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Abstract

Most schemes to compress the topology of a surface mesh have
been developed for the lowest common denominator: triangulated
meshes. We propose aschemethat handlesthe topology of arbitrary
polygon meshes. It encodesmeshesdirectly in their polygonal rep-
resentation and extends to capture face groupingsin a natural way.
Avoiding the triangulation step we reduce the storage costsfor typ-
ical polygon modelsthat have group structures and property data.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—surface, solid, and object represen-
tations;

Additional Keywords: Mesh compression, connectivity encoding

1 INTRODUCTION

Because bandwidth to the graphics pipeline is a limiting factor in
a number of graphics applications, compression schemes for geo-
metric data sets have recently been the subject of intense study. In
particular, many efficient techniqueshave been proposed for encod-
ing polygonal meshes|[3, 24, 25, 7, 16, 18, 13, 15]; we survey these
in the next section. Generally mesh compression techniques focus
on encoding fully triangulated data sets—anatural candidatefor the
lowest common denominator. Triangle meshes are easily derived
from other surface representations and are widely supported by to-
day’s graphics hardware. Especially for data sets whose only des-
tination is the trip down the rendering pipeline, a compact triangle-
based representation is agood choice.

However, many modelsare represented by polygonal meshesthat
contain a surprisingly small percentageof triangles. Two examples
are the standard ‘triceratops’ and ‘galleon’ models shown in Fig-
ure 1, which areinitially not triangulated. The‘Premier Collection’
from Viewpoint Datal abs [28]—a well-known source of high qual-
ity 3D models—consists mostly of meshes with very low triangle
counts. Likewise, few triangles are found in the output formats of
many computer aided design (CAD) packages. The dominating el-
ement of these models is the quadrangle or quadrilateral, but pen-
tagons, hexagons and higher degree faces are also common.

Especially for storage purposesit is beneficial to keep ameshin
its native polygonal representation and delay the conversionto trian-
gles until this becomes necessary. King et a. [13] have shown that
the connectivity information of meshes mostly composed of quad-
rangles can be represented with fewer bits than that of their triangu-
lated counterparts. Furthermore, most mesheshaveassociated prop-
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Figure 1: Thetriceratopsand the galleon model contain only asmall
number of triangles shown in red (left). The group structures on
these meshes are illustrated with arbitrary colours (right).

erties such asnormal, colour or texture information that account for
alarge portion of the storage costs. Triangulating a polygon mesh
not only addsan extra processing step, but also increasesthe number
of faces and corners—replicating their associated properties.

Reconstructing the original polygon mesh rather than a triangu-
lated version can also lead to better results for subsequent triangle
strip generation. Stripification algorithms, such as STRIPE [5], ex-
ploit the freedom to triangul ate polygons on demand to generatetri-
angle strips that use a minimal number of swapsand restarts.

Often polygon models also contain structural information that
classifies groups of faces into logical units. The triceratops and
the galleon model in Figure 1 both contain such group information.
Such astructure can establish a mapping between meaningful parts
of the real-world object and the faces in the model that represent
them. This information can also be used to attach material proper-
tiesto groupsof faces. Encoding such group structures hasnot been
addressed by previously reported compression schemes.

We propose a simple scheme for encoding the connectivity of a
polygon mesh that is based on assigning a code to each mesh edge.
Section 3 describesour schemeasit appliesto polygon mesheswith
holesand handles, and extendsit in Section 4 to efficiently associate
property data and encode group structures. We report compression
rates for a number of meshes that have been used in the literature.

2 PREVIOUS WORK

After reviewing the problem of encoding polygon meshes and the
approachestypically taken, we give a detailed survey of the recent
literature on connectivity compression. However, we limit this de-
scription to the case of simple meshes. For details on how these
schemesencode mesheswith boundary, with holes, or with handles,
we refer the reader to the original reference.
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2.1 Preliminaries

A polygon meshisacollection of polygonal facesthat intersect only
along shared edges and vertices. Any edgeis shared by at most two
faces; unshared edges are boundary edges. Around each face we
find a cycle of vertices and edges; around each vertex we find acy-
cle of edgesand faces. Each appearanceof afacein avertex list or
of avertexin afacelistis called acorner. In the mesh compression
literature, adistinctionis often made betweenthreethings: meshge-
ometry, which includes vertex coordinates, mesh propertiessuch as
normals, colours, and texture coordinates that are attached to ver-
tices, faces, or corners, and mesh connectivity, which describes the
incidencesbetween vertices, edges, and faces. The mesh connectiv-
ity information is also referred to as mesh topology.

Topologically, amesh is a graph embedded in a 2-manifold sur-
face in which each point has a neighborhood that is homeomorphic
to adisk or a half-disk. Points with half-disk neighborhoodsare on
the boundary. A mesh hasgenusg if one canremoveupto g closed
loops without disconnecting the underlying surface; such a surface
is topologically equivalent to a sphere with g handles. A mesh is
simpleif it hasno handles (g = 0) and no boundary edges. Euler’'s
relation says that a graph embedded on a sphere having f faces, e
edges, and v vertices satisfies f — e + v = 2. When all faces have
at least three sides, we know that f < 2v —4ande < 3v — 6,
with equality if an only if all facesare triangles. For amesh with ¢
handles (genus g) the relation becomes f — e +v = 2 — 2¢g and the
bounds on faces and edges increase correspondingly.

The standard representation for uncompressed polygon meshes
usesalist of vertex coordinatesto store geometry and alist of vertex
indicesfor eachfaceto storemesh connectivity. For triangle meshes
of v vertices, thisrequiresapproximately 6v log, v bitsfor the mesh
connectivity. Note that this representation does not directly store
face adjacency, which must be recovered by sorting around vertices
if the meshisto be checked for cracksor turned into triangle strips.

However, mesh connectivity can be encoded in a constant num-
ber of bits per vertex, while geometry and property data can be effi-
ciently compressed with schemesthat predict a position or afeature
from previously decoded neighbours. Researchers in mesh com-
pression have aimed for three different objectives: efficient render-
ing, progressive transmission, and maximum compression.

Efficientrendering:  Encodingsfor rendering usepartial infor-
mation about mesh connectivity to reduce the work in the graphics
pipeline. In the standard representation, each triangle of the mesh
must be rendered individually by sending its three vertices to the
graphics hardware. On average, every mesh vertex is processed six
times. Processing avertex involves passing its coordinatesfrom the
memory to and through the graphics pipeline. Typicaly, this also
includes normal, colour, and texture information. The most com-
mon technique to reduce the number of times this data needs to be
transmitted is to send long runs of adjacent triangles. Such trian-
glestrips[5, 30] arewidely supported by today’sgraphicshardware.
Two verticesfrom a previoustriangle are re-used for all but thefirst
triangle of every strip. Depending on the quality of the strips, this
can reduce the number of vertex repetitions by a factor of three.

In addition to specifying quantizations and codings for coordi-
nates, normals, colors, and other mesh properties, Deering’s pio-
neering paper [3] introduced a techniqueto further reduce the num-
ber of vertex repetitions. His generalizedtriangle mesh isdesigned
for a geometry engine that can cache up to sixteen of the vertices
that have previously passed through the transformation pipeline.

Progressive transmission: Encodingsfor progressive trans-
mission use incremental refinements of mesh connectivity and ge-
ometry so that partial data already represents the entire mesh at a
lower resolution. Hoppe's Progressive Mesh scheme [8] encodesa
mesh by collapsing edges one by one. Decoding starts with asmall
base mesh and expandsthe collapsed edges in reverse order.
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While the first progressive schemes were not designed for
compression and used a large number of bits per vertex, recent
schemes [22, 17, 1, 2] group the refinement operations into large
batches and achieve bit-rates that come close to those of non-
progressive methods. Even though more bits are used for the con-
nectivity information, the progressive nature of the decoding allows
more accurate geometry and property prediction.

For the special case of terrains models based on Delaunay tri-
angulations, Snoeyink and van Kreveld [20] used ideas from Kirk-
patrick’s point location scheme[14] to encodeall topology informa-
tionin apermutation of thevertices, from whichthe meshisprogres-
sively reconstructed. Denny and Sohler’s work [4] extended this
schemeto arbitrary planar triangulations. Although the cost of stor-
ing thetopology is zero, the unstructured order in which the vertices
are received and the absence of adjacency information during their
decompression prohibits predictive geometry encoding. Thismakes
these schemesoverall more expensive. Moreover, it isnot clear that
it is possible to extend this ideato general surface meshes.

Maximum compression: Most schemes for maximum mesh
compression encode mesh connectivity through a compact and of -
ten interwoven representation of two dual spanning trees: one tree
spansthe vertices, and its dual spansthe triangles. Neither the tri-
angle nor thevertex treeis sufficient by itself to capture the connec-
tivity information. Typically such compression schemes[24, 25, 7,
16, 9, 18] useapair of spanningtrees obtained by traversing the ver-
ticesand the triangles of the mesh with a deterministic strategy (e.g.
breadth or depth first search). The geometry data and the property
data of the mesh are usually compressed using predictive encoding
based on local neighbourhood information [24, 25].

2.2 Connectivity Compression Techniques

One of the nicest proofs of Euler’s relation for planar graphs par-
titions the edges into two spanning trees [21]. One tree, spanning
the vertices, has v — 1 edgesand the other, spanning the faces, has
f —1ledges, soe = (v — 1) + (f — 1). Turan[26] was the first
to observethat this partition into two spanning trees could be used
to encode planar graphs. He gave an encoding that used 12 bits per
vertex (bpv). Keeler and Westbrook [11] improved Turan’s method
to guarantee 9 bpv for encoding planar graphs and 4.6 bpv for sim-
ple triangle meshes, but reported no extension for general meshes.

Taubin and Rossignac proposed a schemethat explicitly encodes
both spanning trees. Their Topological Surgery method [24] cuts
amesh along a set of edges that correspondsto a spanning tree of
vertices. This producesasimple mesh without internal verticesthat
can be represented by the dual triangle spanning tree. Run-length
encoding both trees results in practice in bit-rates of around 4 bpv.

Toumaand Gotsman’s Triangle Mesh Compression [25] encodes
the degree of each vertex along a spiraling vertex tree with an “add
<degree>" code. For each branch in the tree they need an addi-
tional “ split <offset>" codethat specifiesthe start and thelength of
the branch. Thistechniqueimplicitly encodesthe triangle spanning
tree. They compress the resulting sequence of “add” and “split”
commandsusing acombination of run-length and entropy encoding.
Especially for regular meshesthey achievelower bit-ratesthan other
schemes. Results on standard meshesrange from 0.2 to 3.0 bpv.

Gumhold and Strasser [7] introduce a compressed representation
for triangle meshesthat is similar to the Edgebreaker method [18].
Starting with thethree edgesof anarbitrary triangleaswhat they call
theinitial “cut-border,” they traverse the triangles of the mesh and
include them into this boundary loop using three connect and one
split operation. The offset value associated with the split operation
is used to re-play the split operation during decoding. This makesit
possibleto decodethe mesh connectivity in asingle forward traver-
sal of all operations, which allows encoding and decodingto run in
parallel—with aminimal delay of one operation.
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Figure 2: The polygon models used in this paper. Above we see the
green mesheswith red triangles for the cessna, al & cupie, shark, san-
dal, beethoven, and tommygun. The coloured figuresillustrate group
structuresin these meshes, plusthe cow with meat-cuts and the teapot.

w

s

name groups | parts | vertices faces corners N | D] O O| > holes | hndls name bpv
triceratops 6 1 2832 | 2834 (5660) | 11328 (16980) | 346 | 2266 | 140 | 63| 19 - — | triceratops || 2.115
galleon 17 12 2372 | 2384 (4698) | 9466 (14094)| 336 | 1947 | 40| 18| 43 - — | galleon 2.595
cessna 38 11 3745 | 3927 (7446) | 15300 (22338) | 900 | 2797 | 180 | 27| 23 - — | cessna 2.841
beethoven 10 8 2655 | 2812 (5030) | 10654 (15090) | 680 | 2078 | 44 4 6 10 — | beethoven || 2.890
sandal 5 9 2636 | 2953 (4952) | 10858 (14856) | 961 | 1985 7 - - 14 12 | sandal 2.602
shark 7 1 2560 | 2562 (5116) | 10240 (15348) | 188 | 2253 | 83| 29 9 - — | shark 1.670
a 35 21 3618 | 4175 (7152) | 15502 (21456) | 1579 | 2505 | 44| 11| 36 - —-|d 2.926
cupie 15 6 2984 | 3032 (5944) | 12008 (17832) | 384 | 2506 | 114 | 10| 18 - — | cupie 2.307
tommygun 15| 39| 4171|3980 (8210) | 16170 (24630)| 992 | 2785 | 84| 21| 98 - 6 | tommygun || 2.611
cow 8 1 2904 | 5804 (5804) | 17412 (17412) | 5804 - - - - - — | cow 2213
teapot 6 1| 1189|1290 (2378)| 4958 (7134)| 215|1070| 3| 1| 1 - 1 | teapot 1.669

Table 1. The statistics of mesh topology and polygon types for all example models together with the achieved connectivity compressionin

bits per vertex (bpv). The numbersin brackets give the face and corner counts for the triangulated version of each model.

Rossignac’s Edgebreaker scheme[18] gives the best guaranteed
bit-rates for triangle mesh connectivity. Thecompression algorithm
uses five operations, C, L, E, R and S, to include triangles into a
boundary, which is initially defined around an arbitrary triangle.
The operations S and E replace the split operation used by the “cut-
border machine” [7], thereby eliminating the need for explicitly en-
codingtheassociated offset value. Improvementson theoriginal pa-
per givelinear decodingtime[19, 10] andtighten the guaranteed bit-
rate to 3.67 bpv [12]. Thisis currently the lowest worst-case bound
and lies within 13% of the theoretical lower limit by Tutte [27].

All of the above schemes have been designed to compress the
connectivity of purely triangular meshes. However, several authors
have reported extensionsto their schemesin order to handle polyg-
onal input. A naive approach arbitrarily triangulates the polygon
mesh and then usesone bit per edgeto distinguish the original edges
from those added during the triangulation process. Marking every
edge can be avoided by triangulating the polygons systematically.

For the Topological Surgery method [23] the extension to polyg-
onal meshesfirst cutsthe mesh along a vertex spanningtree and then
triangulates the dua polygon spanningtree. Only the edgesinterior
to the resulting triangle spanning tree need to be marked. Similarly
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King et al. [13] describe how to let the Edgebreaker method guide
the triangulation process. For simple polygon meshes without ver-
tices of degree two they give an encoding that guarantees’5 bpv.

Infact, King et a. [13] arefirst to provethat quadrangular meshes
can be compressed more efficient than their triangulated counter-
parts by avoiding the triangulation step. They give compact en-
codings for pure quadrangular meshes and for meshes containing
mostly quadranglesand afew triangles. Similar results are reported
by Kronrod and Gotsman [15]. Both papers suggest extensions to
arbitrary polygons, but no experimental results are given.

We recently learned about the Dual Graph approach by Li et
al. [16], which has similarities to the method presented here. Their
schemetraversesthe edgesof the dual and records a stream of sym-
bols and integer values, which is compressed with a carefully de-
signed context based entropy coder. Decoding usesthe recordedin-
formation to re-play this traversal, thereby reconstructing the mesh
connectivity. Their use of split offsets resembles that of the “cut-
border machine” [7], which is avoided by our method.

Inspired by Edgebreaker [18], we propose an edge-based com-
pression scheme that encodesthe connectivity of 2-manifold poly-
gon meshes and extendsto capture structural information as well.
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3 FACE FIXER

The connectivity of the polygon mesh is encoded as a sequence of
labelsF,, R, L, S, E, Hy,, and M; 1 ;. The total number of labels
equalsthe number of mesh edges. The sequenceof |abelsrepresents
an interwoven description of a polygon spanning tree and its com-
plementary vertex spanning tree. For every face of n sidesthereis
alabel F,, and for every hole of sizen thereis alabel H,,. Together
they label the edgesof the polygon spanning tree. For every handle
thereisalabel M; ; that hasthreeinteger valuesassociated. These
specify the two edges of the polygon spanning tree that need to be
‘fixed’ together to re-create the handle. The remaining labels R, L,
S, and E label the edges of the corresponding vertex spanning tree
and describe how to ‘fix’ faces and holestogether. Subsequently an
entropy coder compressesthe label sequenceinto a bit-stream.

3.1 Encoding and Decoding

Starting with apolygon mesh of v vertices, e edges, f faces, h holes,
and g handles, the encoding processproducesa sequenceof e labels.
This sequence contains f labels of type F,,, h labels of type H.,, g
labelsof typeM; i, andv — 2 + g labelsof typeR, L, S, or E. The
connectivity of the polygon mesh can be reconstructed with asingle
reversetraversal of the label sequence.

The algorithm maintains one or more loops of edges that sepa-
rate a single processed region of the mesh from the rest. Each of
these boundary loops has a distinguished gate edge. The focus of
the algorithm is on the active boundary; all others are temporarily
buffered in a stack. The initial active boundary, defined clockwise
around an arbitrary edge of the mesh, hastwo boundary edges. The
gate of the active boundary is the active gate.

In every step of the encoding process the active gate is labeled
with either F,,, R, L, S, E, Hy,, or M; ;. Which label the active
gate is given dependson its adjacency relation to the boundary. Af-
ter recording thelabel, the boundary isupdated and anew active gate
is selected. Depending on the label, the boundary expands (F,, and
H..), shrinks (R and L), splits (S), ends (E), or merges (M; ;). Ta-
ble 2 summarizesthe changesto the processedregion and its bound-
aries for each operation. The encoding process terminates after ex-
actly e iterations, where e is the number of mesh edges.

changeto # of processed # of boundary
label faces | holes | vertices | edges | handles | loops edges
F. +1 +1 -I—(n—Z)
H, +1 +1 -I—(n—Z)
R, L +1 +1 —2
S +1 +1 —2
E +2 +1 —1 —2
M; +1 +1 —1 —2
init =0 =0 =0 =0 =0 =1 =2
final =f|=hr = =e =g =0 =0

Table 2: The changesfor each label in number of processed faces,
holes, vertices, edges, handles, boundary components, and bound-
ary edges. Initial and final countsare listed at the bottom.

In Figure 3 we illustrate for each label the situation in which it
applies and the respective updates for gate and boundary. Both en-
coding and decoding are shown. The details for encoding are:

label F,, Theactivegateis not adjacent to any other boundary edge, but to an unpro-
cessed face of degreen. Theactive boundary is extended aroundthisface. The
new active gate is the rightmost edge of theincluded face.

label R The active gate is adjacent to the next edge along the active boundary. The
gateis ‘fixed’ together with this edge. The new active gate is the previousedge
along the active boundary.

label L Theactivegateisadjacent to the previousedgeal ong theactive boundary. The
gateis‘fixed’ together with thisedge. Thenew active gateisthe next edgealong
the active boundary.
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label S Theactive gate is adjacent to an edge of the active boundary which is neither
the next nor the previous. The gate is ‘fixed’ together with this edge, which
splits the active boundary. The previous edge and the next edge along the ac-
tive boundary become gates for the two resulting boundaries. Oneis pushed on
the stack and encoding continueson the other.

label E The active gate is adjacent to an edge of the active boundary which is both
the next and the previous. Then the active boundary consists of only two edges
which are ‘fixed' together. The encoding process terminates if the boundary
stack isempty. Otherwiseit continueson the boundary popped from this stack.

label H,, Theactivegateis not adjacent to any other boundary edge, but to an unpro-
cessed hole of size n. The active boundary is extended around this hole. The
new active gate is the rightmost edge of theincluded hole.

label M; ; . Theactivegateis adjacent to aboundary edgewhich is not fromthe ac-
tiveboundary, but fromaboundary in the stack. ‘ Fixing’ thetwo edgestogether
merges the two boundaries. Consequently this boundary is removed from the
stack. Its former position 7 in the stack and two offset values and & (see Fig-
ure3) arestored together with thelabel. The new active gateisthe previousedge
along the boundary from the stack.

We use a simple half-edge structure [6] during encoding and de-
coding to store the mesh connectivity and to maintain the bound-
aries. Besides pointers to the origin, to the next half-edge around
theorigin, and to the inverse half-edge, we have two pointersto ref-
erence a next and a previous boundary edge. Thisway we organize
all edges of the same boundary into a cyclic doubly-linked list.

The decoding process reconstructs the connectivity of the poly-
gonmeshwith asinglereversetraversal of thelabel sequence. Each
label has a unique inverse operation (see Figure 3) that undoesthe
gate and boundary updates that happened during encoding. The
time complexity for decodingislinear in the number of mesh edges.
Anexceptionistheinverseoperation for label M; . ; which requires
thetraversal of k + 1 edges. However, labels of this type correspond
to handlesin the mesh, which are of rare occurence.

3.2 Compression

The label sequence produced by the encoding process is subse-
quently mapped into a bit-stream. The frequencies with which
the different labels occur are highly non-uniform, which invites
some kind of entropy encoding. There is also a strong correlation
among subsequent labels, which can be exploited using a memory-
sensitive encoding scheme. With a simple order-3 adaptive arith-
metic coder [29] we achieve excellent compression ratios.

For an adaptive arithmetic encoder with three label memory the
spacerequirement for the probability table grows asthe cube of the
number of symbols. Therefore we limit the number of labelsin the
input sequenceto eight: Fs, F4, Fs, F., R, L, S, and E. This al-
lows the implementation of the arithmetic order-3 entropy coder to
be both space and time efficient. The probability tables need only
4 KB of memory and we can use fast bit operationsto managethem.
LabelsF,, with n > 5 are expressed through the combination of a
label Fs and n — 5 subsequent labels of type F.. We observe that
labels of type F,, are never followed by label L or label E. We ex-
ploit thisto expressthe typically infrequent appearing labelsH,, and
M &, using the combinations F4L and F,E. Theinteger valuesas-
sociated with these labels are stored using a standard technique for
encoding variable sized integers into bit-streams.

The compression scheme described above is extremely fast and
producesvery compact encodingsfor thelabel sequence. In Table 1
we give connectivity compressionresultsin bits per vertex (bpv) for
a set of popular example meshes.

Simple triangle or quadrangle meshes. A simple triangle
(quadrangle) mesh is a polygon mesh without holes and handles
whosefacesare all triangles (quadrangles). In this casewe can give
encodings with guaranteed bit-rates that are theoretically interest-
ing. A simple triangle mesh with v vertices has 3v — 6 edges and
2v—4 triangles. Thus, 2v—4 labelsare F; whiletheremaining v —2
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Figure 3: The labels of the Face Fixer scheme: when they apply and the corresponding updates during encoding and decoding.

labelsare R, L, S, or E. An encoding that uses 1 bit for label F; and
3 hits each for the other labels guaranteesa 5v — 10 bit encoding.

Similarly, a simple quadrangle mesh with v vertices has 2v — 4
edgesand v — 2 quadrangles. Here v — 2 labelsare of type F, while
theremaining v — 2 labelsare R, L, S, or E. An encoding that uses
1 hit for label F, and 3 bits each for the other labels guarantees a
4v — 8 hit encoding.

3.3 Quadrilateral Grids

Instead of fixing together faces the Face Fixer scheme can also fix
together patches of faces. Then we have to describe in addition the
interior of thesepatches. If apatchisarectangular quadrilateral grid
this can be done very efficiently through the number of rows and
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columns in this grid. The beethoven bust and the shark model in
Figure 4 for example, contain large patches of quadrilateral grids.

We introduce the label QG ; » to include such aquad grid into
the active boundary. The associated integer valuesr, I, and i count
the number of quadrangles that this grid extendsto the right, to the
left, and across as seen from the active gate (see Figure 4).

Optimal selection of a set of non-overlapping quad grids on the
model is not only NP-hard, we also lack a well-defined optimality
criterium. Including quad grids into the active boundary breaks up
theregularity of thelabel stream, which in turn hampers subsequent
arithmetic coding. However, first results using greedy methods are
promising: The connectivity of the teapot, for example, compresses
downto 1.069 bpv using 10 quad grids, for the shark 1.374 bpv, for
the galleon 2.190 bpv, and for the beethoven bust 2.591 bpv.
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Figure 4: The beethoven bust and the shark model with quad grids
markedin yellow (top). The label QG encodesaquad grid by spec-
ifying itsleft and right extend and its height (bottom).

4 PROPERTIES AND STRUCTURES

The Face Fixer schemeas presented sofar allowsto efficiently com-
press and uncompress the connectivity of a polygon mesh. How-
ever, polygonal models have geometry data associated with each
vertex that specifiestheir physical location in 3D. Additional prop-
erty data, such asnormals, colours, and texture coordinates, is often
attached to the vertices, the faces, or the corners of the mesh. To es-
tablish a connectionbetween the geometry and property dataand the
vertex, face, or corner they are associatedwith, wedefineanimplicit
ordering on the occurrence of these mesh elements. Such an order-
ing can be derived using any deterministic mesh traversal that starts
at aknown point. Then the encoder storesthe geometry or property
values in the order in which the mesh features they are attached to
are encountered during the traversal. Decoding performs the same
traversal and re-assigns the data to the appropriate places.

Compression schemesthat usethe traversal order induced by the
connectivity encoder to attach geometry and property data to the
mesh are called one-pass coders. Carefully designed [7], they can
combineconnectivity, geometry and property informationintoasin-
gle bit-stream, which makes it possible to stream a mesh across a
network. Then decompression can reconstruct the mesh incremen-
tally asthe bits are received. Time-critical applicationsbenefit from
such a scheme as transmission and reconstruction of the mesh can
runin parallel. Other one-passencoders[25] keep connectivity data
separate from the rest in order to compress each more efficiently.

Reconstructing the polygon meshin a single pass forces the pre-
dictive encoding for geometry and property data to make its esti-
mations with incomplete neighbourhood information. A multi-pass
coder stores the connectivity data separately from property and ge-
ometry data and traverses the mesh two or more times during en-
coding and decoding. The decoder first reconstructs the complete
connectivity information beforere-attaching geometry and property
data to their appropriate location. In this case the mesh traversal
usedto establish theimplicit ordering of geometry and property data
can be different from the one used by the connectivity encoder.

4.1 Predictive Compression

The Face Fixer scheme can be combined with previously proposed
techniques for predictive compression of geometry and property
data[3, 24, 25]. Sincethe prediction rules of these schemesassume
meshes with triangle connectivity, we could simply triangulate the
polygons using a deterministic strategy that is solely based on the
connectivity. However, eventhoughthis paper doesnot addresspre-
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dictive compression, we believe that the recovered polygon infor-
mation can be utilized for more accurate geometry prediction.

For high-quality polygonal models like those in the Viewpoint
Premier collection [28], faces are nearly planar and convex. Al-
though aface may not be not perfectly planar, major discontinuities
are improbable to occur across it—otherwise it would likely have
been triangulated when the model was designed. This can lead to
an improvement in predictive geometry encoding: After the posi-
tions of three vertices of a planar face are known, the 3D problem
of predicting the coordinates for the remaining vertices around the
facereducesto 2D. The embedding planes of multiple neighbouring
facesaround avertex giveadditional hintsfor predicting itslocation.

The convexity constraint can lead to further improvementsin the
accuracy of the prediction. The parallelogram rule introduced by
Touma and Gotsman [25] uses the assumption that adjacent trian-
gles form a parallelogram for predictive coding. While two adja-
cent triangles can violate this assumption quite drastically, aconvex
quadrangle can not. Their approach could be extended to define a
pentagon or a hexagon rule for higher degree faces.

4.2 Vertex and Face Properties

A vertex-based property assignment is commonly used to achieve
visually smooth transitions across face boundaries. In the same
way the geometry datais shared by all faces around each vertex to
avoid cracksin the surface, acommon normal, colour, or texture co-
ordinate eliminates discontinuities when interpolated shading (e.g.
Gouraud shading) is applied. Geometry data and property data as-
sociatedwith avertex are stored in the order the vertices are encoun-
tered during the traversal of the mesh.

A typical examplefor aface-based property assignmentis apre-
computed radiosity solution. Each face has assigned a colour that
correspondsto the amount of light it emits or transmits. The prop-
erty data associated with a face is stored in the order the faces are
encountered during the traversal of the mesh. Obviously thisisin-
dependent from the degree of the face. Here lies another advantage
of the Face Fixer method over encoding schemesthat first triangu-
late the input mesh. Splitting a face of degree n into n — 2 trian-
glescreatesn — 2 copiesof its properties. Instead of encoding these
properties once, they need to be encoded . — 2 times.

4.3 Corner Properties

A corner-based property assignment becomes necessary to reflect
physical discontinuities in the underlying 3D model. Vertices that
lie along such a discontinuity have usually more than one associ-
ated normal, colour or texture coordinate, each of which they share
with adisjoint set of adjacent corners. Five of our example models
have vertices with multiple normals (see Table 3).

We need to establish amapping between aproperty value and the
set of corners it is associated with. Our approach is a simple but
effective improvement on work by Taubin et a. [23]. They storea
discontinuity bit with every corner that is “0” when this corner uses
the same property as the previous corner in counterclockwiseorder
and a“1" otherwise. Then the property data associated with a set
of cornersis stored in the order in which the corresponding corners
marked with “1” are encountered during the traversal of the mesh.
This approach requires as many bits as the mesh has corners.

Based on the observation that not all vertices have multiple prop-
erties, we proposeasimilar marking schemethat usesvertex bitsand
corner bits. We use one bit per vertex to distinguish verticeswith a
single property (“1") from thosewith multiple properties (“0"). The
corners around every vertex with multiple properties are marked as
described above (see Figure 5). We store the property data in the
same order as the corresponding “ 1" bits appear in the bit sequence.
Theresultsin Table 3 show that this encoding gives savingsof 20 %
to 70 % over the method proposed by Taubin et al. [23].
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Figure 5: Encoding the mapping from properties to sets of corners.
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verticeswith » normals vertex | corner
name n=1|{n=2|{n=3|n=4|{n=5|n=6 bits bits
triceratops || 2585 | 232 14 1 - - 2832 | 980
galleon 1146 | 894 | 308 9 16 - 2372 | 4756
beethoven || 1838 | 681 | 118 14 2 2655 | 3235
sandal 1120 | 1227 | 274 | 15 - 2636 | 6150
shark 1985 | 575 | 34 1 - - 2560 | 2300

Table 3: Exampleresultsfor encoding multiple vertex normals. The
number of vertex bits and corner bits are reported that need to be
recorded during the mesh traversal to establish a mapping between
each normal and the set of corners sharing it.

4.4 Group Structures

Structural information that classifies groups of faces of a polygo-
nal model into logical units is present in many file formats. Such
face groupingsallow to assign qualitative information to otherwise
nameless polygons. Typically they establish a mapping between
a meaningful part of the real world object and the set of faces of
the polygonal model representing this part. We created and colour-
coded such structural information for the popular teapot mesh and
the cow mesh (see Figure 2). Many other well-known polygonal
models, such as the triceratops, the cessna, the beethoven bust, and
the galleon mesh contain similar group structures.

The triceratops mesh for example has six groups that classify
eachfaceaseither skin, horn, toe, mouth, eye, or nose. The 58 faces
that belong to the mouth-group form a single connected patch on the
triceratops mesh. The 149 faces of the horn-group form three such
patches and the 205 faces of the toe-group form fifteen.

The galleon model has atotal of 17 groups. But this model con-
sists of 12 unconnected components, which capture some of the
group structure. The six sails, the three masts, therig, and the lamp
are separate components and form a group each. The body of the
galleon however is one component with six groups: the hull, the
keel, the deck, the aft, the windows, and therig.

Encoding such structural information present in a polygon
mesh has not been addressed by previously reported compression
schemes. In anaive approach, we havealist of groupsand assign a
group index to every face. These group indices can then be treated
like any other face property. For modelswith & groupsand f faces
such an encoding requires at least f log k bits.

When amodel consists of several mesh parts we canimprove on
the above by specifying for each component the number of group-
ings it contains. For mesh parts whose faces belong all to the same
group no additional information needs to be recorded. For mesh
parts with group structures we need only as many bits per face as
necessary to distinguish among the groups of this component. This
is the approach we will compare our results against.

The concept of a super face is an natural extension of the Face
Fixer schemethat leads to more compact and elegant encodings of
facegroupings. A super faceisacollection of facesthat is contained
inside a single closed boundary loop. The representation power of
super facesisillustrated in Figure 6: A simple super face composed
of 9faces(caseA), asuper facewith anon-manifold vertex (caseB),
asuper face with anon-manifold edge (case C), and asuper facethat
contains another while being adjacent to a third (case D).
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We introduce a new label SF to encode super face structure on
the mesh. When the active gate is adjacent to a super face the ac-
tive boundary is extended around the entire super face and the new
gateis pushed on the stack. The super faceis cut out of the polygon
mesh and its boundary becomes the active boundary with the gate
being the same as before (see Figure 7). The super face, which it-
self may contain other super faces, is first processed in its entirety
before the encoding continues on the boundary that was pushed on
thestack. Theinverseoperation usedfor decodingsimply ‘fixes' the
super face back into themesh. Thelength of the super face boundary
is not encoded explicitly, but is directly related to the cost of encod-
ing a super face. In addition to the label SF there is one additional
label of typesR, L, S, or E per super face boundary edge.

We use super faces to encode the group structure of a polygon
mesh by declaring each group boundary a super face boundary. This
resultsin super faces correspondingto casesA, B, and D. Ideally we
would like a one to one mapping from groups to super faces. But
when the facesof agroup are not all adjacent, like the three horns of
the triceratops, a group is represented by more than one super face.
We could connect the three horns using non-manifold super face
edges (case C) along a shortest path acrossthe mesh. However, this
requires additional computation and is expensivefor distant patches
because of the increasing length of the super face boundary.

non—manifold

edge

Figure 6: The representation power of super faces.
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Figure 7: The label SF for encoding and decoding super faces.

gate popped >
from stack

Instead of storing one group index per face, we store one group
index per super face and one group index per mesh component. Ta-
ble 4 lists results for our pool of example meshes. Although more
bits are needed to include the super face structure into the connec-
tivity encoding, the savingsin the number of necessary group refer-
enceslead to superior compression rates overall.

Hierarchical Super Faces. The group structures that we have
discussed so far are flat structures without a hierarchy. Supposethe
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bpv without super faces bpv with super faces
name conn. | grouping | total || conn. grouping total
triceratops || 2115 | 8502 | 5117 || 2484 | (23+1)*3 | 2.509
galleon 2595 | 2640 |3.708 || 2701 | (10+12)* 5 | 2.747
cessna 2.841 | 15538 | 6.990 || 3.457 | (137+11)* 6 | 3.694
beethoven || 2890 | 5470 |4.950 || 3.081| (12+8)*4 | 3111

sandal 2602| 27 |2612| 2602 (0+9*3 |2612
shark 1670 | 7686 | 4672 || 1962| (11+1)*3 |1.976
a 2926| 6039 |4595 || 3.051| (23+21)*6 | 3.124
cupie 2307 | 5060 |4003 || 2387| (17+6)*4 | 2418
tommygun || 2611 | 5036 | 3818 || 2.823 | (12+39)* 4 | 2.872
cow 2213 | 17412 |8209 || 2346 | (7+1)*3 | 2354
teapot 1669 | 3870 |4924| 1853| (7+1)*3 |1874

Table 4: Example results for encoding the grouping structure on a
mesh together with the connectivity. The middle columns reflect
the number of bits required for all indices into the group list. Both
bit counts exploit the fact that the group structure is partly captured
through the component structure of the models.

hierarchical structure of aworld map with the oceansbeing the low-
est level containing continents and islands. The continents them-
selves are subdivided into countries, some of which are composed
of states, then counties, etc. Super faces can be used to efficiently
encode such hierarchical structures on a polygon mesh.

Corner Properties Revisited. Group boundariesin a polygo-
nal model often reflect discontinuitiesin the represented real-world
object, whichinturnisreasonto associatemultiple propertiesto sets
of cornersaround avertex. A substantial number of polygonmeshes
from the Viewpoint Premier collection [28] havevertices with mul-
tiple properties only along group boundaries. These meshes share
a single normal, colour, or texture coordinate among all corners
around a vertex that belong to the same group. In this case the su-
per face structure is sufficient to establish the mapping between the
property data and the appropriate set of corners. No additional in-
formation like corner or vertex bitsis required.

5 SUMMARY

We have presented a new compression algorithm that encodes the
connectivity of surface meshesdirectly in their polygonal represen-
tation. Thishasseveral benefitscompared to methodsthat compress
pre-triangulated polygon meshes: The original connectivity is pre-
served. Properties associated with faces and corners need not to be
replicated. Subsequent stripification algorithms can generate better
triangle strips. Predictive coding for geometry and property datacan
exploit additional convexity and planarity constraints.

Our method also improves on approachesthat triangulate meshes
prior to compression, but recover the polygons by marking edges.
Although the freedom to triangulate polygons on demand can lead
to compact encodingsfor the triangulated mesh, for example using
Touma and Gotsman’s scheme [25], the number of bits required to
mark the edges would be as high as 3 bpv. This holds true espe-
cialy for meshes with low triangle counts, as there is less connec-
tivity information to compress. For the caseof quadrangular meshes
the Edgebreaker extensions[13, 15] give better encodings.

We havealso introduced amethod to encodestructureson apoly-
gon mesh. Such structures can specify classifications of faces, hier-
archies, smoothing groups, or mesh partitions. The concept of super
faces naturally extends our algorithm and leads to elegant and effi-
cient encodings of such structural information—this has not been
addressed by previous compression schemes. The edge-based na-
ture of Face-Fixer combined with reverse decoding make theimple-
mentation of super faces extremely simple.

The techniques presented here lead to more compact and com-
plete representations of polygonal models. The model collection

Face Fixer, march 2000

from Viewpoint [28], for example, consists of data setsthat contain
few triangles, but are rich in structural information and associated
properties. Especially with such 3D content moving towards net-
worked environments, our methods will find many applications.
We owe adebt of gratitudeto many peoplefor their thoughts and
time. We especially thank Davis King and Jarek Rossignac for dis-
cussions, Mike Maniscalco and Stefan Gumhold for tips on arith-
metic coding, and Viewpoint Datalabs for the polygon models.
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