
Compressing Polygon Mesh Connectivity with Degree Duality Prediction

Martin Isenburg

University of North Carolina at Chapel Hill

isenburg@cs.unc.edu

Abstract
In this paper we present a coder for polygon mesh con-

nectivity that delivers the best connectivity compression
rates meshes reported so far. Our coder is an extension
of the vertex-based coder for triangle mesh connectivity
by Touma and Gotsman [26]. We code polygonal con-
nectivity as a sequence of face and vertex degrees and
exploit the correlation between them for mutual predic-
tive compression. Because low-degree vertices are likely
to be surrounded by high-degree faces and vice versa, we
predict vertex degrees based on neighboring face degrees
and face degrees based on neighboring vertex degrees.

Key words: Connectivity coding, graph coding, mesh
compression, non-manifold meshes, degree duality.

1 Introduction

A polygon mesh is the most widely used primitive for
representing three-dimensional geometric models. Such
polygon meshes consists of mesh geometry and mesh
connectivity, the first describing the positions in 3D space
and the latter describing how to connect these positions
together to form polygons that describe a surface. Typi-
cally there are also mesh properties such as texture coor-
dinates, material attributes, etc. that describe the visual
appearance of the mesh at rendering time.

The standard representation of a polygon mesh uses an
array of floats to specify the positions and an array of in-
tegers containing indices into the position array to spec-
ify the polygons. A similar scheme is used to specify the
various properties and how they are attached to the mesh.
For large and detailed models this representation results
in files of substantial size, which makes their storage ex-
pensive and their transmission slow.

The need for more compact representations has moti-
vated researchers to develop efficient mesh compression
techniques. Most of these efforts have focused on con-
nectivity compression [4, 25, 26, 21, 9, 22, 18, 11, 3, 12,
19, 23, 1]. There are two reasons for this: First, this
is where the largest gains are possible, and second, the
connectivity coder is the core component of a compres-
sion engine and usually drives the compression of geom-
etry [4, 25, 26, 15], of properties [4, 24, 3], and of how

Figure 1: On the left is a close-up of the cupie mesh. Notice that
low-degree vertices are likely to be surrounded by high-degree
faces and vice-versa. On the right are two plots confirming this.
They report the average degree of surrounding faces (vertices)
for vertices (faces) of degree d for our example models.

properties are attached to the mesh [24, 12, 13].
In this paper we introduce a connectivity coder for

polygon meshes that achieves the best compression rates
reported so far. Our Degree Duality coder extends Touma
and Gotsman’s triangle mesh compression scheme [26] to
polygon meshes and borrows ideas from a paper by Al-
liez and Desbrun [1] to improve the compression rates.
The scheme by Touma and Gotsman codes the connec-
tivity of triangle meshes as a sequence of vertex degrees.
Our scheme codes the connectivity of polygon meshes
as a sequence of vertex degrees and a sequence of face
degrees. Furthermore it exploits the correlation between
neighboring vertex and face degrees for mutual predic-
tive compression. Low degree vertices are more likely to
be surrounded by higher-degree faces and vice versa as
illustrated in Figure 1. We predict vertex degrees based
on the degree of neighboring faces and we predict face
degrees based on the degree of neighboring vertices1.

2 Coding Mesh Connectivity

Representing the connectivity of a mesh with a list of po-
sition indices requires at least kn log2 n bits, where n is
the total number of positions and k is the average num-
ber of times each position is indexed. For pure triangular

1A similar coder was developed independently and during the same
time period by a group of researchers at CalTech and USC [17].
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meshes, k tends to be around 6, while for polygon meshes
is closer to 4. The problem with this representation is
that the space requirement increases super-linearly with
the number of positions, since log2 n bits are needed to
index a position in an array of n positions.

Efficiently encoding mesh connectivity has been sub-
ject of intense research and many techniques have been
proposed. Initially most of these schemes were designed
for fully triangulated meshes [4, 25, 26, 21, 9, 22, 11, 23,
1], but more recent approaches [18, 12, 19, 17] handle
arbitrary polygonal input. These schemes do not attempt
to code the position indices directly—instead they only
code the connectivity graph of the mesh.

If a polygon mesh is manifold, then every face (i.e. ev-
ery edge loop) of its connectivity graph corresponds ei-
ther to a polygon or a hole. Furthermore, every vertex of
the graph has a corresponding position in 3D space. This
implies that for representing mesh connectivity, it is suf-
ficient to specify (a) the connectivity graph of the mesh
and (b) which of its faces are polygons/holes. The map-
ping from graph vertices to positions can be established
with an order derived from the graph connectivity.

Hence, mesh connectivity is compressed by coding the
connectivity graph (plus some additional information to
distinguish polygons from holes) and by changing the or-
der in which the positions are stored. They are arranged
in the order in which their corresponding graph vertex
is encountered during some deterministic graph traversal.
Since encoding and decoding of the connectivity graph
also requires a traversal, the positions are often reordered
as dictated by this encoding/decoding process.

This basically reduces the number of bits needed for
storing mesh connectivity to whatever is required to code
the connectivity graph. This is good news: the connec-
tivity graph of a polygon mesh with sphere topology is
homeomorphic to a planar graph. It well known that such
graphs can be coded with a constant number of bits per
vertex [27] and exact enumerations exist [28, 29]. If a
polygon meshes has handles (i.e. has non-zero genus) its
connectivity graph is not planar. Coding such a graph
adds a logarithmic number of bits per handle [22], but
most meshes have only a very small number of handles.

Unfortunately only the connectivity of manifold poly-
gon meshes can be coded this way. A mesh is manifold
if all vertices of its connectivity graph have a neighbor-
hood homeomorphic to a disk or a half-disk. Polygonal
models that describe solid objects tend to have this prop-
erty. However, when generated from other surface rep-
resentations (e.g. trimmed NURBS) non-manifoldness is
often introduced by mistake. Also hand-authored content
is frequently non-manifold, especially if the artist tried to
optimize the mesh (e.g. minimize its polygon count).

Optimally coding non-manifold graphs directly is hard
and there are no efficient solutions yet. Most schemes ei-
ther require the input mesh to be manifold or use a prepro-
cessing step that cuts non-manifold meshes into manifold
pieces [7]. A notable exception is the layering scheme
proposed by Bajaj et al. [3], but this seems quite compli-
cated to implement. Cutting a non-manifold mesh repli-
cates all vertices that sit along a cut. Since it is generally
not acceptable to modify a mesh during compression, the
coder needs to describe how to stitch the mesh pieces
back together. Guéziec et al. [6] report how to do this
in an efficient manner. Our Degree Duality coder imple-
ments a much simpler stitching scheme at the expense of
less compression. For typical meshes with few replicated
vertices the use of a simpler scheme is sufficient.

3 Coding Manifold Connectivity Graphs

A planar graph with v vertices, f faces, and e edges can
be partitioned into two dual spanning trees. One tree
spans the vertices and has v − 1 edges, while its dual
spans the faces and has f −1 edges. Summing these edge
counts results in Euler’s relation e = (v−1)+(f−1) for
planar graphs. Turan [27] observed that this partition can
be used to encode planar graphs. He gave an encoding
that used 12 bits per vertex (bpv). Improving on Turan’s
work, Keeler and Westbrook report a 9.0 bpv encoding
for planar graphs, which they can specialize to a 4.6 bpv
encoding if the graph is fully triangulated [16].

Taubin and Rossignac were first to use these graph cod-
ing techniques for compressing the connectivity of trian-
gle meshes. Their Topological Surgery [25] method run-
length encodes both spanning trees and adds a few bits
per handle for non-planar connectivity graphs, which re-
sults in bit-rates of around 4 bpv in practice.

All recent connectivity compression schemes [26, 9,
21, 22, 5, 12, 19] code this information by following the
same region growing approach: An iterative process en-
codes edges/faces adjacent to the already processed re-
gion (one at a time) and produces a stream of symbols that
describe (a) the degree of each processed face and (b) the
adjacency relation between a processed edge/face to the
processed region. These schemes maintain one or several
boundary loops that separate a single processed region
from all unprocessed regions. The edges and vertices on
the boundary are called boundary edges and boundary
vertices and they are considered visited. Each bound-
ary encloses an unprocessed region. The edges, faces,
and vertices of this region are called unprocessed. If the
connectivity graph has handles, then boundaries can be
nested, in which case an unprocessed region is enclosed
by more than one boundary. Each boundary has a distin-
guished edge called the focus. The algorithm works on
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Figure 2: The three different approaches
to connectivity coding by region growing:
edge-based (top), face-based (middle), and
vertex-based (bottom). Every iteration of
the edge-based coder processes the free
edge and describes its adjacency relation
to the active boundary. Similarly every it-
eration of the face-based coder processes
the free face and describes the adjacency
relation. For both coders these descrip-
tions specify how the active boundary is
updated. When the vertex-based coder
processes a face, it only needs to describe
what happens at the free vertex of this face
to specify the boundary update.

the focus of the active boundary, while all other bound-
aries are kept in a stack.

The adjacency relation between an edge or a face and
the already processed region can be described in terms
of its adjacency relation to the active boundary. For the
case of non-zero genus meshes there will be one situa-
tion per handle in which this relation involves a boundary
from the stack. The characterizing difference between the
compression schemes mentioned earlier is: (a) how the
boundaries are defined, (b) how processing an edge or a
face updates the boundaries, and (c) with which graph el-
ements the description of the update is associated. De-
pending on the latter the compression schemes can be
classified as edge-based, face-based, and vertex-based.

We will now highlight the exact difference between
these three classes of coders. First we do this for the case
of pure triangular connectivity. Because all faces are tri-
angles (i.e. have degree three) there is no need to record
face degrees. Then we show how each class of coder ex-
tends to code arbitrary polygonal connectivity. To sim-
plify this classification we temporarily assume a mesh of
sphere topology without boundary, so that we can ignore
how to deal with holes and handles.

Edge-based schemes [20, 10] describe all boundary
updates per edge. The boundaries are loops of half-edges
that separate the region of processed edges from the rest.
Each iteration grows the processed region by the edge ad-
jacent to the focus of the active boundary (see Figure 2).
This free edge is either adjacent to an unprocessed tri-
angle or to the active boundary (in one of four different
ways). Triangle Fixer [10] describes the boundary up-

dates corresponding to these five configurations using the
symbols T , R, L, S, or E. The Dual Graph method [20]
does the same but replaces each pair of symbols S and
E by a symbol Sj . Its associated offset j represents a
distance in number of edges along the boundary.

Face-based schemes [9, 22, 5] describe all boundary
updates per face. The boundaries are loops of edges that
separate the region of processed faces from the rest. Each
iteration grows the processed region by the face adjacent
to the focus of the active boundary. This free face can
be adjacent to the active boundary in one of five ways.
Edgebreaker [22] describes the boundary updates corre-
sponding to these five configurations using the symbols
C, R, L, S, or E. Again, each pair of symbols S and
E can be replaced by a symbol Sj as done by the Cut-
Border Machine [9]. The lowest guaranteed worst-case
bounds for coding triangular connectivity have been es-
tablished for face-based schemes [8].

Vertex-based schemes [26] describe all boundary up-
dates per vertex. The boundaries are loops of edges that
separate the region of processed faces from the rest. Fur-
thermore, they store for every boundary vertex the num-
ber of free degrees or slots, which are unprocessed edges
incident to the respective vertex. Each iteration grows
the processed region by the face adjacent to the widened
focus of the active boundary. The focus often needs to
be widened such that there is a start slot and an end slot
for the face. Only if the processed face has a free vertex
that is not part of the widened focus, the boundary update
needs to be described. Two scenarios are possible: either
the free vertex has not been visited, in which case its de-
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gree is recorded, or is has been visited, in which case a
its distance in slots along the active boundary is recorded
and the active boundary is split.

Under the assumption that no splits occur the result-
ing code sequence contains the degree of every vertex.
A result by [2] that was published in [1] shows that the
entropy of this sequence asymptotically approaches the
number of bits needed to encode an arbitrary triangulated
planar graph as found by Tutte’s enumeration [28]. How-
ever, while it is possible to significantly reduce the num-
ber of splits using a sophisticated region growing strategy
as proposed by [1], we will later show that such heuristics
cannot guarantee to avoid splits completely.

The extension of edge-based schemes to polygon
meshes is simple [21, 12]. Whenever the free edge is
adjacent to an unprocessed face, its degree d is recorded.
For the Face Fixer scheme [12] symbol T is simply re-
placed with symbol Fd. The extension of face-based
schemes to polygon meshes is more complex [18, 19].
The number of possible configurations in which a face of
degree d can be adjacent to the active boundary equals
the Fibonacci number F (2d − 1) [18]. For a quadrilat-
eral face, for example, there are 13 possible configura-
tions. The lowest guaranteed worst-case bounds for cod-
ing pure quadrangular meshes have been established for
face-based schemes by using a splitting-rule [18]. It splits
each quadrilateral into two triangles such that the proba-
bility for the 13 possible Edgebreaker label combinations
can be exploited for compression.

Previously proposed vertex-based schemes only han-
dle triangular connectivity. In this paper we propose the
extension to polygonal connectivity.

4 Coding with Face and Vertex Degrees

The vertex-based coder by Touma and Gotsman [26]
codes the connectivity graph of a manifold triangle mesh
as a sequence of vertex degrees. We now describe how
to extend their approach to code the connectivity graph
of a manifold polygon mesh using a sequence of vertex
degrees and a sequence of face degrees. Like for trian-
gle meshes, occasionally a split or a merge operation is
needed instead of a vertex degree.

Encoding: Starting with a connectivity graph of v ver-
tices and f faces, the encoder produces two symbol se-
quences: one is a sequence of f − 1− s + m face degree
symbols Fd, the other is a sequence of v+s+m symbols
which consists of v vertex degree symbols Vd, s split op-
eration symbols Sj with associated offset j, and m merge
operation symbols Mi,k with associated index i and off-
set k. The connectivity graph can be reconstructed by
simultaneously processing both symbol sequences.

The coder maintains one or several loops of bound-

ary edges that separate a single processed region from
all unprocessed regions. Furthermore, it stores for ev-
ery boundary vertex the number of free degrees or slots,
which are unprocessed edges incident to the respective
vertex. Each of these boundaries encloses an unpro-
cessed region; its faces, vertices, and edges are called
unprocessed. In the presence of handles one boundary
can contain another, in which case they enclose the same
unprocessed region. Each boundary has a distinguished
boundary edge called focus. The algorithm works on the
focus of the active boundary, while the other boundaries
are kept in a stack.

The initial active boundary is defined counterclock-
wise around an arbitrary edge, one of its two boundary
edges is defined to be the focus. Each iteration of the
algorithm processes the face adjacent to the focus of the
active boundary. This involves recording its degree and
processing its free vertices as illustrated by the three ex-
amples in Figure 3. Since including a face consumes two
boundary slots we sometimes need to widen the focus un-
til there is a start slot and an end slot for the face. The
number of focus vertices is called the width of the focus.
In scenarios A, B, and C of Figure 3 the focus has a width
of 3, 2, and 4 respectively. The free vertices are those that
are not part of the widened focus.

The free vertices are then processed in counterclock-
wise order starting from the start slot. Three different
cases can arise. According to the original reference [26]
we call them add, split, and merge (see Figure 3). By far
most the frequent case is add, which happens whenever
the free vertex has not been previously visited. In this
case we record the vertex degree d for which we will use
the symbol Vd. However, when we encounter a free ver-
tex that has already been visited we either have a split or
a merge. The latter occurs only for meshes with handles
(e.g. with non-zero genus). In this case the free vertex is
on a stack boundary, which causes the active boundary to
merge with the respective stack boundary. We record the
index i of that boundary in the stack and the number of
slots k between the focus of the stack boundary and the
merge slot, denoted by symbol Mi,k. In the other case
the free vertex is on the active boundary, which causes
the active boundary to split into two. We push one part
on the stack and record the number of slots j between the
new stack focus and the split slot, denoted by symbol Sj .

After processing all free vertices we exit the face and
move to the next focus (see Section 6). This repeats un-
til all faces have been processed. Notice that for each
boundary we do not need to record the degree of its last
face. At this point a boundary has no slots left and wraps
around this face. Therefore the number of recorded face
degrees Fd equals at most the number of faces f minus
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Figure 3: The three frame sequences A, B, and C illus-
trate different scenarios that can arise when processing
a face. A is the most common one: The free vertices
of the face have not been visited before, we add them
to the boundary and record their degree. B only oc-
curs for meshes with handles: A free vertex that has
already been visited is on a boundary in the stack. The
active boundary merges with this stack boundary. We
record its stack index and the number of slots between
the stack focus and the merge slot. C happens occasionally: A free vertex that has
already been visited is on the active boundary. The active boundary splits. We record
the number of slots between the new stack focus and the split slot.

one. Each split increases and each merge decreases the
number of boundaries by one. Thus the exact number of
face degrees recorded, given we have s split and m merge
operations, is f − 1 − s + m (see also Section 8).

Decoding: The decoder exactly replays what the en-
coder does by performing the boundary updates de-
scribed by the two symbol sequences. A step by step ex-
ample run of the decoding process is shown in Figure 4.

Complexity: We assume that the mesh genus is a
small constant, so that there are only a constant number
of merge operations. Each face is processed once. The
cost of processing a face is proportional to its degree plus
the cost for processing its free vertices. The sum of all
face degrees is linear and each vertex is added once. This
leaves us with the split operations. They are the criti-
cal ones, because they require to walk the offset along
the boundary. Since we always know the length of the

boundary we can always walk the shorter way. Thus, in
the worst case the boundary consists of all v vertices and
is recursively split into half, resulting in a time complex-
ity of O(v log2(v)).

5 Compressing with Duality Prediction

The two symbol sequences are compressed into a bit-
stream using a adaptive arithmetic coding [30]. Given
sufficiently long input, the compression rate of such a
coder converges to the entropy of the input. The en-
tropy for a sequence of n symbols is −

∑
n

(
pi log2(pi)

)
,

where the ith symbol occurs with probability pi.

Whenever a face is processed we need to specify if it
represents a polygon or a hole in the mesh. Using the
arithmetic coder we code this with two symbols. Simi-
larly whenever a free vertex is processed we need to spec-
ify if an add, a split or a merge operation was used. We
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distinguish between the frequently occurring adds and the
other two with three different symbols.

What remains is compressing the face degrees, the ver-
tex degrees, and the offsets and indices associated with
split and merge operations. The basic idea is to exploit
the fact that high-degree faces tend to be surrounded by
low-degree vertices, and vice versa, for predictive com-
pression. For every vertex we know the degree of the face
that introduces it. For every face we know the degrees of
all vertices of the (widened) focus. We found that using
four different predictions each way captures the correla-
tion in the duality of vertex and face degrees quite well.
Offsets and indices, on the other hand, are compressed
with the minimal number of bits needed based on their
known maximal range.

5.1 Compressing Face Degrees

When a face is processed the degrees of all vertices on
the (widened) focus are known. The lower their average
degree, the more likely this face has a high degree and
vice-versa (see Figure 1). This can be exploited by using
different contexts for entropy coding the face degrees, de-
pendent on this vertex degree average. In practice the use
of four such face-degree contexts seems to capture this
correlation quite well. We have different contexts for an
average vertex degree (a) below 3.3, (b) between 3.3 and
4.3, (c) between 4.3 and 4.9, and (d) above 4.9. These
numbers were first chosen based on the plot in Figure 1
and then corrected slightly based on experimental results.

Each of the four face-degree contexts contains 4 en-
tries: The first three entries represent face degrees 3, 4,
and 5 and the last entry represents higher degree faces.
These are subsequently compressed with a special large-
face-degree context. This special context is also used for
faces that correspond to holes in the mesh. All contexts
are initialized with uniform probabilities that are adap-
tively updated. Four bits at the beginning of the code
specify face degrees that do not occur in the mesh. Their
representing entry is disabled in all contexts. For our set
of example meshes, this predictive coding of face degrees
improves the bit-rates on average by 12.2 %.

There is another small improvement possible: The
minimal degree of the face equals the width of the fo-
cus. If the focus is wider than 3 we can improve com-
pression further by disabling those entries of the chosen
context that represents impossible degrees. Although this
improves the compression rates by only 1 or 2 percent, it
was simple to integrate into the arithmetic coder.

5.2 Compressing Vertex Degrees

When a free vertex is processed, the degree of the respec-
tive face is known. The lower its degree, the more likely
this vertex has a high degree and vice-versa. Again we

exploit this for better compression by using four different
contexts. We switch the vertex-degree context depending
if the face is a triangle, a quadrangle, a pentagon, or a
higher degree face.

Each of the four vertex-degree contexts contains 9 en-
tries: The first eight entries represent vertex degrees 2 to 9
and the last entry represents higher degree vertices. These
are subsequently compressed with a special large-vertex-
degree context. All contexts are initialized with uniform
probabilities that are adaptively updated. Nine bits at the
beginning of the code specify vertex degrees that do not
occur in the mesh. Their representing entry is disabled in
all contexts.

For our set of example meshes, this predictive coding
of vertex degrees improves the bit-rates on average by
6.4 %. Predictive coding of vertex degrees does not im-
prove the compression rates as much as predictive coding
of face degrees, because we use less information for each
prediction. While each face degrees is predicted using an
average of two or more vertex degrees, each vertex degree
is only predicted by a single face degree.

5.3 Compressing Offsets and Indices
An integer number that is known to be between 0 and n
can be encoded with exactly log2(n+1) bits. We use this
for compressing the offsets and indices associated with
the split and the merge operation. Whenever a split offset
j, a merge index i, or a merge offset k is encoded or de-
coded, the maximal value of this number is known. For
the split offset j it equals the number of slots on the active
boundary, for the merge index i it equals the size of the
stack, and for the merge offset k it equals the number of
slots on the indexed boundary in the stack.

6 Reducing the Number of Splits

After processing a face, we could continue with the exit
focus as the next focus. This is the strategy of the origi-
nal vertex-based coder for triangle meshes proposed by
Touma and Gotsman [26]. However, Alliez and Des-
brun [1] propose a more sophisticated strategy for pick-
ing the next focus that significantly reduces the number
of splits. This is beneficial, because split operations are
expensive to code: On one hand we need to specify where
in the sequence of vertex degrees they occur and on the
other hand we need to record their associated split offset.

Since the decoding process has to follow this strategy,
the quest for this better focus can only use information
that is available to the decoder. Alliez and Desbrun [1]
suggest to move the focus to the boundary vertex with
the lowest number of slots. In case there is more than one
such vertex, they choose the least dense region by averag-
ing over a wider and wider neighborhood. This strategy
makes keeping track of the next candidate an expensive
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mesh vertex degree distribution face degree distribution holes / bpv coding
name 2 3 4 5 6 7 8 9 9 3 4 5 5 handles ff dd gain

triceratops – 8 2816 8 – – – – – 346 2266 140 82 – – 2.115 1.189 43.8 %
galleon 7 430 1595 270 66 4 1 – – 336 1947 40 61 – – 2.595 2.093 19.3 %
cessna 8 642 2470 384 178 41 18 1 3 900 2797 180 50 – – 2.841 2.543 10.5 %
beethoven 21 279 1925 295 99 20 14 – 2 680 2078 44 10 10 – 2.890 2.102 27.3 %
sandal – 280 1857 329 95 18 7 12 38 961 1985 7 – 14 12 2.602 2.115 18.7 %
shark – – 2560 – – – – – – 188 2253 83 38 – – 1.670 0.756 54.7 %
al 2 538 1999 720 268 69 15 1 6 1579 2505 44 47 – – 2.926 2.429 17.0 %
cupie 16 272 2405 234 37 12 8 – – 384 2506 114 28 – – 2.307 1.640 28.9 %
tommygun – 1557 2002 395 152 21 18 8 18 992 2785 84 119 – 6 2.611 2.258 13.5 %
cow – 7 87 514 1796 364 98 23 15 5804 – – – – – 2.213 1.781 19.5 %
teapot 2 14 1022 125 18 5 1 – 2 215 1070 3 2 – 1 1.669 1.127 32.5 %

Table 1: The vertex count v and the polygon count p for the example models is reported above. The table also gives the vertex and
face degree distribution for each of these models. We compare the connectivity compression rates (bpv) of the Face Fixer coder (ff)
to those of the proposed Degree Duality coder (dd) and report the improvement in percent.
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operation. Using a dedicated priority queue, for example,
would require O(log(b)) per boundary update, where b is
the number of vertices on the active boundary.

The obvious question is whether it is possible to avoid
the split operations all together. We can prove that splits
cannot be avoided by using a strategy that only uses the
already encoded/decoded part of the mesh. Given any
such strategy we can always construct a mesh that is guar-
anteed to result in a split.

First of all, the connectivity of a non-zero genus mesh
will require at least as many splits as the mesh has han-
dles. But also for meshes without handles a split op-
eration can occur: Imagine your favorite mesh of torus
topology. The encoder eventually has to use the merge
operation to code the handle. Every merge operation is
preceded by a split operation. In the moment this split op-
eration is performed, we stop the encoding process, per-
form an edge cut in the unprocessed region such that it
opens the handle, insert two large polygons or holes into
the cut, and continue the encoding process on the mesh
(which now has sphere topology). The coder did not no-
tice what happened, because the edge cut was performed
in the region it has not yet seen. But now the coder has
produced a split for a mesh of genus zero.

Nevertheless, to reduce the number of splits is espe-
cially important in the polygonal case, because here a
split operation can pinch off parts of the boundary that
do not enclose any unprocessed vertices and that can be
as small as a single unprocessed face. This does not hap-
pen in the pure triangular case. Inspired by Alliez and
Desbrun [1] we suggest a similar, but simpler heuristic to
pick the next focus. Most importantly, our strategy does
not affect the asymptotic complexity of the decoder.

The focus is moved to the boundary vertex with the
smallest number of slots in counterclockwise direction as
seen from the current focus. This current focus is usually
the exit focus of the face processed last or the stack focus
if a new boundary was just popped of the stack. However,
we only move the focus if the smallest number of slots is
0 or 1, otherwise the focus remains where it is. Table 2
reports the success of this strategy in reducing the number
of splits and the bit-rate.

Starting a brute-force search along the boundary for
the vertex with the smallest number of slots would mean
a worst-case time complexity of O(n2). Instead we keep
track of the next 0 and the next 1 slot by organizing all of
them into two cyclic linked lists. In both lists we always
point to the slot that is closest in counterclockwise direc-
tion and perform the necessary updates as the boundary
changes. This data structure can be maintained without
affecting the asymptotic complexity of the decoder.

mesh current 0 or 1 slot coding
name # splits bpv # splits bpv gain

triceratops 53 1.311 25 1.189 9.3 %
galleon 78 2.309 18 2.093 9.4 %
cessna 172 2.882 28 2.543 11.8 %
beethoven 99 2.431 15 2.102 13.5 %
sandal 85 2.295 25 2.115 7.8 %
shark 24 0.818 13 0.756 7.6 %
al 92 2.616 14 2.429 7.1 %
cupie 56 1.786 15 1.640 8.2 %
tommygun 131 2.449 32 2.258 7.8 %
cow 154 2.313 13 1.781 23.0 %
teapot 10 1.167 3 1.127 3.4 %

Table 2: The number of splits and the resulting bit-rate using
the current focus compared to moving the focus to the next 0 or
1 slot and the coding improvement in percent.

7 Coding Non-Manifold Meshes

Compared to Guéziec et al. [6] our Degree Duality coder
implements a much simpler stitching scheme to recover
non-manifold connectivity, that allows a robust, minimal-
effort implementation at the expense of less efficiency.
However, the number of non-manifold vertices is typi-
cally small, which justifies the use of a simpler scheme.

Whenever a free vertex is processed by an add oper-
ation we simply specify if this indeed is a new position
or not using arithmetic coding. If it is a new position we
increment the position counter. Otherwise it is an old po-
sition and its index needs to be compressed as well. We
can do this with log2(n) bits where n is the number of
positions already encoded/decoded.

8 Counts and Invariants

The sum of all v vertex degrees and the sum of all f face
degrees both equal twice the number of edges e. That
means the two sums are equal.

f∑

k=1

deg(fk) =
v∑

k=1

deg(vk) = 2e (1)

If we know all vertex degrees and all face degrees but one
we can compute it as the one completing the equality.

ff =
v∑

k=1

deg(vk) −
f−1∑

k=1

deg(fk) (2)

Furthermore we have the following invariants: The
sum of degrees of all unprocessed faces minus the num-
ber of all boundary edges b equals twice the number of
unprocessed edges u. And also the sum of degrees of
all unprocessed vertices plus the number of all boundary
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slots s equals twice the number of unprocessed edges u.

∑

fk⊂B
deg(fk) − b =

∑

vk⊂B
deg(vk) + s = 2u (3)

where ⊂ B means unprocessed (or enclosed by some
boundary). Furthermore, this invariant is true for the face
and vertex degree count of every unprocessed regions to-
gether with edge and slot count of the respective bound-
aries that enclose it. In the moment a split occurs, one
such equation E is split into two new equations E ′ and E ′′

that are related with s = s′+s′′, b = b′+b′′, u = u′+u′′,
and the correspondingly split sums of unprocessed face
and vertex degrees. The offset associated with the split
operation specifies s′′ and b′′. Together with the two de-
gree sequences they specify implicitly when each bound-
ary end. This explains why we can omit one face degree
for every split operation—it creates a new equation just
like (2) that can be solved for a single face degree.

9 Summary and Discussion

We have described coder for polygon mesh connectiv-
ity that delivers the best connectivity compression rates
meshes reported so far. On our example models the com-
pression rates improve between 10 % to 55 % over those
of the Face Fixer coder [12] with an average improvement
of 26 %. Furthermore, we provide a web page [14] con-
taining a prototype implementation of our coder in pure
java that proves the bit-rates reported in Table 1.

Our main contribution is (a) the extension of vertex-
based coding to polygonal connectivity using a sequences
of vertex degrees and a sequence of face degrees (b) the
observation that the correlation in the duality of the de-
grees can be used for mutual predictive compression.

Khodakovsky et al. [17] extend a result by [2] that was
published in [1] to show that summed entropies of the
face degree sequence and of the vertex degree sequence
converges to Tutte’s bound on the enumeration of planar
graphs [29]. This seems to suggest that degree coding is
optimal in the sense that it uses not more bits to encode a
connectivity than needed to distinguish it among all pos-
sible connectivities with the same number of vertices.

This does not mean that degree coding always outper-
forms other coders. We can construct pathologic exam-
ples where other coders perform better. Using the cow
model from Table 1 we generated a triangle mesh and
a quadrangle mesh that demonstrate this. We generated
the triangle mesh by placing a new vertex into every tri-
angle of the original mesh and by connecting it to its
three vertices. All new vertices have degree three, while
the degree of every vertex of the original mesh doubles.
This connectivity compresses to 0.988 bpv using Edge-
breaker [22], whereas the Degree Duality coder needs

1.569 bpv. Similarly we generated the quadrangle mesh
by placing a new vertex into every original triangle and by
connecting it to the three new vertices that are placed on
every original edge. All new vertices have either degree
three or degree four, while the degree of the original ver-
tices remains unchanged. This connectivity compresses
to 1.376 bpv using Face Fixer [12], whereas the Degree
Duality coder needs 1.721 bpv. However, such patholog-
ical cases rarely occur in practice.

The author thanks Jack Snoeyink for helpful comments
and thorough reviews of the manuscript.
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Figure 4: This is an example run of the decoding algorithm. It is an exact replay of the boundary updates performed during encoding:
(a) The decoder creates the initial boundary by uncompressing the first two vertex degrees. Encoder and decoder use their order
to agree on the initial focus. (b) Uncompress the first face degree. The average focus vertex degree of 5.0 determines which
face-degree context the arithmetic decoder uses. (c) Uncompress the degree of the free vertex. The face degree of 3 determines
which vertex-degree context the arithmetic decoder uses. The focus remains at the exit focus, because there is no vertex on the
active boundary that has 0 or 1 slots. (d) Uncompress the next face degree. The average focus vertex degree that determines the
face-degree context is again 5.0. (e) Uncompress the degrees of the three free vertices. Now the face degree that determines the
vertex-degree context is 5. (f) The focus moves in counterclockwise direction along the boundary to the next boundary vertex with
the lowest number of slots, which is 1 in this case. (g) Uncompress the next face degree. Use average focus vertex degree of 3.5
to determine the face-degree context (e.g. f dc = 3.5). (h) Uncompress the degrees of the two free vertices. Use face degree 4 to
determine the vertex-degree context (e.g. vdc = 4). (i) The focus is moved in counterclockwise direction to the lowest number of
slots, which is 0 in this case. Then the focus is widened such that there is a start slot and an end slot for the next face to process.
(j) Uncompress the next face degree (f dc = 3.6) and uncompress the degree of its free vertex (vdc = 4). (k) Move the focus
in counterclockwise direction to the vertex with 0 slots and widen the focus. (l) Uncompress the next face degree (f dc = 4.6).
(m) Uncompress the degree of its free vertex (vdc = 4) and move the focus. (n) Uncompress the next face degree (f dc = 5.0).
(o) Uncompress the degree of its free vertex (vdc = 3). (p) Move and widen the focus. (q) Uncompress the next face degree
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next face degree (f dc = 3.5). The focus has a width of 4, therefore the face degree is also at least 4. We disable the entry of the
chosen context that represents the impossible degree 3. (u) Uncompress the degree of its free vertex (vdc = 5). (v) And so on ...
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