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Abstract

In this paper we describe a strategy for efficient predic-
tive compression of texture coordinates. Previous works in
mesh compression often claim that this mesh property can
simply be compressed with the same predictor that is al-
ready used for vertex positions. However, in the presence of
discontinuities in the texture mapping such an approach re-
sults in unreasonable predictions. Our method avoids such
predictions altogether. Rather than performing an unrea-
sonable prediction, we switch to a less promising, but at
least reasonable predictor. The resulting correctors are then
compressed with different arithmetic contexts.

1. Introduction
Polygon meshes are the most widely used primitive for

representing three-dimensional geometric models. They
consist of mesh geometry and mesh connectivity, the first
describing the positions of the vertices in 3D space and the
latter describing how they are connected together into poly-
gons. Often there are also mesh properties such as texture
coordinates, colors, or normals that specify the visual ap-
pearance of the mesh surface.

The standard representation of a polygon mesh uses an
array of floats to specify the vertex positions and an array of
integers containing indices into the vertex array to specify
the polygons. A similar scheme is used to specify the var-
ious properties and how they are mapped to the mesh. For
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large and detailed models this representation results in files
of substantial size—hampering storage and transmission.

The need for more compact representations has moti-
vated research on mesh compression and a number of ef-
ficient compression schemes [4, 22, 23, 7, 18, 13, 11, 8, 14,
15, 9] have been proposed. The majority of these techniques
focus on only two aspects of mesh compression: coding the
connectivity and coding the geometry. While these two are
undoubtedly the basic ingredients of a polygon mesh, many
polygonal datasets also contain properties. Typically their
size is a significant portion of the mesh representation. The
array of texture coordinates and the array of texture coordi-
nate indices of the “lion” model shown above, for example,
contribute about 45 % to the total file size.

The array of texture coordinate indices can be efficiently
compressed with one of the proposed schemes for com-
pressing property mappings [7, 21, 12]. The compression of
texture coordinates, however, has received very little atten-
tion. Some papers on geometry compression [21, 2] suggest
that texture coordinates could be compressed with the same
predictive scheme that they propose for vertex positions, but
give no further details and report no experimental results.

Although most position predictors are indeed well suited
for compressing texture coordinates, the presence of discon-
tinuities in the texture mapping can result in completely un-
reasonable predictions. The close-ups views of the “lion”
model illustrate such discontinuities: Neighboring texture
coordinates around the nose, the mouth, and the ear address
distant locations in the texture image. Predictive schemes
for compressing vertex positions assume that vertices that



are topologically close are also geometrically close. This
means, for example, that two vertices connected by an edge
are assumed to have nearby positions in 3D space. The same
assumption also holds for texture coordinates—unless there
is a discontinuity. Instead of performing an unreasonable
prediction near a discontinuity, our scheme switches to a
less promising but at least reasonable predictor.

The most successful simple linear predictor for vertex
positions is the parallelogram rule [23]. The position of a
vertex is predicted to complete a parallelogram defined by
the three vertices of a neighboring triangle. Intuitively it
makes sense to apply the parallelogram rule also to texture
coordinates. Usually the texture coordinates of two adjacent
triangles also form two adjacent triangles in texture space.
But if the edge connecting the two triangles coincides with
a discontinuity in the texture mapping, the parallelogram
rule gives a completely random prediction. In this case it
is better to fall back to a simpler but meaningful predic-
tion. It is crucial to the success of our approach to compress
correctors resulting from the more promising parallelogram
predictor with a different arithmetic context [24] than those
resulting from less promising fall-back predictors.

2. Discontinuities in the Texture Mapping

Texture images are a simple way to increase the real-
ism of polygonal meshes. The process of applying a texture
image to a mesh is called texture mapping. It consists of
putting every polygon of the 3D mesh into correspondence
with a polygon in the 2D texture image. Although each
polygon could be mapped independently, it is usually bene-
ficial to map neighboring polygons in the mesh into neigh-
boring polygons in texture space. The problem of finding a
suitable mapping or parameterization for texturing a polyg-
onal surface is a much studied problem [17, 20, 5, 16, 6, 19].

Vertices whose surrounding polygons are mapped into
neighboring polygons in texture space appear at a single lo-
cation in the texture image. They have a single texture co-
ordinate that is used by all their surrounding polygons. In
order to flatten a mesh without boundary or of non-trivial
topology it is often cut open. Such cuts introduce discon-
tinuities or seams in the texture mapping. Vertices along
these seams appear at several locations in the texture im-
age. Therefore they have multiple texture coordinates each
of which is used by a subset of their surrounding polygons.

To minimize distortion in the texture-mapped image, the
mapping between the polygons in 3D and the polygons in
2D is often sought to preserve angles and distances. Usu-
ally, it is impossible to flatten an entire mesh in one piece
without creating overlapping or extremely distorted poly-
gons. Distortion can be reduced by introducing additional
cuts [6] or by cutting the mesh into several parts that are
then parameterized separately [17, 20, 16, 19]. The latter
results in the parameterization being broken up into several

charts, which are then assembled into a single texture im-
age called an atlas [17]. Both approaches create additional
discontinuities in the texture mapping.

There are also other reasons to perform a piece-wise tex-
ture mapping: From an artist’s perspective it is often con-
venient to cut a mesh into several parts in order to paint
each of them separately, like it was done for the “cat” model
from Figure 3. Also commercial software packages for au-
tomated generation of texture maps sometimes create a lot
of seams. The “1510” model from Figure 3 was generated
from a scan of an archaeological artifact. Its parameteri-
zation is broken into a many small squares that are tightly
packed into a space-efficient atlas. This creates an immense
number of discontinuities in the texture mapping.

In our experiments we use two sets of meshes with dif-
ferently generated texture mappings. One set consists of
hand-crafted polygon models of animals that were carefully
textured by a skilled artist. Their texture mappings are rel-
atively smooth with only a small number of seams that co-
incide with “natural” discontinuities. The other set consists
of automatically generated triangle models of scanned ar-
chaeological artifacts that were textured using an automated
method. Their texture mappings are not smooth at all.

3. Previous Work

Previous work in mesh compression has mostly focused
on compressing the connectivity and the geometry of trian-
gular [4, 22, 23, 7, 18, 2] or polygonal [11, 8, 14, 15, 9]
meshes. There are only a few papers on compressing the
texture coordinate mapping [7, 21, 11, 12] and even fewer
mention texture coordinate compression [21, 2].

The common approach for compressing vertex positions
first quantizes the floating point numbers uniformly and
then applies some form of predictive coding. Quantization
with k bits of precision converts each floating point number
into an integer value between 0 and 2k−1, which could then
be stored using k bits. Predictive coding reduces the varia-
tion and thereby the entropy of the sequence of k bit num-
bers. Rather than specifying each coordinate individually,
previously decoded information is used to predict the next
coordinate and only a correcting term is stored. The sim-
plest prediction method simply predicts the next position as
the last position. This is called delta-coding and was first
suggested by Deering [4]. Better methods are the spanning
tree predictor by Taubin and Rossignac [22] and the paral-
lelogram predictor introduced by Touma and Gotsman [23].

Most authors suggest to use their position predictors to
also compress other mesh properties. Deering [4] proposes
delta-coding for compressing quantized RBG colors. Sim-
ilarly, Taubin et al. [21] apply their spanning predictor to
compress various quantized mesh properties. Although they
capture discontinuities in the property mapping with dis-
continuity bits, they do not use this information to pre-
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vent unreasonable predictions near discontinuities. Bajaj et
al. [2] limit their linear predictor to meshes with perfectly
smooth property mappings and perform all computations in
spherical coordinates. For RGB colors quantized to 4, 6,
and 8 bits per component they report rather small compres-
sion gains of 12, 11, and 10 %.

A completely different approach for texture coordinate
compression was proposed by Sorkine and Cohen-Or [19].
They completely re-texture a mesh by computing a new
piece-wise parameterization that is implicitly defined by the
mesh and by warping the texture image accordingly. This
eliminates the need to explicitly store the texture coordi-
nates as they can be computed from the mesh. However, the
requirement to warp the texture image makes this method
unsuitable as a general purpose compressor.

Another approach that avoids explicit texture coordinates
re-samples the mesh onto a regular grid in texture space [6].
However, this method should be thought of as a new and
compact representation for geometric shapes rather than a
polygon mesh compression scheme.

4. Preliminaries

The driving component of a typical mesh compression
engine is the connectivity coder. The coder grows a region
on the mesh by traversing its vertices and polygons with a
fixed [22, 23, 7, 18, 11] or an adaptive [1, 8, 14, 15] strategy
and records a stream of symbols from which the connectiv-
ity can be reconstructed. Vertex positions and other mesh
properties are compressed in the order that the vertex, the
face, or the corner they are associated with is encountered
during this traversal. Special care needs to be taken when
mesh properties are attached per-corner.

A corner is the point where a polygon connects to a ver-
tex. A triangle, for example, has three corners, each of
which connects to a different vertex. A vertex has as many
corners as there are polygons connected to it. Around ev-
ery vertex of a manifold mesh there is a consistent cycle of
corners and edges, which we refer to as a vertex ring. In
this paper we use a counterclockwise order to talk about a
next/following and a previous/preceding edge or corner. Af-
ter encountering a vertex ring through one of its edges there
is always an unique traversal of the corners. The traversal
starts with the corner following the respective edge and ends
with the corner preceding it.

Texture coordinates are usually attached per-corner as
this allows to specify discontinuities in the texture mapping.
The corners around a vertex located in a smooth part of the
texture map use a single texture coordinate. The corners
around a vertex along a seam use multiple texture coordi-
nates each of which is shared by a set of adjacent corners.

We say a corner is a smooth corner if it uses the same
texture coordinate as the previous corner, otherwise we call
it a crease corner. The edge preceding a smooth corner is

a smooth edge. Consequently the edge preceding a crease
corner is a crease edge. A vertex is a smooth vertex if all of
its corners are smooth; otherwise it is a crease vertex. The
classification of vertices and corners into smooth and crease
is sufficient to encode the mapping from mesh corners to
texture coordinates [12] as illustrated in Figure 1.
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Figure 1. Coding with vertex and corner bits: (a) A vertex
bit of 1 tells the decoder that it is a smooth vertex. It assigns
the next texture coordinate to all its corners. (b) A vertex bit
of 0 tells the decoder that it is a crease vertex. This means
that the vertex uses two or more texture coordinates. Here
the decoder has to read the corner bits. A corner bit of 1
tells the decoder to assign the next texture coordinate to this
corner, otherwise it assigns the current texture coordinate.

5. Compressing Texture Coordinates

We compress both the texture coordinate mapping and
the texture coordinates by processing the vertex rings in the
order they are encountered by the connectivity coder. The
texture coordinate mapping is coded with vertex and corners
bits as illustrated in Figure 1, which are then compressed
with the predictive scheme proposed in [12]. Subsequently
we predict the texture coordinate(s) associated with the ver-
tex ring using one of four prediction rules. The offset vec-
tors that correct the predicted value to the actual value are
then compressed with an arithmetic coder [24].

Whenever possible, we predict a texture coordinates us-
ing the parallelogram rule [23]. For polygonal meshes we
try to perform the parallelogram prediction within a polygon
instead of across two polygons. This was shown to improve
the bit-rates when compressing vertex positions [9] and also
works for texture coordinates. The intuition is that four tex-
ture coordinates from a single polygon are more likely to
be in a parallelogram-shaped configuration in texture space
than four texture coordinates from two adjacent polygons.

Parallelogram predictions across polygons are only used
when the four texture coordinates belong to the same chart.
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Figure 2. These five example scenarios illustrate the four different predictions that
are used for compressing texture coordinates. The processed vertex ring and the edge
through which it was encountered are marked with a green flag. Corners from the same
vertex that are shaded with the same color use the same texture coordinate. Corners
from different vertices that are shaded with the same color use a texture coordinate
from the same chart. Corners that are shaded with different colors use texture coor-
dinates from different charts. (a) a smooth vertex. Its texture coordinate T17 is used
by four corners. It is within-predicted as T16 − T11 + T13. (b) a crease vertex. Its
texture coordinates T29 and T30 are each used by two corners. T29 is across-predicted
as T22 − T25 + T26 by involving polygon p1, which connects to the vertex ring via a
smooth edge. T30 is within-predicted as T20 − T19 + T21. (c) another smooth vertex.
Its texture coordinate T42 is used by six corners. It is across-predicted inside the vertex
ring as T33 − T36 + T41. The two across-predictions involving the polygons marked
p2 and p3 are forbidden as they connect to the vertex ring via a crease edge. (d) again
a smooth vertex. Its texture coordinate T57 is used by four corners. It is nearby pre-
dicted as T50. An across-prediction involving the neighboring polygon marked p4 is
forbidden because of the crease edge. (e) a crease vertex. Its texture coordinates T82

and T83 are used by two and three corners respectively. T82 is center-predicted as the
center of the texture image. There is no reasonable prediction for T82 because it could
address any location in the image. T83 is within-predicted as T81 − T74 + T80.

This is the case when the edge connecting the two polygons
is smooth. Applying the parallelogram rule to texture co-
ordinates from different charts (e.g. across a crease edge)
would result in a completely random prediction. Instead of
performing an unreasonable prediction we fall back to a less
successful but at least reasonable predictor. We simply use
a nearby texture coordinate from the same chart that is con-
nected by an edge as the prediction. If there is no such tex-
ture coordinate, then no reasonable prediction is possible.
In this case we predict it to lie in the center of the texture
image. In Figure 2 the possible scenarios are illustrated.

It is crucial to the success of our method to compress the
correctors with different arithmetic contexts [24] depending
on which prediction was performed. Using a single context
for all correctors would spoil the potentially low entropy of
correctors that are result of more promising predictions with
the anticipated poor outcome of the fall-back predictions.

In Table 1 we list the percentages with which the differ-
ent prediction rules were used. Note that within-predictions
can only occur in polygonal meshes. Furthermore the tables
report separate bit-rates for the different prediction rules,
which—as expected— confirm their varying success. In
Table 2 we reports the performance of our compression
scheme at different quantization levels. Notice that predic-

tive compression does not scale with increasing precision.
The achievable compression ratio is strongly dependent on
the number of precision bits. Such a technique mainly pre-
dict away the high-order bits, so the relative compression
ratios decrease if more precision (= low bits) is added.

6. Summary and Current Work

Taking into account discontinuities in the texture map-
ping, we have introduced simple prediction rules for effi-
cient compression of texture coordinates. The average com-
pression gain achieved by our method is 71 % for our polyg-
onal and 50 % for our triangular test set for texture coordi-
nates quantized at 10 bits of precision. To our knowledge
this is the first work that rigorously investigates texture co-
ordinate compression in a quantitative, in-depth manner.

The techniques proposed in this paper have been inte-
grated into the benchmark compressor that we have recently
made available [10]. We encourage the reader to visit the
two web-pages that contain an interactive version of this
coder together with all of the animal models1 and all of the
archaeological artifact models2 used in this paper.

1http://www.cs.unc.edu/ ˜isenburg/pmc/animals.html
2http://www.cs.unc.edu/ ˜isenburg/pmc/artifacts.html
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mesh predicted [%] bit-rate [bpt]
name within across nearby center within across nearby center
lion 82 14 3 1 5.6 8.5 9.7 20.2
wolf 84 14 2 0.6 5.9 9.1 11.1 20.2

raptor 76 18 5 1 5.5 8.4 8.9 19.5
fish 90 10 0.3 0.1 6.6 10.6 14.6 20.1

snake 91 8 1 0.2 3.5 7.9 9.5 20.4
horse 86 11 3 0.5 4.3 7.4 10.1 20.4
cat 80 15 4 0.7 4.3 7.1 8.4 19.6
dog 59 37 4 0.7 6.2 7.2 10.0 20.6

average 81 16 3 0.6 5.2 8.3 10.3 20.1

mesh predicted [%] bit-rate [bpt]
name within across nearby center within across nearby center

“1398” – 55 35 10 – 7.5 9.8 18.9
“1412” – 49 39 12 – 8.3 10.3 19.0
“1510” – 53 36 11 – 7.3 10.7 18.3
“1568” – 51 38 11 – 8.4 10.5 19.0

“17” – 58 33 9 – 8.2 10.4 17.7
“1814” – 52 38 10 – 7.5 10.7 15.9
“1823” – 52 37 11 – 7.6 10.4 19.1
“2441” – 49 38 13 – 8.3 10.2 19.2
average – 52 37 11 – 7.9 10.4 18.4

Table 1. These tables report which percentage of texture
coordinates is predicted within a polygon, across polygons,
as a nearby texture coordinate, and as the center of the
bounding box. The corresponding bit-rates at a precision
of 10 bits confirm the different success of these predictions.

A similar technique can also be used to compress RGB
colors. However, on our test set of colored meshes the paral-
lelogram predictor continuously “over-shot” the variation in
color and was outperformed by the simpler nearby predic-
tor. We achieved the best rates of 5.7 (11.4) bits per color at
quantization levels of 4 (6) bit per color component by using
an average of all possible nearby predictions—this equals a
compression gain of 52 (37) % respectively.

Currently we are investigating an approach for predict-
ing texture coordinates from vertex positions. Many tech-
niques for (semi-)automatic texture map generation take
mesh geometry into account to compute texture coordinates
that minimize some distortion metric. The correlation be-
tween vertex positions and texture coordinates is high when
shape preserving metrics are used that minimize geometric
stretch [20], angle distortion [16], or other intrinsic mea-
sures [5]. Sorkine and Cohen-Or [19] establish complete
correlation between the two, because they define the texture
coordinate mapping through the mesh geometry.

Instead of using mesh geometry to define the texture co-
ordinates, we can use it to predict them. This predictor
works best if the shape of a polygon in 3D space is simi-
lar to its shape in texture space. Although initial results are
promising we have to evaluate if the achievable gains are al-
ways worth the additional computational effort. For exam-
ple space-optimized texture maps as proposed by Balmelli
et al. [3] can have a fairly low correlation between texture
coordinates and vertex positions.

mesh characteristics 8 bit 10 bit 12 bit
name c v t bpt gain bpt gain bpt gain
lion 120 16302 16652 3.8 77 6.3 69 9.7 60
wolf 35 7068 7234 3.8 76 6.6 67 10.3 57

raptor 79 7454 6984 3.7 77 6.3 68 10.0 58
fish 7 4685 4685 4.2 73 7.0 65 10.7 55

snake 6 11137 11610 2.3 85 3.9 80 6.5 73
horse 5 9199 9988 2.9 82 4.9 76 8.2 66

cat 39 9627 10350 3.0 81 5.0 75 8.2 66
dog 19 6650 6522 3.9 76 6.8 66 10.6 56

average 3.5 78 5.9 71 9.3 61

mesh characteristics 8 bit 10 bit 12 bit
name c v t bpt gain bpt gain bpt gain

“1398” 1 1487 3133 6.3 61 9.5 53 13.5 44
“1412” 1 1180 2712 7.0 56 10.4 48 14.4 40
“1510” 1 644 1422 6.7 58 9.9 51 13.8 43
“1568” 1 1394 2999 7.2 55 10.5 48 14.4 40

“17” 1 1178 2354 6.6 59 9.9 51 13.8 43
“1814” 1 1145 2475 6.4 60 9.6 52 13.4 44
“1823” 1 1202 2700 6.8 57 10.0 50 14.0 42
“2441” 1 1204 2727 7.0 56 10.5 48 14.5 40
average 6.8 58 10.0 50 14.0 42

Table 2. These tables list for each model the number of
connected components c, of vertices v, and of texture coor-
dinates t. The achieved compression rates in bits per texture
coordinate (bpt) are given at the three common quantiza-
tion levels of 8, 10, and 12 bits and the compression gain
(%) in comparison to uncompressed texture coordinates is
reported. The bit-rate for uncompressed texture coordinates
is simply the number of quantization bits times two.
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models and the Archaeology Technologies Laboratory∗ at North
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∗http://atl.ndsu.edu/archive/
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