into a situation in which the third vertex of the active triangle
lies on the boundary of a hole. For this scenario the M op-
eration was introduced. The active boundary is merged with
the boundary of the hole by opening and joining both loops
at their common vertex as depicted in Figure 7. The label M
and the size of the hole (e.g. the number of vertices/edges
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around the hole) are recorded.
The decoding of a hole is straight-forward for all three

decoding algorithms. For Spirale Reversi decoding the size
value associated with label M specifies how much of the ac-
tive boundary needs to be pinched off to recreate the hole.

8 Encoding meshes with handles

For every mesh handle the Edgebreaker encoding runs even-
tually into a situation in which the third vertex of the ac-
tive triangle is not on the active boundary, but on some other
boundary in the stack. For this scenario the M’ operation
was introduced. The two boundaries are merged by opening
and joining them at their common vertex as shown in Fig-
ure 8. The encountered boundary is removed from the stack
and three integer values are recorded: The former stack posi-
tion index of the removed boundary. The counterclockwise
distance offset1 from the common vertex to the gate of the
encountered boundary and the distance offset2 back to the
common vertex. We changed the original Edgebreaker en-
coding by the last integer—this allows us to decode a mesh
with handles in a single traversal of the CLERS string.

The original Edgebreaker decoding uses the three inte-
gers associated with the M’ operation to replay the situa-
tion encountered during the encoding. The decoding cost per
M’ operation is O(n). Neither Wrap&Zip nor Spirale Re-
versi decoding aim at improving its time complexity. The
number of M’ operations is bound by the genus of the mesh
and generally small. Decoding meshes with handles using
Wrap&Zip requires a modified Edgebreaker encoding that
performs three instead of one traversal of the mesh triangles.
For details we refer to the original reference [6].

The Spirale Reversi decoding of a handle follows the con-
cept of reversing the encoding operation M’. The two off-
sets specify how much of the active boundary is pinched off
and which boundary edge is used as the gate of the result-
ing boundary. The index specifies the position at which this
boundary is inserted into the stack.

9 Discussion and Acknowledgments

We presented a simple linear time algorithm for decoding
Edgebreaker encoded triangle meshes. The concept of re-
versing the encoding process allows to decode a mesh with
a single traversal of the CLERS string. For simple meshes
our scheme eliminates the need for the look-ahead proce-
dure used by the original Edgebreaker decoding [5] and the
zipping procedure used by the Wrap&Zip decoding [6]. For
meshes with boundary and/or handles our scheme eliminates
the need for multiple traversals of the CLERS string and/or
the mesh triangles.

Previously suggested compression schemes for mapping
the CLERS string into a compact bit-stream store the labels
in forward order [6, 4, 1]. Then Spirale Reversi would need
to reverse the CLERS string first. However, the order-n en-
tropy of the labels is about the same in both directions. This
means that, for example, an arithmetic coder compresses the

Figure 8: Encoding and decoding of a handle with Edge-
breaker (top) and Spirale Reversi (bottom) respectively.

reversed CLERS string just as compact as the unreversed
one. Furthermore, for triangle meshes containing mainly
vertices of degree six recent work by Szymczak et al. [7] ex-
ploits the reverseness of Spirale Reversi for efficient predic-
tive compression of the labels.

The first author thanks Davis King for explaining the de-
tails of Edgebreaker during the pool session at SCG 99, Mi-
ami Beach, Florida and Jarek Rossignac for suggesting the
name Spirale Reversi. This work has been supported by
NSERC, IRIS, and a UBC Graduate Fellowship.
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Figure 9: An example of the final twelve operations of Edgebreaker encoding a mesh.
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Figure 10: An example of the final twelve operations of Edgebreaker decoding a mesh.
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Figure 11: An example of the final twelve operations of Wrap&Zip decoding a mesh.
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Figure 12: An example of the first twelve operations of Spirale Reversi decoding a mesh.
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