
Streaming Formats for Geometric Data Sets

Martin Isenburg∗

Max-Planck-Institut f̈ur Informatik
Saarbr̈ucken

Peter Lindstrom
Lawrence Livermore
National Laboratory

Stefan Gumhold
Max-Planck-Institut

für Informatik

Jack Snoeyink
University of North Carolina

at Chapel Hill

Abstract
Recent years have seen an immense increase in the complexity of
geometric data sets. Today’s gigabyte-sized 3D models can no
longer be completely loaded into the main memory of common
desktop PCs. Unfortunately, most storage and exchange formats for
geometric data do not account for this. They were designed years
ago when models were orders of magnitudes smaller. Using these
formats to store and distribute giga-byte sized data sets is inefficient
and unduly complicates all subsequent processing.

In this talk we will describe streaming formats for geometric data
that are basically as simple as existing formats but more suitable for
storing large data sets than all current alternatives. Such formats
contain tiny bits of additional information that “finalize” previously
read data. This information specifies which elements of a mesh or
which areas in space have already been completely traversed. This
gives the necessary guarantees to safely process these parts of the
data and deallocate the corresponding data structures without first
parsing the entire data set. While the focus of this talk is mainly
on “topological streaming” of unstructured meshes, we will also
motivate “spatial streaming” of meshes and point clouds.

1 Motivation and Overview
Modern scientific technologies enable the creation of digital 3D
models of incredible detail and precision. These geometric data
sets easily reach sizes of several gigabytes, making subsequent pro-
cessing a difficult task. The sheer amount of data may not only
exhaust the main memory resources of common desktop PCs, but
even exceed the address space limit of a 32-bit machine. To process
such data sets, one resorts toout-of-corealgorithms that arrange the
data so that it does not need to be kept in memory in its entirety, and
adapt their computations to operate mainly on the loaded parts.

But for unstructured surface or volume meshes, already the way
the raw input data is stored can turn the simplest pre-processing
into a highly IO-inefficient operation. Current mesh formats use
an array of floats to specify the vertex properties followed by an
array of indices into the vertex array to specify the polygons or
polyhedra. Storing large meshes in such a format means that one
gigabyte-sized array of data is indexed by another gigabyte-sized
block of data. Since the order in which the mesh elements appear
in these arrays is left unspecified even simple de-referencing (i.e.
resolving all vertex references) can potentially thrash the memory.

The ineffiency of indexed mesh input has been addressed in large
mesh papers for the last eight years. [Chiang and Silva 1997] write
that “Unfortunately, the datasets are often given in a format that
contains indices to vertices. Thus we have to de-reference the in-
dices before actually building the interval tree.” and propose to use
external sorting for this. Despite requiring large amount of scratch
space and multiple passes over the data, this has since become the
standard mechanism for dealing with large indexed meshes. Recent
works often try to abandon indexed meshes altogether. [Cignoni
et al. 2004], for example, assume that “the mesh is represented as
a triangle soup, i.e., a list of triangles with direct vertex informa-
tion”. But as most their data sets are originally stored as indexed
meshes, like the 3D scans of Michelangelo’s statues [Levoy et al.
2000], they still need to de-reference in a pre-processing step.

∗isenburg@cs.unc.edu http://www.cs.unc.edu/ ˜ isenburg/sm

We will try to convince the audience thatstreaming meshformats
are much better suited for storing and distributing large meshes
than current alternatives. First, they do not have the problem of
in-efficient dereferencing, second, they are a more “natural” output
format for memory-limited applications that generate large meshes,
and third, they are an ideal input and ouput format for I/O-efficient
algorithms that perform out-of-core stream processing.

The basic idea is to logically interleave vertices and the mesh
elements that reference them and to provide explicit information
about when vertices are “finalized” or “referenced for the last time”.
While the required changes to go from existing formats to streaming
formats are minimal, the payoff can be substantial. Because the for-
mat tells us which of the previously read vertices to keep in mem-
ory, we can trivially de-reference such meshes in an IO-optimal
manner—the problem of repeated, possibly incoherent look-up of
vertex data in a gigantic array does not exist. And because the for-
mat tells us which vertices can safely be deallocated because they
are no longer needed, we can do this for meshes of practically arbi-
trary size while requiring only moderate amounts of memory.

But a streaming mesh format is not only a better input format for
large meshes—it is also a more natural output format for most mesh
generating applications. Given limited memory resources, it is in
fact quitedifficult to output meshes into standard indexed formats.
A mesh generating application that can only hold and work on small
pieces of the data at any time will need to store vertices and trian-
gle into seperate temporary files and concatenate them later. Mem-
ory mapping the vertex and triangle arrays is not possible without
knowing the exact size of the vertex array in advance. For exam-
ple, an out-of-core marching cubes iso-surface implementation that
processes the volume layer by layer will naturally output vertices
and triangles in the same order. And vertices from the last layer can
trivially be finalized before moving on to the next layer.

Furthermore, a streaming mesh format is the ideal input and out-
put for stream processing. In this model, the mesh streams through
an in-core buffer, which is large enough to hold all active mesh el-
ements. For straight-forward tasks, such as rendering a flat shaded
mesh, a minimal stream buffer is needed. For more elaborate pro-
cessing tasks, a larger stream buffer may hold as many additional
mesh elements as there are memory resources, allowing random ac-
cess to a localized but continuously changing subset of the mesh.

Streaming meshes allow pipelined processing, where multiple
tasks run concurrently on separate pieces of the mesh. One mod-
ule’s output then serves as the input for another module. Envision a
scenario where one algorithm extracts an isosurface and pipes it as
a streaming mesh to a simplification process, which in turn streams
the simplified mesh to a compression engine that encodes it and
immediately transmits the resulting bit stream to a remote location
where triangles are rendered as they decompress. In fact, we now
have all components of this pipeline—and it is the streaming format
that makes it possible to pipe them all together.

References
CHIANG , Y.-J., AND SILVA , C. T. 1997. I/O optimal isosurface extraction. InVisu-

alization ’97, 293–300.
CIGNONI, P., GANOVELLI , F., GOBBETTI, E., MARTON, F., PONCHIO, F., AND

SCOPIGNO, R. 2004. Adaptive tetrapuzzles - efficient out-of-core construction
and visualization of gigantic polygonal models. InSIGGRAPH 2004, 796–803.

LEVOY, M., PULLI , K., CURLESS, B., RUSINKIEWICZ, S., KOLLER, D., PEREIRA,
L., GINZTON, M., ANDERSON, S., DAVIS , J., GINSBERG, J., SHADE, J., AND

FULK , D. 2000. The Digital Michelangelo Project. InSIGGRAPH 2000, 131–144.

mailto:isenburg@cs.unc.edu
mailto:pl@llnl.gov
mailto:sgumhold@mpi-sb.mpg.de
mailto:snoeyink@cs.unc.edu

	Motivation and Overview

