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ABSTRACT 
 

The geometric data sets found in scientific and industrial applications are often very detailed. 
Storing them using standard uncompressed formats results in large files that are expensive to 
store and slow to load and transmit. Many efficient mesh compression techniques have been 
proposed, but scientists and engineers often refrain from using them because they modify the 
mesh data. While connectivity is encoded in a lossless manner, the floating-point coordinates 
associated with the vertices are quantized onto a uniform integer grid for efficient predictive 
compression. Although a fine enough grid can usually represent the data with sufficient 
precision, the original floating-point values will change, regardless of grid resolution. 
    In this paper we describe how to compress floating-point coordinates using predictive coding 
in a completely lossless manner. The initial quantization step is omitted and predictions are 
calculated in floating-point. The predicted and the actual floating-point values are then broken 
up into sign, exponent, and mantissa and their corrections are compressed separately with 
context-based arithmetic coding. As the quality of the predictions varies with the exponent, we 
use the exponent to switch between different arithmetic contexts. Although we report 
compression results using the popular parallelogram predictor, our approach works with any 
prediction scheme. The achieved bit-rates for lossless floating-point compression nicely 
complement those resulting from uniformly quantizing with different precisions. 
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1. INTRODUCTION 

The polygon mesh is the most widely used primitive 
for representing three-dimensional geometric models. 
Polygon meshes consist of geometry and connectivity, 
the first describing positions in 3D space and the 
latter describing how to connect these positions 
together into polygons that describe a surface. 
Typically there are also mesh properties such as 
texture coordinates, material attributes, etc. that, for 
example, describe the visual appearance of the mesh 
at rendering time. 
    The standard representation of a polygon mesh uses 
an array of floats to specify the positions and an array 
of integers containing indices into the position array 
to specify the polygons. A similar scheme is used to 
specify the various properties and how they are 
attached to the mesh. For large and detailed models 
this representation results in files of substantial size, 
which makes their storage expensive and their 
transmission slow. 
    The need for more compact mesh representations 
has motivated researchers to develop techniques for 
compression of connectivity [20,21,6,18,11,7,15], of 
geometry [3,20,21,14,8], and of properties 

[19,1,12,13]. The most popular compression scheme 
was proposed by Touma and Gotsman [21] and 
generalized to the polygonal case by Isenburg and 
Alliez [7,8]. It tends to give very competitive bit-rates 
that continue to be the accepted benchmark for mesh 
compression [9]. Furthermore, this coding scheme 
allows compression and decompression to operate 
out-of-core for compressing gigantic meshes [10]. 
    While connectivity is typically encoded in a lossless 
manner, geometry compression tends to be lossy. 
Current schemes require the floating-point 
coordinates associated with the vertices to be 
quantized onto a uniform integer grid prior to 
predictive compression. Usually one can choose a 
sufficiently fine grid to capture the entire precision 
that exists in the data. However, the original floating 
point values will change slightly. Many scientists and 
engineers dislike the idea of having their data 
modified by a process outside of their control and 
therefore often refrain from using mesh compression 
altogether. 
    A more scientific reason for avoiding the initial 
quantization step is a non-uniform precision in the 
mesh data. Standard 32-bit IEEE floating point 
numbers have 23 bits of precision within the range of 
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each exponent (see Fig. 1) so that the least precise (i.e. 
the widest spaced) numbers are those with the highest 
exponent. Assuming a uniform sampling, the entire 
uniform accuracy present in the floating-point 
samples could be represented with 25 bits once the 
bounding box (i.e. the highest exponent) is known. If 
this assumption does not hold because, for example, 
the mesh was specifically aligned with the origin to 
provide higher precision in some areas, then uniform 
quantization is not an option. 
    Finally, if neither the precision nor bounding-box of 
the floating-point samples is known in advance it may 
be impractical to quantize the data prior to 
compression. Such a situation may arise in streaming 
compression, as envisioned by Isenburg and Gumhold 
[10]. In order to compress the output of a mesh-
generating application on-the-fly, one may have to 
operate without a-priori knowledge about the 
precision or the bounding-box of the mesh. 
    In this paper we describe how to compress floating-
point coordinates with predictive coding in a 
completely lossless manner. The initial quantization 
step is omitted and the predictions are calculated in 
floating-point arithmetic. The predicted and the 
actual floating-point values are then broken up into 
sign, exponent, and mantissa and their corrections are 
compressed separately with context-based arithmetic 
coding. As the quality of the predictions varies with 
the exponent, we use the exponent to switch between 
different arithmetic contexts. Although we report 
compression results using the popular parallelogram 
predictor, our approach works with any prediction 
scheme. The achieved bit-rates for lossless floating-
point compression nicely complement those resulting 
from uniformly quantizing with different precisions. 
Hence, our approach is a completing rather than a 
competing technology that can be used whenever 
uniform quantization of the floating-point values is—
for whatever reason—not an option. 

    The remainder of this paper is organized as follows: 
We give a brief overview of mesh compression in the 
next section. Following, we describe predictive 
geometry coding and the initial quantization step. In 
Section 4 we show how these techniques can operate 
on floating-point numbers in a completely lossless 
manner and report compression results. The last 
section summarizes our contributions and discusses 
current work. 
 
2. MESH COMPRESSION 

The three-dimensional surfaces that are used in 
interactive visualization or for scientific computations 
are often represented as polygonal meshes. To 
accurately represent a detailed model a large number 
of polygons may be required. Limited transmission 
bandwidth and storage capacity have motivated 
researchers to find compact representations for such 
data, and a number of mesh compression schemes 
have been proposed. Traditionally, the compression of 
connectivity, that is the incidence relation among the 
vertices, and the compression of geometry, that is the 
actual 3D location of each individual vertex, are done 
by clearly separated (but often interwoven) 
techniques. The connectivity coder [20,21,17,6,18,11, 
7,15] is usually the core component of a compression 
engine and drives the compression of geometry 
[20,21,8] and properties [19,12,13]. Connectivity 
compression is lossless due to the combinatorial 
nature of the data. Compression of geometry and 
properties, however, is lossy due to the mandatory 
quantization step for the floating-point values. 
    Recent connectivity compression schemes use the 
concept of region growing [7] and process adjacent 
faces one after the other until the entire mesh has been 
conquered. Most geometry compression schemes use 
the traversal order this induces on the vertices to 
compress their (pre-quantized) positions using a 
predictive coding scheme. Instead of specifying each 

Fig. 1. The x-coordinates of the 81 million triangle Double Eagle tanker range from −4.095 to 190.974. The x-coordinates above 
128 have the least precision with 23 mantissa bits covering a range of 128 (i.e. between 128 and 256). There is sixteen times 
more precision between 8 and 16, where the same number of mantissa bits only have to cover a range of 8. 
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position individually, previously decoded vertices are 
used to predict the next position and only a corrective 
vector is stored. Virtually all predictive coding 
schemes used in industry-strength compression 
engines employ simple linear predictors [3,20,21]. 
    Recently we have seen a number of innovative, yet 
much more involved approaches to mesh 
compression. There are spectral methods [14] that 
perform a global frequency decomposition of the 
surface, there are space-dividing methods [4] that 
specify the mesh connectivity relative to a geometric 
triangulation of connectivity-less coded positions, 
there are remeshing methods [16,5] that compress a 
regularly parameterized version instead of the original 
mesh, and there are feature-based methods [2] that try 
to find repeated geometric features in a model. We do 
not attempt to improve on these schemes. Instead we 
show how predictive geometry compression schemes 
[3,20,21,8] can be adapted to compress floating-point 
coordinates in a lossless manner. 

3. PREDICTIVE GEOMETRY CODING 

The reasons for the popularity of simple prediction 
schemes are that they are easy to implement robustly, 
that compression or at least decompression is fast, and 
that they deliver good compression rates. For several 
years already, the simple parallelogram predictor 
[21,8] (see Fig. 2) has become the accepted benchmark 
that many recent approaches compare themselves 
with. Although better compression rates have been 
reported, in practice it is often questionable whether 
these gains are justified given the sometimes immense 
increase in algorithmic and asymptotic complexity of 
the coding scheme. Furthermore these improvements 
are often specific to a certain type of mesh. Some 
methods achieve significant gains only on models with 
sharp features, while others are only applicable to 
smooth and sufficiently dense sampled meshes. 
Predictive geometry compression schemes work as 
follows: First all floating-point positions are converted 
to integers by uniform quantization with a user-
defined precision of for example 12, 16, or 20 bits per 
coordinate. This introduces a quantization error, as 
some of the floating-point precision is lost. Then a 

Fig. 2. The parallelogram predictor uses the vertices of a neighboring triangle to predict the next vertex. Only a small correction
(here: the red arrow) needs to be encoded. We compress the corrections for sign, exponent, and mantissa separately using
context-based arithmetic coding [22]. Above, each of the three components is shown in hexadecimal for both the predicted and
the actual floating-point number. First we compress the actual exponent while switching contexts based on the predicted
exponent. Then we compress whether predicted and actual sign are identical or not. For this we can already switch contexts
based on the (previously encoded) actual exponent. Finally we compress the difference between predicted and actual mantissa.
Only if sign and exponent were predicted correctly do we actually use the predicted mantissa as the prediction. If the sign was
different or if the predicted exponent was smaller we use 0 as the prediction. If the predicted component was larger we use 223 −
1 as the prediction. This happens above for the z-coordinate: because the exponent 0x7E was miss-predicted as 0x7F we predict
the mantissa with 0x7FFFFF and compress the correction 0x7851EC - 0x7FFFFF = −0x07AE13. The function calls on the right
refer to the pseudo code from Fig. 6. 
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prediction rule is applied that uses previously decoded 
integer positions to predict the next position. Finally, 
an offset vector is stored that corrects the difference 
between predicted and actual integer position. The 
values of these corrective vectors tend to spread 
around zero. This reduces the variation and thereby 
the entropy of the sequence of numbers, which means 
that they can be efficiently compressed with, for 
example, an arithmetic coder [22]. 
    The simplest prediction method predicts the next 
position as the last position, and was suggested by 
Deering [3]. While this technique, also known as delta-
coding, makes as a systematic prediction error, it can 
easily be implemented in hardware. A more 
sophisticated scheme is the spanning tree predictor by 
Taubin and Rossignac [20]. A weighted linear 
combination of two, three, or more parent vertices in a 
vertex spanning tree is used for prediction. By far the 
most popular scheme is the parallelogram predictor 
introduced by Touma and Gotsman [21]. A position is 
predicted to complete the parallelogram that is 
spanned by the three previously processed vertices of a 
neighboring triangle. 
    Predictive compression does not scale linearly with 
increased precision. Such techniques mainly “predict 
away” the higher-order bits. If more precision (i.e. low 
bits) is added the compression ratio (i.e. the 
compressed size in proportion to the uncompressed 
size) decreases. This is clearly demonstrated in Table 
1, which reports bit-rates for parallelogram predicted 
geometry at different quantization levels: the achieved 
compression ratios decrease with increasing precision. 
    The initial quantization step that maps each 
floating-point number to an integer makes predictive 
coding simple. The differences between predicted and 
actual numbers are also integers and the same 
absolute prediction error always results in the same 
difference. When operating directly in floating-point, 
predictive coding is less straightforward. The non-
uniform distribution of floating-point numbers makes 
compression of the corrective terms more difficult in 
two ways: First, the difference between two 32-bit 
floating-point numbers cannot simply be represented 
by another 32-bit floating-point number (without loss 
in precision). Second, the same absolute prediction 

error results in differences that vary drastically with 
the magnitude of the predicted number, as illustrated 
in Fig. 3. For the largest numbers there will often only 
be a difference of a few bits in the mantissa, but for 
smaller numbers this difference will increase. 
Especially if the exponent is miss-predicted we can 
expect a large difference between the mantissas. Miss-
predictions of the exponent become more likely for 
numbers close to zero. Here also the sign may often be 
predicted incorrectly.  
 
 
4. LOSSLESS COMPRESSION 

In order to compress floating-point coordinates in a 
lossless manner using the parallelogram predicition 
rule we split the floating-point numbers into sign, 
exponent, and mantissa and then treat these three 
components separately. For a single-precision 32-bit 
IEEE floating-point number, the sign s is a single bit 
that specifies whether the number is positive (s = 0) or 
negative (s = 1), the exponent e is an eight bit number 
with an added bias of 127 where 0 and 255 are 
reserved for un-normalized near-zero and infinite 
values, and the mantissa m is a twenty-three bit 
number that is used to represent 223 uniformly-spaced 
numbers within the range associated with the 
exponent. 
 

 

 
Fig. 4. The distribution of exponents among all x-coordinates 
for the david (2mm), the lucy, and the powerplant model as 
percentages of the total. The powerplant's exponents of 143 
belong to a building situated far from the main complex. 
 

Fig. 3. The non-uniform distribution of floating-point numbers implies that the same absolute prediction error of, for example,
0.2 results in differences that vary drastically with the magnitude (i.e. the exponent) of the predicted numbers. 
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Fig. 5. The average absolute difference between predicted and 
actual mantissa over all x-coordinates that have the same 
exponent. The worst possible difference is +/-222. 
 
    Our encoder—and also our decoder—compute the 
parallelogram predictions in floating-point arithmetic 
and then compress the difference between the 
predicted and the actual numbers component by 
component using a context-based arithmetic coder. 
Especially for the mantissa, the success of the 
prediction rule is tied to the magnitude (i.e. the 
exponent) of the number (see Fig. 3). The same 
prediction error results in a smaller difference in 
mantissa for numbers with larger exponents. In 
particular, this difference doubles/halves when the 
exponent is decreased/increased by one. The spacing 
between consecutive floating-point numbers changes 
with the exponent so that more/less of these spacings 

are required to express that difference. We account for 
this by switching arithmetic contexts based on the 
exponents. This prevents the correctors from 
predictions of numbers with smaller exponent from 
spoiling the potentially lower entropy of correctors 
from predictions of numbers with higher exponent. 
 
    In order to illustrate the viability of out approach we 
list in Fig. 4 the distribution of exponents in some of 
our models and in Fig. 5 the average length of the 
mantissa corrections for different components. The 
first set of plots show that only a few exponents are 
used frequently in typical models. The second set of 
plots confirm that the mantissa predictions are better 
for the more frequent numbers with larger exponents. 
 
   The pseudo code in Fig. 6 illustrates how we 
compress the differences in sign, exponent, and 
mantissa. First we compress the exponent using the 
predicted exponent to switch contexts. Then we 
compress whether the sign was predicted correctly or 
not using the previously encoded exponent to switch 
contexts. Finally, we compress the difference between 
predicted and actual mantissa. However, if there was a 
miss-prediction in the sign or in the exponent we first 
adjust the prediction for the mantissa. If the sign was 
miss-predicted or if the exponent was miss-predicted 
as too large we use the smallest possible mantissa (i.e. 
0) as prediction. And if the exponent was miss-

Fig. 6. Pseudo code illustrating our floating-point compressor: First we compress the exponent, then whether the sign was
predicted correctly, and finally the difference between predicted and real mantissa. Miss-predictions in sign or exponent are
used to adjust the prediction for the mantissa. The calls to the functions on the right are mainly for clarity. They call the
arithmetic coder with the appropriate context to do the actual compression of the corrective values.  
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predicted as too small then we use the largest possible 
mantissa (i.e. 223-1) as prediction. 
    Whereas the corrector for the sign and the exponent 
can be efficiently compressed in “one piece”, the 
mantissa corrector needs to be broken into several 
chunks prior to arithmetic coding. Otherwise we 
would require one gigantic arithmetic context table 
with 223 entries in order to accommodate all possible 
correctors between -222+1 and 222. We first compress 
whether the corrector is positive or negative using a 
binary context. Then we compress the lower and the 
upper 11 bits of its absolute value 0 to 222-1 using two 
context tables with 211 entries. The largest possible 
absolute value of 222 is clamped to 222-1. Only if the 
compressed value happens to be this value of 222-1 we 
need a final binary context to specify whether this is 
really 222-1 or whether this is the clamped value of 222.  
    In Table 1 we list example bit-rates for our lossless 
floating-point geometry compressor side by side with 
the results of [10] where the bounding box is first 
uniformly quantized with 16, 18, 20, 22, and 24 bits. 
The achieved bit-rates for lossless compression nicely 
complement those resulting from quantizing at 
different precisions. On various example models, our 
encoding scheme compresses the floating-point data 
down to between 30% and 52% of the 96 bits per 
vertex (bpv) required for uncompressed storage. 
 
5.  SUMMARY AND CURRENT WORK 

In this paper we have described how to efficiently 
compress floating-point coordinates of polygonal 
meshes in a lossless manner. For this we omit the 
quantization step, compute a prediction in floating-
point, and separately compress the difference between 
predicted and actual sign, exponent, and mantissa 
using context-based arithmetic coding. We exploit the 
correlation among these three components by 
compressing them in correlation order. In particular, 
we use the exponent to switch contexts between 
predictions. This prevents predictions for numbers 
with smaller exponents, which are expected to be less 
accurate, from spoiling the entropy of better 
predictions. Furthermore, we use miss-predictions in 

the sign or the exponent to adjust the prediction of the 
mantissa. The presented approach can be seen as a 
completing rather than competing technology that can 
be used whenever quantization of the floating-point 
values is not an option. It may also be used to 
predictively compress floating-point data in other 
contexts given that reasonable predictions are 
available. Without modification our coder also 
compresses special numbers such as infinity or zero in 
an efficient way. 
    One benefit of lossless floating-point compression is 
that it does not require a-priori knowledge about the 
precision or bounding-box of the data. However, if the 
precision in the data is known to be uniform or if it is 
sufficient to preserve, for example, only 16 uniform 
precision bits then it would be wasteful to losslessly 
compress the floating-point values. Currently we are 
designing a scheme that can quantize and compress a 
stream of floating-point numbers on-the-fly (i.e. in a 
single pass) by learning the bounding box while 
guaranteeing a user-specified number of precision 
bits. 
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