
CAD’04, www.cadconferences.com

Copyright © CAD Solutions Co., Ltd. 1

Lossless Compression of Floating-Point Geometry

Martin Isenburg1, Peter Lindstrom2 and Jack Snoeyink3

1University of North Carolina at Chapel Hill, isenburg@cs.unc.edu
2Lawrence Livermore National Laboratory, pl@llnl.gov

3University of North Carolina at Chapel Hill, snoeyink@cs.unc.edu

ABSTRACT

The geometric data sets found in scientific and industrial applications are often very detailed.
Storing them using standard uncompressed formats results in large files that are expensive to
store and slow to load and transmit. Many efficient mesh compression techniques have been
proposed, but scientists and engineers often refrain from using them because they modify the
mesh data. While connectivity is encoded in a lossless manner, the floating-point coordinates
associated with the vertices are quantized onto a uniform integer grid for efficient predictive
compression. Although a fine enough grid can usually represent the data with sufficient
precision, the original floating-point values will change, regardless of grid resolution.
 In this paper we describe how to compress floating-point coordinates using predictive coding
in a completely lossless manner. The initial quantization step is omitted and predictions are
calculated in floating-point. The predicted and the actual floating-point values are then broken
up into sign, exponent, and mantissa and their corrections are compressed separately with
context-based arithmetic coding. As the quality of the predictions varies with the exponent, we
use the exponent to switch between different arithmetic contexts. Although we report
compression results using the popular parallelogram predictor, our approach works with any
prediction scheme. The achieved bit-rates for lossless floating-point compression nicely
complement those resulting from uniformly quantizing with different precisions.

Keywords: mesh compression, geometry coding, lossless, floating-point.

1. INTRODUCTION

The polygon mesh is the most widely used primitive
for representing three-dimensional geometric models.
Polygon meshes consist of geometry and connectivity,
the first describing positions in 3D space and the
latter describing how to connect these positions
together into polygons that describe a surface.
Typically there are also mesh properties such as
texture coordinates, material attributes, etc. that, for
example, describe the visual appearance of the mesh
at rendering time.
 The standard representation of a polygon mesh uses
an array of floats to specify the positions and an array
of integers containing indices into the position array
to specify the polygons. A similar scheme is used to
specify the various properties and how they are
attached to the mesh. For large and detailed models
this representation results in files of substantial size,
which makes their storage expensive and their
transmission slow.
 The need for more compact mesh representations
has motivated researchers to develop techniques for
compression of connectivity [20,21,6,18,11,7,15], of
geometry [3,20,21,14,8], and of properties

[19,1,12,13]. The most popular compression scheme
was proposed by Touma and Gotsman [21] and
generalized to the polygonal case by Isenburg and
Alliez [7,8]. It tends to give very competitive bit-rates
that continue to be the accepted benchmark for mesh
compression [9]. Furthermore, this coding scheme
allows compression and decompression to operate
out-of-core for compressing gigantic meshes [10].
 While connectivity is typically encoded in a lossless
manner, geometry compression tends to be lossy.
Current schemes require the floating-point
coordinates associated with the vertices to be
quantized onto a uniform integer grid prior to
predictive compression. Usually one can choose a
sufficiently fine grid to capture the entire precision
that exists in the data. However, the original floating
point values will change slightly. Many scientists and
engineers dislike the idea of having their data
modified by a process outside of their control and
therefore often refrain from using mesh compression
altogether.
 A more scientific reason for avoiding the initial
quantization step is a non-uniform precision in the
mesh data. Standard 32-bit IEEE floating point
numbers have 23 bits of precision within the range of

CAD’04, www.cadconferences.com

Copyright © CAD Solutions Co., Ltd. 2

each exponent (see Fig. 1) so that the least precise (i.e.
the widest spaced) numbers are those with the highest
exponent. Assuming a uniform sampling, the entire
uniform accuracy present in the floating-point
samples could be represented with 25 bits once the
bounding box (i.e. the highest exponent) is known. If
this assumption does not hold because, for example,
the mesh was specifically aligned with the origin to
provide higher precision in some areas, then uniform
quantization is not an option.
 Finally, if neither the precision nor bounding-box of
the floating-point samples is known in advance it may
be impractical to quantize the data prior to
compression. Such a situation may arise in streaming
compression, as envisioned by Isenburg and Gumhold
[10]. In order to compress the output of a mesh-
generating application on-the-fly, one may have to
operate without a-priori knowledge about the
precision or the bounding-box of the mesh.
 In this paper we describe how to compress floating-
point coordinates with predictive coding in a
completely lossless manner. The initial quantization
step is omitted and the predictions are calculated in
floating-point arithmetic. The predicted and the
actual floating-point values are then broken up into
sign, exponent, and mantissa and their corrections are
compressed separately with context-based arithmetic
coding. As the quality of the predictions varies with
the exponent, we use the exponent to switch between
different arithmetic contexts. Although we report
compression results using the popular parallelogram
predictor, our approach works with any prediction
scheme. The achieved bit-rates for lossless floating-
point compression nicely complement those resulting
from uniformly quantizing with different precisions.
Hence, our approach is a completing rather than a
competing technology that can be used whenever
uniform quantization of the floating-point values is—
for whatever reason—not an option.

 The remainder of this paper is organized as follows:
We give a brief overview of mesh compression in the
next section. Following, we describe predictive
geometry coding and the initial quantization step. In
Section 4 we show how these techniques can operate
on floating-point numbers in a completely lossless
manner and report compression results. The last
section summarizes our contributions and discusses
current work.

2. MESH COMPRESSION

The three-dimensional surfaces that are used in
interactive visualization or for scientific computations
are often represented as polygonal meshes. To
accurately represent a detailed model a large number
of polygons may be required. Limited transmission
bandwidth and storage capacity have motivated
researchers to find compact representations for such
data, and a number of mesh compression schemes
have been proposed. Traditionally, the compression of
connectivity, that is the incidence relation among the
vertices, and the compression of geometry, that is the
actual 3D location of each individual vertex, are done
by clearly separated (but often interwoven)
techniques. The connectivity coder [20,21,17,6,18,11,
7,15] is usually the core component of a compression
engine and drives the compression of geometry
[20,21,8] and properties [19,12,13]. Connectivity
compression is lossless due to the combinatorial
nature of the data. Compression of geometry and
properties, however, is lossy due to the mandatory
quantization step for the floating-point values.
 Recent connectivity compression schemes use the
concept of region growing [7] and process adjacent
faces one after the other until the entire mesh has been
conquered. Most geometry compression schemes use
the traversal order this induces on the vertices to
compress their (pre-quantized) positions using a
predictive coding scheme. Instead of specifying each

Fig. 1. The x-coordinates of the 81 million triangle Double Eagle tanker range from −4.095 to 190.974. The x-coordinates above
128 have the least precision with 23 mantissa bits covering a range of 128 (i.e. between 128 and 256). There is sixteen times
more precision between 8 and 16, where the same number of mantissa bits only have to cover a range of 8.

CAD’04, www.cadconferences.com

Copyright © CAD Solutions Co., Ltd. 3

position individually, previously decoded vertices are
used to predict the next position and only a corrective
vector is stored. Virtually all predictive coding
schemes used in industry-strength compression
engines employ simple linear predictors [3,20,21].
 Recently we have seen a number of innovative, yet
much more involved approaches to mesh
compression. There are spectral methods [14] that
perform a global frequency decomposition of the
surface, there are space-dividing methods [4] that
specify the mesh connectivity relative to a geometric
triangulation of connectivity-less coded positions,
there are remeshing methods [16,5] that compress a
regularly parameterized version instead of the original
mesh, and there are feature-based methods [2] that try
to find repeated geometric features in a model. We do
not attempt to improve on these schemes. Instead we
show how predictive geometry compression schemes
[3,20,21,8] can be adapted to compress floating-point
coordinates in a lossless manner.

3. PREDICTIVE GEOMETRY CODING

The reasons for the popularity of simple prediction
schemes are that they are easy to implement robustly,
that compression or at least decompression is fast, and
that they deliver good compression rates. For several
years already, the simple parallelogram predictor
[21,8] (see Fig. 2) has become the accepted benchmark
that many recent approaches compare themselves
with. Although better compression rates have been
reported, in practice it is often questionable whether
these gains are justified given the sometimes immense
increase in algorithmic and asymptotic complexity of
the coding scheme. Furthermore these improvements
are often specific to a certain type of mesh. Some
methods achieve significant gains only on models with
sharp features, while others are only applicable to
smooth and sufficiently dense sampled meshes.
Predictive geometry compression schemes work as
follows: First all floating-point positions are converted
to integers by uniform quantization with a user-
defined precision of for example 12, 16, or 20 bits per
coordinate. This introduces a quantization error, as
some of the floating-point precision is lost. Then a

Fig. 2. The parallelogram predictor uses the vertices of a neighboring triangle to predict the next vertex. Only a small correction
(here: the red arrow) needs to be encoded. We compress the corrections for sign, exponent, and mantissa separately using
context-based arithmetic coding [22]. Above, each of the three components is shown in hexadecimal for both the predicted and
the actual floating-point number. First we compress the actual exponent while switching contexts based on the predicted
exponent. Then we compress whether predicted and actual sign are identical or not. For this we can already switch contexts
based on the (previously encoded) actual exponent. Finally we compress the difference between predicted and actual mantissa.
Only if sign and exponent were predicted correctly do we actually use the predicted mantissa as the prediction. If the sign was
different or if the predicted exponent was smaller we use 0 as the prediction. If the predicted component was larger we use 223 −
1 as the prediction. This happens above for the z-coordinate: because the exponent 0x7E was miss-predicted as 0x7F we predict
the mantissa with 0x7FFFFF and compress the correction 0x7851EC - 0x7FFFFF = −0x07AE13. The function calls on the right
refer to the pseudo code from Fig. 6.

CAD’04, www.cadconferences.com

Copyright © CAD Solutions Co., Ltd. 4

prediction rule is applied that uses previously decoded
integer positions to predict the next position. Finally,
an offset vector is stored that corrects the difference
between predicted and actual integer position. The
values of these corrective vectors tend to spread
around zero. This reduces the variation and thereby
the entropy of the sequence of numbers, which means
that they can be efficiently compressed with, for
example, an arithmetic coder [22].
 The simplest prediction method predicts the next
position as the last position, and was suggested by
Deering [3]. While this technique, also known as delta-
coding, makes as a systematic prediction error, it can
easily be implemented in hardware. A more
sophisticated scheme is the spanning tree predictor by
Taubin and Rossignac [20]. A weighted linear
combination of two, three, or more parent vertices in a
vertex spanning tree is used for prediction. By far the
most popular scheme is the parallelogram predictor
introduced by Touma and Gotsman [21]. A position is
predicted to complete the parallelogram that is
spanned by the three previously processed vertices of a
neighboring triangle.
 Predictive compression does not scale linearly with
increased precision. Such techniques mainly “predict
away” the higher-order bits. If more precision (i.e. low
bits) is added the compression ratio (i.e. the
compressed size in proportion to the uncompressed
size) decreases. This is clearly demonstrated in Table
1, which reports bit-rates for parallelogram predicted
geometry at different quantization levels: the achieved
compression ratios decrease with increasing precision.
 The initial quantization step that maps each
floating-point number to an integer makes predictive
coding simple. The differences between predicted and
actual numbers are also integers and the same
absolute prediction error always results in the same
difference. When operating directly in floating-point,
predictive coding is less straightforward. The non-
uniform distribution of floating-point numbers makes
compression of the corrective terms more difficult in
two ways: First, the difference between two 32-bit
floating-point numbers cannot simply be represented
by another 32-bit floating-point number (without loss
in precision). Second, the same absolute prediction

error results in differences that vary drastically with
the magnitude of the predicted number, as illustrated
in Fig. 3. For the largest numbers there will often only
be a difference of a few bits in the mantissa, but for
smaller numbers this difference will increase.
Especially if the exponent is miss-predicted we can
expect a large difference between the mantissas. Miss-
predictions of the exponent become more likely for
numbers close to zero. Here also the sign may often be
predicted incorrectly.

4. LOSSLESS COMPRESSION

In order to compress floating-point coordinates in a
lossless manner using the parallelogram predicition
rule we split the floating-point numbers into sign,
exponent, and mantissa and then treat these three
components separately. For a single-precision 32-bit
IEEE floating-point number, the sign s is a single bit
that specifies whether the number is positive (s = 0) or
negative (s = 1), the exponent e is an eight bit number
with an added bias of 127 where 0 and 255 are
reserved for un-normalized near-zero and infinite
values, and the mantissa m is a twenty-three bit
number that is used to represent 223 uniformly-spaced
numbers within the range associated with the
exponent.

Fig. 4. The distribution of exponents among all x-coordinates
for the david (2mm), the lucy, and the powerplant model as
percentages of the total. The powerplant's exponents of 143
belong to a building situated far from the main complex.

Fig. 3. The non-uniform distribution of floating-point numbers implies that the same absolute prediction error of, for example,
0.2 results in differences that vary drastically with the magnitude (i.e. the exponent) of the predicted numbers.

CAD’04, www.cadconferences.com

Copyright © CAD Solutions Co., Ltd. 5

Fig. 5. The average absolute difference between predicted and
actual mantissa over all x-coordinates that have the same
exponent. The worst possible difference is +/-222.

 Our encoder—and also our decoder—compute the
parallelogram predictions in floating-point arithmetic
and then compress the difference between the
predicted and the actual numbers component by
component using a context-based arithmetic coder.
Especially for the mantissa, the success of the
prediction rule is tied to the magnitude (i.e. the
exponent) of the number (see Fig. 3). The same
prediction error results in a smaller difference in
mantissa for numbers with larger exponents. In
particular, this difference doubles/halves when the
exponent is decreased/increased by one. The spacing
between consecutive floating-point numbers changes
with the exponent so that more/less of these spacings

are required to express that difference. We account for
this by switching arithmetic contexts based on the
exponents. This prevents the correctors from
predictions of numbers with smaller exponent from
spoiling the potentially lower entropy of correctors
from predictions of numbers with higher exponent.

 In order to illustrate the viability of out approach we
list in Fig. 4 the distribution of exponents in some of
our models and in Fig. 5 the average length of the
mantissa corrections for different components. The
first set of plots show that only a few exponents are
used frequently in typical models. The second set of
plots confirm that the mantissa predictions are better
for the more frequent numbers with larger exponents.

 The pseudo code in Fig. 6 illustrates how we
compress the differences in sign, exponent, and
mantissa. First we compress the exponent using the
predicted exponent to switch contexts. Then we
compress whether the sign was predicted correctly or
not using the previously encoded exponent to switch
contexts. Finally, we compress the difference between
predicted and actual mantissa. However, if there was a
miss-prediction in the sign or in the exponent we first
adjust the prediction for the mantissa. If the sign was
miss-predicted or if the exponent was miss-predicted
as too large we use the smallest possible mantissa (i.e.
0) as prediction. And if the exponent was miss-

Fig. 6. Pseudo code illustrating our floating-point compressor: First we compress the exponent, then whether the sign was
predicted correctly, and finally the difference between predicted and real mantissa. Miss-predictions in sign or exponent are
used to adjust the prediction for the mantissa. The calls to the functions on the right are mainly for clarity. They call the
arithmetic coder with the appropriate context to do the actual compression of the corrective values.

CAD’04, www.cadconferences.com

Copyright © CAD Solutions Co., Ltd. 6

predicted as too small then we use the largest possible
mantissa (i.e. 223-1) as prediction.
 Whereas the corrector for the sign and the exponent
can be efficiently compressed in “one piece”, the
mantissa corrector needs to be broken into several
chunks prior to arithmetic coding. Otherwise we
would require one gigantic arithmetic context table
with 223 entries in order to accommodate all possible
correctors between -222+1 and 222. We first compress
whether the corrector is positive or negative using a
binary context. Then we compress the lower and the
upper 11 bits of its absolute value 0 to 222-1 using two
context tables with 211 entries. The largest possible
absolute value of 222 is clamped to 222-1. Only if the
compressed value happens to be this value of 222-1 we
need a final binary context to specify whether this is
really 222-1 or whether this is the clamped value of 222.
 In Table 1 we list example bit-rates for our lossless
floating-point geometry compressor side by side with
the results of [10] where the bounding box is first
uniformly quantized with 16, 18, 20, 22, and 24 bits.
The achieved bit-rates for lossless compression nicely
complement those resulting from quantizing at
different precisions. On various example models, our
encoding scheme compresses the floating-point data
down to between 30% and 52% of the 96 bits per
vertex (bpv) required for uncompressed storage.

5. SUMMARY AND CURRENT WORK

In this paper we have described how to efficiently
compress floating-point coordinates of polygonal
meshes in a lossless manner. For this we omit the
quantization step, compute a prediction in floating-
point, and separately compress the difference between
predicted and actual sign, exponent, and mantissa
using context-based arithmetic coding. We exploit the
correlation among these three components by
compressing them in correlation order. In particular,
we use the exponent to switch contexts between
predictions. This prevents predictions for numbers
with smaller exponents, which are expected to be less
accurate, from spoiling the entropy of better
predictions. Furthermore, we use miss-predictions in

the sign or the exponent to adjust the prediction of the
mantissa. The presented approach can be seen as a
completing rather than competing technology that can
be used whenever quantization of the floating-point
values is not an option. It may also be used to
predictively compress floating-point data in other
contexts given that reasonable predictions are
available. Without modification our coder also
compresses special numbers such as infinity or zero in
an efficient way.
 One benefit of lossless floating-point compression is
that it does not require a-priori knowledge about the
precision or bounding-box of the data. However, if the
precision in the data is known to be uniform or if it is
sufficient to preserve, for example, only 16 uniform
precision bits then it would be wasteful to losslessly
compress the floating-point values. Currently we are
designing a scheme that can quantize and compress a
stream of floating-point numbers on-the-fly (i.e. in a
single pass) by learning the bounding box while
guaranteeing a user-specified number of precision
bits.

Acknowledgements
This work was performed under the auspices of the
U.S. DOE by LLNL under contract no. W-7405-Eng-
48. The Happy Buddha and Lucy are courtesy of the
Stanford Computer Graphics Laboratory. The Power
Plant model was provided by the Walkthru Project at
the University of North Carolina at Chapel Hill. The
Double Eagle model is courtesy of Newport News
Shipbuilding. The David statue is courtesy of the
Digital Michelangelo Project at Stanford University.

6. REFERENCES

[1] C. Bajaj, V. Pascucci, and G. Zhuang. Single
resolution compression of arbitrary triangular
meshes with properties. In Data Compression
Conference’99 Conference Proceedings, pages
247–256, 1999.

[2] S. Bhakar D. Shikhare and S.P. Mudur.
Compression of 3D engineering models using

Table 1. This table lists results for lossless geometry compression in bits per vertex (bpv) side-by-side with the bit-rates that are
obtained when first uniformly quantizing the geometry with 16, 18, 20, 22, and 24 bits of precision. In addition we list the
achieved gains as the ratio between the compressed and the corresponding uncompressed bit-rates. These are calculated as
three times the precision for the pre-quantized geometry and as three times 32 bits for lossless floating-point geometry.

CAD’04, www.cadconferences.com

Copyright © CAD Solutions Co., Ltd. 7

discovery of repeating geometric features. In
Proceedings of Workshop on Vision, Modeling,
and Visualization, pages 233–240, 2001.

[3] M. Deering. Geometry compression. In
SIGGRAPH’95 Conference Proceedings, pages
13–20, 1995.

[4] O. Devillers and P.-M. Gandoin. Progressive and
lossless compression of arbitrary simplicial
complexes. In SIGGRAPH’02 Conference
Proceedings, pages 372–379 , 2002.

[5] X. Gu, S. Gortler, and H. Hoppe. Geometry
images. In SIGGRAPH’02 Conference
Proceedings, pages 355–361, 2002.

[6] S. Gumhold and W. Strasser. Real time
compression of triangle mesh connectivity. In
SIGGRAPH’98 Conference Proceedings, pages
133–140, 1998.

[7] M. Isenburg. Compressing polygon mesh
connectivity with degree duality prediction. In
Graphics Interface’02 Conference Proceedings,
pages 161–170, 2002.

[8] M. Isenburg and P. Alliez. Compressing polygon
mesh geometry with parallelogram prediction. In
Visualization’02 Conference Proceedings, pages
141–146, 2002.

[9] M. Isenburg, P. Alliez, and J. Snoeyink. A
benchmark coder for polygon mesh compression.
In http://www.cs.unc.edu/ ˜ isenburg/pmc/

[10] M. Isenburg and S. Gumhold. Out-of-core
compression for gigantic polygon meshes. In
SIGGRAPH’03 Conference Proceedings, pages
935–942, 2003.

[11] M. Isenburg and J. Snoeyink. Face Fixer:
Compressing polygon meshes with properties. In
SIGGRAPH’00 Conference Proceedings, pages
263–270, 2000.

[12] M. Isenburg and J. Snoeyink. Compressing the
property mapping of polygon meshes. In Pacific
Graphics’01 Conference Proceedings, pages 4–11,
2001.

[13] M. Isenburg and J. Snoeyink. Compressing
texture coordinates with selective linear
predictions. In Proceedings of Computer Graphics
International’03, pages 126–131, 2003.

[14] Z. Karni and C. Gotsman. Spectral compression of
mesh geometry. In SIGGRAPH’00 Conference
Proceedings, pages 279–286, 2000.

[15] A. Khodakovsky, P. Alliez, M. Desbrun, and P.
Schroeder. Near-optimal connectivity encoding of
2-manifold polygon meshes. Graphical Models,
64(3-4):147–168, 2002.

[16] A. Khodakovsky, P. Schroeder, and W. Sweldens.
Progressive geometry compression. In
SIGGRAPH’00 Conference Proceedings, pages
271–278, 2000.

[17] J. Li, C. C. Kuo, and H. Chen. Mesh connectivity
coding by dual graph approach. Technical report,
March 1998.

[18] J. Rossignac. Edgebreaker: Connectivity
compression for triangle meshes. IEEE
Transactions on Visualization and Computer
Graphics, 5(1):47–61, 1999.

[19] G. Taubin, W.P. Horn, F. Lazarus, and J.
Rossignac. Geometry coding and VRML.
Proceedings of the IEEE, 86(6):1228–1243, 1998.

[20] G. Taubin and J. Rossignac. Geometric
compression through topological surgery. ACM
Transactions on Graphics, 17(2):84–115, 1998.

[21] C. Touma and C. Gotsman. Triangle mesh
compression. In Graphics Interface’98 Conference
Proceedings, pages 26–34, 1998.

[22] I. H. Witten, R. M. Neal, and J. G. Cleary.
Arithmetic coding for data compression.
Communications of the ACM, 30(6):520–540,
1987.

