
UNC Technical Report TR-00-04

Face Fixer: Compressing Polygon Meshes with Properties

Martin Isenburg� Jack Snoeyinky

University of North Carolina at Chapel Hill

Abstract

Most schemes to compress the topology of a surface mesh have
been developed for the lowest common denominator: triangulated
meshes. We propose a scheme that handles the topology of arbitrary
polygon meshes. It encodes meshes directly in their polygonal rep-
resentation and extends to capture face groupings in a natural way.
Avoiding the triangulation step we reduce the storage costs for typ-
ical polygon models that have group structures and property data.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—surface, solid, and object represen-
tations;

Additional Keywords: Mesh compression, connectivity encoding

1 INTRODUCTION

Because bandwidth to the graphics pipeline is a limiting factor in
a number of graphics applications, compression schemes for geo-
metric data sets have recently been the subject of intense study. In
particular, many efficient techniques have been proposed for encod-
ing polygonal meshes [3, 24, 25, 7, 16, 18, 13, 15]; we survey these
in the next section. Generally mesh compression techniques focus
on encoding fully triangulated data sets—a natural candidate for the
lowest common denominator. Triangle meshes are easily derived
from other surface representations and are widely supported by to-
day’s graphics hardware. Especially for data sets whose only des-
tination is the trip down the rendering pipeline, a compact triangle-
based representation is a good choice.

However,many models are represented by polygonalmeshes that
contain a surprisingly small percentage of triangles. Two examples
are the standard ‘triceratops’ and ‘galleon’ models shown in Fig-
ure 1, which are initially not triangulated. The ‘Premier Collection’
from Viewpoint Datalabs [28]—a well-known source of high qual-
ity 3D models—consists mostly of meshes with very low triangle
counts. Likewise, few triangles are found in the output formats of
many computer aided design (CAD) packages. The dominating el-
ement of these models is the quadrangle or quadrilateral, but pen-
tagons, hexagons and higher degree faces are also common.

Especially for storage purposes it is beneficial to keep a mesh in
its native polygonalrepresentation and delay the conversion to trian-
gles until this becomes necessary. King et al. [13] have shown that
the connectivity information of meshes mostly composed of quad-
rangles can be represented with fewer bits than that of their triangu-
lated counterparts. Furthermore, most meshes haveassociatedprop-

�isenburg@cs.unc.edu http://www.cs.unc.edu/ ˜isenburg/facefixer
ysnoeyink@cs.unc.edu

Figure 1: The triceratops and the galleon model contain only a small
number of triangles shown in red (left). The group structures on
these meshes are illustrated with arbitrary colours (right).

erties such as normal, colour or texture information that account for
a large portion of the storage costs. Triangulating a polygon mesh
not only adds an extra processingstep, but also increases the number
of faces and corners—replicating their associated properties.

Reconstructing the original polygon mesh rather than a triangu-
lated version can also lead to better results for subsequent triangle
strip generation. Stripification algorithms, such as STRIPE [5], ex-
ploit the freedom to triangulate polygons on demand to generate tri-
angle strips that use a minimal number of swaps and restarts.

Often polygon models also contain structural information that
classifies groups of faces into logical units. The triceratops and
the galleon model in Figure 1 both contain such group information.
Such a structure can establish a mapping between meaningful parts
of the real-world object and the faces in the model that represent
them. This information can also be used to attach material proper-
ties to groups of faces. Encoding such group structures has not been
addressed by previously reported compression schemes.

We propose a simple scheme for encoding the connectivity of a
polygon mesh that is based on assigning a code to each mesh edge.
Section 3 describes our scheme as it applies to polygon meshes with
holes and handles, and extends it in Section 4 to efficiently associate
property data and encode group structures. We report compression
rates for a number of meshes that have been used in the literature.

2 PREVIOUS WORK

After reviewing the problem of encoding polygon meshes and the
approaches typically taken, we give a detailed survey of the recent
literature on connectivity compression. However, we limit this de-
scription to the case of simple meshes. For details on how these
schemes encode meshes with boundary, with holes, or with handles,
we refer the reader to the original reference.

Face Fixer, march 2000 1 appeared in SIGGRAPH ’2000



UNC Technical Report TR-00-04

2.1 Preliminaries

A polygon mesh is a collection of polygonal faces that intersect only
along shared edges and vertices. Any edge is shared by at most two
faces; unshared edges are boundary edges. Around each face we
find a cycle of vertices and edges; around each vertex we find a cy-
cle of edges and faces. Each appearance of a face in a vertex list or
of a vertex in a face list is called a corner. In the mesh compression
literature, a distinction is often made between three things: mesh ge-
ometry, which includes vertex coordinates, mesh properties such as
normals, colours, and texture coordinates that are attached to ver-
tices, faces, or corners, and mesh connectivity, which describes the
incidences between vertices, edges, and faces. The mesh connectiv-
ity information is also referred to as mesh topology.

Topologically, a mesh is a graph embedded in a 2-manifold sur-
face in which each point has a neighborhood that is homeomorphic
to a disk or a half-disk. Points with half-disk neighborhoods are on
the boundary. A mesh has genus g if one can remove up to g closed
loops without disconnecting the underlying surface; such a surface
is topologically equivalent to a sphere with g handles. A mesh is
simple if it has no handles (g = 0) and no boundary edges. Euler’s
relation says that a graph embedded on a sphere having f faces, e
edges, and v vertices satisfies f � e+ v = 2. When all faces have
at least three sides, we know that f � 2v � 4 and e � 3v � 6,
with equality if an only if all faces are triangles. For a mesh with g
handles (genus g) the relation becomes f � e+ v = 2� 2g and the
bounds on faces and edges increase correspondingly.

The standard representation for uncompressed polygon meshes
uses a list of vertex coordinates to store geometry and a list of vertex
indices for each face to store mesh connectivity. For triangle meshes
of v vertices, this requires approximately 6v log

2
v bits for the mesh

connectivity. Note that this representation does not directly store
face adjacency, which must be recovered by sorting around vertices
if the mesh is to be checked for cracks or turned into triangle strips.

However, mesh connectivity can be encoded in a constant num-
ber of bits per vertex, while geometry and property data can be effi-
ciently compressed with schemes that predict a position or a feature
from previously decoded neighbours. Researchers in mesh com-
pression have aimed for three different objectives: efficient render-
ing, progressive transmission, and maximum compression.

Efficient rendering: Encodings for rendering use partial infor-
mation about mesh connectivity to reduce the work in the graphics
pipeline. In the standard representation, each triangle of the mesh
must be rendered individually by sending its three vertices to the
graphics hardware. On average, every mesh vertex is processed six
times. Processing a vertex involves passing its coordinates from the
memory to and through the graphics pipeline. Typically, this also
includes normal, colour, and texture information. The most com-
mon technique to reduce the number of times this data needs to be
transmitted is to send long runs of adjacent triangles. Such trian-
gle strips [5, 30] are widely supported by today’s graphics hardware.
Two vertices from a previous triangle are re-used for all but the first
triangle of every strip. Depending on the quality of the strips, this
can reduce the number of vertex repetitions by a factor of three.

In addition to specifying quantizations and codings for coordi-
nates, normals, colors, and other mesh properties, Deering’s pio-
neering paper [3] introduced a technique to further reduce the num-
ber of vertex repetitions. His generalized triangle mesh is designed
for a geometry engine that can cache up to sixteen of the vertices
that have previously passed through the transformation pipeline.

Progressive transmission: Encodings for progressive trans-
mission use incremental refinements of mesh connectivity and ge-
ometry so that partial data already represents the entire mesh at a
lower resolution. Hoppe’s Progressive Mesh scheme [8] encodes a
mesh by collapsing edges one by one. Decoding starts with a small
base mesh and expands the collapsed edges in reverse order.

While the first progressive schemes were not designed for
compression and used a large number of bits per vertex, recent
schemes [22, 17, 1, 2] group the refinement operations into large
batches and achieve bit-rates that come close to those of non-
progressive methods. Even though more bits are used for the con-
nectivity information, the progressive nature of the decoding allows
more accurate geometry and property prediction.

For the special case of terrains models based on Delaunay tri-
angulations, Snoeyink and van Kreveld [20] used ideas from Kirk-
patrick’s point location scheme [14] to encode all topology informa-
tion in a permutation of the vertices, from which the mesh is progres-
sively reconstructed. Denny and Sohler’s work [4] extended this
scheme to arbitrary planar triangulations. Although the cost of stor-
ing the topology is zero, the unstructured order in which the vertices
are received and the absence of adjacency information during their
decompressionprohibits predictive geometry encoding. This makes
these schemes overall more expensive. Moreover, it is not clear that
it is possible to extend this idea to general surface meshes.

Maximum compression: Most schemes for maximum mesh
compression encode mesh connectivity through a compact and of-
ten interwoven representation of two dual spanning trees: one tree
spans the vertices, and its dual spans the triangles. Neither the tri-
angle nor the vertex tree is sufficient by itself to capture the connec-
tivity information. Typically such compression schemes [24, 25, 7,
16, 9, 18] use a pair of spanning trees obtained by traversing the ver-
tices and the triangles of the mesh with a deterministic strategy (e.g.
breadth or depth first search). The geometry data and the property
data of the mesh are usually compressed using predictive encoding
based on local neighbourhood information [24, 25].

2.2 Connectivity Compression Techniques

One of the nicest proofs of Euler’s relation for planar graphs par-
titions the edges into two spanning trees [21]. One tree, spanning
the vertices, has v � 1 edges and the other, spanning the faces, has
f � 1 edges, so e = (v � 1) + (f � 1). Turan [26] was the first
to observe that this partition into two spanning trees could be used
to encode planar graphs. He gave an encoding that used 12 bits per
vertex (bpv). Keeler and Westbrook [11] improved Turan’s method
to guarantee 9 bpv for encoding planar graphs and 4.6 bpv for sim-
ple triangle meshes, but reported no extension for general meshes.

Taubin and Rossignac proposed a scheme that explicitly encodes
both spanning trees. Their Topological Surgery method [24] cuts
a mesh along a set of edges that corresponds to a spanning tree of
vertices. This produces a simple mesh without internal vertices that
can be represented by the dual triangle spanning tree. Run-length
encoding both trees results in practice in bit-rates of around 4 bpv.

Touma and Gotsman’s Triangle Mesh Compression [25] encodes
the degree of each vertex along a spiraling vertex tree with an “add
<degree>” code. For each branch in the tree they need an addi-
tional “split<offset>” code that specifies the start and the length of
the branch. This technique implicitly encodes the triangle spanning
tree. They compress the resulting sequence of “add” and “split”
commandsusing a combination of run-length and entropy encoding.
Especially for regular meshes they achieve lower bit-rates than other
schemes. Results on standard meshes range from 0.2 to 3.0 bpv.

Gumhold and Strasser [7] introduce a compressed representation
for triangle meshes that is similar to the Edgebreaker method [18].
Starting with the three edges of an arbitrary triangle as what they call
the initial “cut-border,” they traverse the triangles of the mesh and
include them into this boundary loop using three connect and one
split operation. The offset value associated with the split operation
is used to re-play the split operation during decoding. This makes it
possible to decode the mesh connectivity in a single forward traver-
sal of all operations, which allows encoding and decoding to run in
parallel—with a minimal delay of one operation.

Face Fixer, march 2000 2 appeared in SIGGRAPH ’2000



UNC Technical Report TR-00-04

Figure 2: The polygon models used in this paper. Above we see the
green meshes with red triangles for the cessna, al & cupie, shark, san-
dal, beethoven, and tommygun. The coloured figures illustrate group
structures in these meshes, plus the cow with meat-cuts and the teapot.

name groups parts vertices faces corners holes hndls name bpv
triceratops 6 1 2832 2834 (5660) 11328 (16980) 346 2266 140 63 19 – – triceratops 2.115
galleon 17 12 2372 2384 (4698) 9466 (14094) 336 1947 40 18 43 – – galleon 2.595
cessna 38 11 3745 3927 (7446) 15300 (22338) 900 2797 180 27 23 – – cessna 2.841
beethoven 10 8 2655 2812 (5030) 10654 (15090) 680 2078 44 4 6 10 – beethoven 2.890
sandal 5 9 2636 2953 (4952) 10858 (14856) 961 1985 7 – – 14 12 sandal 2.602
shark 7 1 2560 2562 (5116) 10240 (15348) 188 2253 83 29 9 – – shark 1.670
al 35 21 3618 4175 (7152) 15502 (21456) 1579 2505 44 11 36 – – al 2.926
cupie 15 6 2984 3032 (5944) 12008 (17832) 384 2506 114 10 18 – – cupie 2.307
tommygun 15 39 4171 3980 (8210) 16170 (24630) 992 2785 84 21 98 – 6 tommygun 2.611
cow 8 1 2904 5804 (5804) 17412 (17412) 5804 – – – – – – cow 2.213
teapot 6 1 1189 1290 (2378) 4958 (7134) 215 1070 3 1 1 – 1 teapot 1.669

Table 1: The statistics of mesh topology and polygon types for all example models together with the achieved connectivity compression in
bits per vertex (bpv). The numbers in brackets give the face and corner counts for the triangulated version of each model.

Rossignac’s Edgebreaker scheme [18] gives the best guaranteed
bit-rates for triangle mesh connectivity. The compression algorithm
uses five operations, C, L, E, R and S, to include triangles into a
boundary, which is initially defined around an arbitrary triangle.
The operations S and E replace the split operation used by the “cut-
border machine” [7], thereby eliminating the need for explicitly en-
coding the associatedoffset value. Improvements on the original pa-
per give linear decoding time [19, 10] and tighten the guaranteedbit-
rate to 3.67 bpv [12]. This is currently the lowest worst-case bound
and lies within 13% of the theoretical lower limit by Tutte [27].

All of the above schemes have been designed to compress the
connectivity of purely triangular meshes. However, several authors
have reported extensions to their schemes in order to handle polyg-
onal input. A naive approach arbitrarily triangulates the polygon
mesh and then uses one bit per edge to distinguish the original edges
from those added during the triangulation process. Marking every
edge can be avoided by triangulating the polygons systematically.

For the Topological Surgery method [23] the extension to polyg-
onal meshes first cuts the mesh along a vertex spanning tree and then
triangulates the dual polygon spanning tree. Only the edges interior
to the resulting triangle spanning tree need to be marked. Similarly

King et al. [13] describe how to let the Edgebreaker method guide
the triangulation process. For simple polygon meshes without ver-
tices of degree two they give an encoding that guarantees 5 bpv.

In fact, King et al. [13] are first to prove that quadrangularmeshes
can be compressed more efficient than their triangulated counter-
parts by avoiding the triangulation step. They give compact en-
codings for pure quadrangular meshes and for meshes containing
mostly quadrangles and a few triangles. Similar results are reported
by Kronrod and Gotsman [15]. Both papers suggest extensions to
arbitrary polygons, but no experimental results are given.

We recently learned about the Dual Graph approach by Li et
al. [16], which has similarities to the method presented here. Their
scheme traverses the edges of the dual and records a stream of sym-
bols and integer values, which is compressed with a carefully de-
signed context based entropy coder. Decoding uses the recorded in-
formation to re-play this traversal, thereby reconstructing the mesh
connectivity. Their use of split offsets resembles that of the “cut-
border machine” [7], which is avoided by our method.

Inspired by Edgebreaker [18], we propose an edge-based com-
pression scheme that encodes the connectivity of 2-manifold poly-
gon meshes and extends to capture structural information as well.

Face Fixer, march 2000 3 appeared in SIGGRAPH ’2000



UNC Technical Report TR-00-04

3 FACE FIXER

The connectivity of the polygon mesh is encoded as a sequence of
labels Fn, R, L, S, E, Hn, and Mi;k;l . The total number of labels
equals the number of mesh edges. The sequenceof labels represents
an interwoven description of a polygon spanning tree and its com-
plementary vertex spanning tree. For every face of n sides there is
a label Fn and for every hole of size n there is a label Hn. Together
they label the edges of the polygon spanning tree. For every handle
there is a label Mi;k;l that has three integer values associated. These
specify the two edges of the polygon spanning tree that need to be
‘fixed’ together to re-create the handle. The remaining labels R, L,
S, and E label the edges of the corresponding vertex spanning tree
and describe how to ‘fix’ faces and holes together. Subsequently an
entropy coder compresses the label sequence into a bit-stream.

3.1 Encoding and Decoding

Starting with a polygon mesh of v vertices, e edges,f faces,h holes,
and g handles, the encoding process producesa sequenceof e labels.
This sequence contains f labels of type Fn, h labels of type Hn, g
labels of type Mi;k;l , and v� 2+ g labels of type R, L, S, or E. The
connectivity of the polygon mesh can be reconstructed with a single
reverse traversal of the label sequence.

The algorithm maintains one or more loops of edges that sepa-
rate a single processed region of the mesh from the rest. Each of
these boundary loops has a distinguished gate edge. The focus of
the algorithm is on the active boundary; all others are temporarily
buffered in a stack. The initial active boundary, defined clockwise
around an arbitrary edge of the mesh, has two boundary edges. The
gate of the active boundary is the active gate.

In every step of the encoding process the active gate is labeled
with either Fn, R, L, S, E, Hn, or Mi;k;l . Which label the active
gate is given depends on its adjacency relation to the boundary. Af-
ter recording the label, the boundary is updated and a new active gate
is selected. Depending on the label, the boundary expands (Fn and
Hn), shrinks (R and L), splits (S), ends (E), or merges (Mi;k;l ). Ta-
ble 2 summarizes the changes to the processedregion and its bound-
aries for each operation. The encoding process terminates after ex-
actly e iterations, where e is the number of mesh edges.

change to # of processed # of boundary
label faces holes vertices edges handles loops edges
Fn +1 � � � � � � +1 � � � � � � +(n � 2)

Hn � � � +1 � � � +1 � � � � � � +(n � 2)

R, L � � � � � � +1 +1 � � � � � � �2

S � � � � � � � � � +1 � � � +1 �2

E � � � � � � +2 +1 � � � �1 �2

Mi;k;l � � � � � � � � � +1 +1 �1 �2

init = 0 = 0 = 0 = 0 = 0 = 1 = 2

final = f = h = v = e = g = 0 = 0

Table 2: The changes for each label in number of processed faces,
holes, vertices, edges, handles, boundary components, and bound-
ary edges. Initial and final counts are listed at the bottom.

In Figure 3 we illustrate for each label the situation in which it
applies and the respective updates for gate and boundary. Both en-
coding and decoding are shown. The details for encoding are:

label Fn The active gate is not adjacent to any other boundary edge, but to an unpro-
cessed face of degreen. The active boundary is extended around this face. The
new active gate is the rightmost edge of the included face.

label R The active gate is adjacent to the next edge along the active boundary. The
gate is ‘fixed’ together with this edge. The new active gate is the previous edge
along the active boundary.

label L The active gate is adjacent to the previousedge along the active boundary. The
gate is ‘fixed’ togetherwith this edge. The new active gate is the next edge along
the active boundary.

label S The active gate is adjacent to an edge of the active boundary which is neither
the next nor the previous. The gate is ‘fixed’ together with this edge, which
splits the active boundary. The previous edge and the next edge along the ac-
tive boundary become gates for the two resulting boundaries. One is pushed on
the stack and encoding continues on the other.

label E The active gate is adjacent to an edge of the active boundary which is both
the next and the previous. Then the active boundary consists of only two edges
which are ‘fixed’ together. The encoding process terminates if the boundary
stack is empty. Otherwise it continues on the boundary popped from this stack.

label Hn The active gate is not adjacent to any other boundary edge, but to an unpro-
cessed hole of size n. The active boundary is extended around this hole. The
new active gate is the rightmost edge of the included hole.

label Mi;l;k The active gate is adjacent to a boundary edge which is not from the ac-
tive boundary, but from a boundary in the stack. ‘Fixing’ the two edges together
merges the two boundaries. Consequently this boundary is removed from the
stack. Its former position i in the stack and two offset values l and k (see Fig-
ure 3) are stored togetherwith the label. The new active gate is the previousedge
along the boundary from the stack.

We use a simple half-edge structure [6] during encoding and de-
coding to store the mesh connectivity and to maintain the bound-
aries. Besides pointers to the origin, to the next half-edge around
the origin, and to the inverse half-edge, we have two pointers to ref-
erence a next and a previous boundary edge. This way we organize
all edges of the same boundary into a cyclic doubly-linked list.

The decoding process reconstructs the connectivity of the poly-
gon mesh with a single reverse traversal of the label sequence. Each
label has a unique inverse operation (see Figure 3) that undoes the
gate and boundary updates that happened during encoding. The
time complexity for decoding is linear in the number of mesh edges.
An exception is the inverse operation for label Mi;k;l which requires
the traversal of k+ l edges. However, labels of this type correspond
to handles in the mesh, which are of rare occurence.

3.2 Compression

The label sequence produced by the encoding process is subse-
quently mapped into a bit-stream. The frequencies with which
the different labels occur are highly non-uniform, which invites
some kind of entropy encoding. There is also a strong correlation
among subsequent labels, which can be exploited using a memory-
sensitive encoding scheme. With a simple order-3 adaptive arith-
metic coder [29] we achieve excellent compression ratios.

For an adaptive arithmetic encoder with three label memory the
space requirement for the probability table grows as the cube of the
number of symbols. Therefore we limit the number of labels in the
input sequence to eight: F3, F4, F5, Fc, R, L, S, and E. This al-
lows the implementation of the arithmetic order-3 entropy coder to
be both space and time efficient. The probability tables need only
4 KB of memory and we can use fast bit operations to manage them.
Labels Fn with n > 5 are expressed through the combination of a
label F5 and n � 5 subsequent labels of type Fc. We observe that
labels of type Fn are never followed by label L or label E. We ex-
ploit this to express the typically infrequent appearing labels Hn and
Mi;k;l using the combinations F4L and F4E. The integer values as-
sociated with these labels are stored using a standard technique for
encoding variable sized integers into bit-streams.

The compression scheme described above is extremely fast and
produces very compact encodings for the label sequence. In Table 1
we give connectivity compression results in bits per vertex (bpv) for
a set of popular example meshes.

Simple triangle or quadrangle meshes. A simple triangle
(quadrangle) mesh is a polygon mesh without holes and handles
whose faces are all triangles (quadrangles). In this case we can give
encodings with guaranteed bit-rates that are theoretically interest-
ing. A simple triangle mesh with v vertices has 3v � 6 edges and
2v�4 triangles. Thus, 2v�4 labels are F3 while the remaining v�2

Face Fixer, march 2000 4 appeared in SIGGRAPH ’2000



UNC Technical Report TR-00-04

offset1

offset2
gate inserted

into stack

offset1

offset2
gate removed

from stack

gate pushed
on stack

gate popped
from stack

gate popped
from stack

gate pushed
on stack

ODEHO )� ODEHO )�

ODEHO )�
��ODEHO )�

��

ODEHO 5 ODEHO /

ODEHO /��ODEHO 5��

ODEHO 6 ODEHO (

ODEHO (��ODEHO 6��

ODEHO +� ODEHO 0

ODEHO 0��ODEHO +�
��

hole

hole

Figure 3: The labels of the Face Fixer scheme: when they apply and the corresponding updates during encoding and decoding.

labels are R, L, S, or E. An encoding that uses 1 bit for label F3 and
3 bits each for the other labels guarantees a 5v� 10 bit encoding.

Similarly, a simple quadrangle mesh with v vertices has 2v � 4

edges and v�2 quadrangles. Here v�2 labels are of type F4 while
the remaining v � 2 labels are R, L, S, or E. An encoding that uses
1 bit for label F4 and 3 bits each for the other labels guarantees a
4v � 8 bit encoding.

3.3 Quadrilateral Grids

Instead of fixing together faces the Face Fixer scheme can also fix
together patches of faces. Then we have to describe in addition the
interior of these patches. If a patch is a rectangular quadrilateral grid
this can be done very efficiently through the number of rows and

columns in this grid. The beethoven bust and the shark model in
Figure 4 for example, contain large patches of quadrilateral grids.

We introduce the label QGr;l;h to include such a quad grid into
the active boundary. The associated integer values r, l, and h count
the number of quadrangles that this grid extends to the right, to the
left, and across as seen from the active gate (see Figure 4).

Optimal selection of a set of non-overlapping quad grids on the
model is not only NP-hard, we also lack a well-defined optimality
criterium. Including quad grids into the active boundary breaks up
the regularity of the label stream, which in turn hampers subsequent
arithmetic coding. However, first results using greedy methods are
promising: The connectivity of the teapot, for example, compresses
down to 1.069 bpv using 10 quad grids, for the shark 1.374 bpv, for
the galleon 2.190 bpv, and for the beethoven bust 2.591 bpv.

Face Fixer, march 2000 5 appeared in SIGGRAPH ’2000



UNC Technical Report TR-00-04

ODEHO 4*

right
left

height

Figure 4: The beethoven bust and the shark model with quad grids
marked in yellow (top). The label QG encodes a quad grid by spec-
ifying its left and right extend and its height (bottom).

4 PROPERTIES AND STRUCTURES

The Face Fixer scheme as presented so far allows to efficiently com-
press and uncompress the connectivity of a polygon mesh. How-
ever, polygonal models have geometry data associated with each
vertex that specifies their physical location in 3D. Additional prop-
erty data, such as normals, colours, and texture coordinates, is often
attached to the vertices, the faces, or the corners of the mesh. To es-
tablish a connectionbetween the geometry and property data and the
vertex, face, or corner they are associatedwith, we define an implicit
ordering on the occurrence of these mesh elements. Such an order-
ing can be derived using any deterministic mesh traversal that starts
at a known point. Then the encoder stores the geometry or property
values in the order in which the mesh features they are attached to
are encountered during the traversal. Decoding performs the same
traversal and re-assigns the data to the appropriate places.

Compression schemes that use the traversal order induced by the
connectivity encoder to attach geometry and property data to the
mesh are called one-pass coders. Carefully designed [7], they can
combine connectivity, geometry and property information into a sin-
gle bit-stream, which makes it possible to stream a mesh across a
network. Then decompression can reconstruct the mesh incremen-
tally as the bits are received. Time-critical applications benefit from
such a scheme as transmission and reconstruction of the mesh can
run in parallel. Other one-pass encoders [25] keep connectivity data
separate from the rest in order to compress each more efficiently.

Reconstructing the polygon mesh in a single pass forces the pre-
dictive encoding for geometry and property data to make its esti-
mations with incomplete neighbourhood information. A multi-pass
coder stores the connectivity data separately from property and ge-
ometry data and traverses the mesh two or more times during en-
coding and decoding. The decoder first reconstructs the complete
connectivity information before re-attaching geometry and property
data to their appropriate location. In this case the mesh traversal
used to establish the implicit ordering of geometry and property data
can be different from the one used by the connectivity encoder.

4.1 Predictive Compression

The Face Fixer scheme can be combined with previously proposed
techniques for predictive compression of geometry and property
data [3, 24, 25]. Since the prediction rules of these schemes assume
meshes with triangle connectivity, we could simply triangulate the
polygons using a deterministic strategy that is solely based on the
connectivity. However, even though this paperdoes not address pre-

dictive compression, we believe that the recovered polygon infor-
mation can be utilized for more accurate geometry prediction.

For high-quality polygonal models like those in the Viewpoint
Premier collection [28], faces are nearly planar and convex. Al-
though a face may not be not perfectly planar, major discontinuities
are improbable to occur across it—otherwise it would likely have
been triangulated when the model was designed. This can lead to
an improvement in predictive geometry encoding: After the posi-
tions of three vertices of a planar face are known, the 3D problem
of predicting the coordinates for the remaining vertices around the
face reduces to 2D. The embedding planes of multiple neighbouring
faces around a vertex give additional hints for predicting its location.

The convexity constraint can lead to further improvements in the
accuracy of the prediction. The parallelogram rule introduced by
Touma and Gotsman [25] uses the assumption that adjacent trian-
gles form a parallelogram for predictive coding. While two adja-
cent triangles can violate this assumption quite drastically, a convex
quadrangle can not. Their approach could be extended to define a
pentagon or a hexagon rule for higher degree faces.

4.2 Vertex and Face Properties

A vertex-based property assignment is commonly used to achieve
visually smooth transitions across face boundaries. In the same
way the geometry data is shared by all faces around each vertex to
avoid cracks in the surface, a common normal, colour, or texture co-
ordinate eliminates discontinuities when interpolated shading (e.g.
Gouraud shading) is applied. Geometry data and property data as-
sociated with a vertex are stored in the order the vertices are encoun-
tered during the traversal of the mesh.

A typical example for a face-based property assignment is a pre-
computed radiosity solution. Each face has assigned a colour that
corresponds to the amount of light it emits or transmits. The prop-
erty data associated with a face is stored in the order the faces are
encountered during the traversal of the mesh. Obviously this is in-
dependent from the degree of the face. Here lies another advantage
of the Face Fixer method over encoding schemes that first triangu-
late the input mesh. Splitting a face of degree n into n � 2 trian-
gles createsn�2 copies of its properties. Instead of encoding these
properties once, they need to be encodedn� 2 times.

4.3 Corner Properties

A corner-based property assignment becomes necessary to reflect
physical discontinuities in the underlying 3D model. Vertices that
lie along such a discontinuity have usually more than one associ-
ated normal, colour or texture coordinate, each of which they share
with a disjoint set of adjacent corners. Five of our example models
have vertices with multiple normals (see Table 3).

We need to establish a mapping between a property value and the
set of corners it is associated with. Our approach is a simple but
effective improvement on work by Taubin et al. [23]. They store a
discontinuity bit with every corner that is “0” when this corner uses
the same property as the previous corner in counterclockwise order
and a “1” otherwise. Then the property data associated with a set
of corners is stored in the order in which the corresponding corners
marked with “1” are encountered during the traversal of the mesh.
This approach requires as many bits as the mesh has corners.

Based on the observation that not all vertices have multiple prop-
erties, we propose a similar marking scheme that uses vertex bits and
corner bits. We use one bit per vertex to distinguish vertices with a
single property (“1”) from those with multiple properties (“0”). The
corners around every vertex with multiple properties are marked as
described above (see Figure 5). We store the property data in the
same order as the corresponding “1” bits appear in the bit sequence.
The results in Table 3 show that this encoding gives savings of 20 %
to 70 % over the method proposed by Taubin et al. [23].

Face Fixer, march 2000 6 appeared in SIGGRAPH ’2000



UNC Technical Report TR-00-04

1

1 0
1

0

1
0

0 1

0

ODEHO )�

1
0 0

1
0 0

1

1 0
1

0

1

0

0

0

1
0

0 1

0
0

0

. . 1 0 0 0 1 0 0 1 . .

corner bits
vertex

bits

vertex / corner
bit correspondance

Figure 5: Encoding the mapping from properties to sets of corners.

vertices with n normals vertex corner
name n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 bits bits

triceratops 2585 232 14 1 – – 2832 980
galleon 1146 894 308 9 16 – 2372 4756
beethoven 1838 681 118 14 2 2 2655 3235
sandal 1120 1227 274 15 – – 2636 6150
shark 1985 575 34 1 – – 2560 2300

Table 3: Example results for encoding multiple vertex normals. The
number of vertex bits and corner bits are reported that need to be
recorded during the mesh traversal to establish a mapping between
each normal and the set of corners sharing it.

4.4 Group Structures

Structural information that classifies groups of faces of a polygo-
nal model into logical units is present in many file formats. Such
face groupings allow to assign qualitative information to otherwise
nameless polygons. Typically they establish a mapping between
a meaningful part of the real world object and the set of faces of
the polygonal model representing this part. We created and colour-
coded such structural information for the popular teapot mesh and
the cow mesh (see Figure 2). Many other well-known polygonal
models, such as the triceratops, the cessna, the beethoven bust, and
the galleon mesh contain similar group structures.

The triceratops mesh for example has six groups that classify
each face as either skin, horn, toe, mouth, eye, or nose. The 58 faces
that belong to the mouth-group form a single connected patch on the
triceratops mesh. The 149 faces of the horn-group form three such
patches and the 205 faces of the toe-group form fifteen.

The galleon model has a total of 17 groups. But this model con-
sists of 12 unconnected components, which capture some of the
group structure. The six sails, the three masts, the rig, and the lamp
are separate components and form a group each. The body of the
galleon however is one component with six groups: the hull, the
keel, the deck, the aft, the windows, and the rig.

Encoding such structural information present in a polygon
mesh has not been addressed by previously reported compression
schemes. In a naive approach, we have a list of groups and assign a
group index to every face. These group indices can then be treated
like any other face property. For models with k groups and f faces
such an encoding requires at least f log k bits.

When a model consists of several mesh parts we can improve on
the above by specifying for each component the number of group-
ings it contains. For mesh parts whose faces belong all to the same
group no additional information needs to be recorded. For mesh
parts with group structures we need only as many bits per face as
necessary to distinguish among the groups of this component. This
is the approach we will compare our results against.

The concept of a super face is an natural extension of the Face
Fixer scheme that leads to more compact and elegant encodings of
face groupings. A super face is a collection of faces that is contained
inside a single closed boundary loop. The representation power of
super faces is illustrated in Figure 6: A simple super face composed
of 9 faces (case A), a super face with a non-manifold vertex (case B),
a super face with a non-manifold edge (case C), and a super face that
contains another while being adjacent to a third (case D).

We introduce a new label SF to encode super face structure on
the mesh. When the active gate is adjacent to a super face the ac-
tive boundary is extended around the entire super face and the new
gate is pushed on the stack. The super face is cut out of the polygon
mesh and its boundary becomes the active boundary with the gate
being the same as before (see Figure 7). The super face, which it-
self may contain other super faces, is first processed in its entirety
before the encoding continues on the boundary that was pushed on
the stack. The inverse operation used for decodingsimply ‘fixes’ the
super face back into the mesh. The length of the super face boundary
is not encoded explicitly, but is directly related to the cost of encod-
ing a super face. In addition to the label SF there is one additional
label of types R, L, S, or E per super face boundary edge.

We use super faces to encode the group structure of a polygon
mesh by declaring each group boundary a super face boundary. This
results in super faces corresponding to cases A, B, and D. Ideally we
would like a one to one mapping from groups to super faces. But
when the faces of a group are not all adjacent, like the three horns of
the triceratops, a group is represented by more than one super face.
We could connect the three horns using non-manifold super face
edges (case C) along a shortest path across the mesh. However, this
requires additional computation and is expensive for distant patches
because of the increasing length of the super face boundary.

case A case B

case C case D

non-manifold
vertex

non-manifold
edge

Figure 6: The representation power of super faces.

ODEHO 6)��

ODEHO 6)

+

+

gate pushed
on stack

gate popped
from stack

Figure 7: The label SF for encoding and decoding super faces.

Instead of storing one group index per face, we store one group
index per super face and one group index per mesh component. Ta-
ble 4 lists results for our pool of example meshes. Although more
bits are needed to include the super face structure into the connec-
tivity encoding, the savings in the number of necessary group refer-
ences lead to superior compression rates overall.

Hierarchical Super Faces. The group structures that we have
discussed so far are flat structures without a hierarchy. Suppose the

Face Fixer, march 2000 7 appeared in SIGGRAPH ’2000



UNC Technical Report TR-00-04

bpv without super faces bpv with super faces
name conn. grouping total conn. grouping total

triceratops 2.115 8502 5.117 2.484 (23 + 1) * 3 2.509
galleon 2.595 2640 3.708 2.701 (10 + 12) * 5 2.747
cessna 2.841 15538 6.990 3.457 (137 + 11) * 6 3.694
beethoven 2.890 5470 4.950 3.081 (12 + 8) * 4 3.111
sandal 2.602 27 2.612 2.602 (0 + 9) * 3 2.612
shark 1.670 7686 4.672 1.962 (11 + 1) * 3 1.976
al 2.926 6039 4.595 3.051 (23 + 21) * 6 3.124
cupie 2.307 5060 4.003 2.387 (17 + 6) * 4 2.418
tommygun 2.611 5036 3.818 2.823 (12 + 39) * 4 2.872
cow 2.213 17412 8.209 2.346 (7 + 1) * 3 2.354
teapot 1.669 3870 4.924 1.853 (7 + 1) * 3 1.874

Table 4: Example results for encoding the grouping structure on a
mesh together with the connectivity. The middle columns reflect
the number of bits required for all indices into the group list. Both
bit counts exploit the fact that the group structure is partly captured
through the component structure of the models.

hierarchical structure of a world map with the oceans being the low-
est level containing continents and islands. The continents them-
selves are subdivided into countries, some of which are composed
of states, then counties, etc. Super faces can be used to efficiently
encode such hierarchical structures on a polygon mesh.

Corner Properties Revisited. Group boundaries in a polygo-
nal model often reflect discontinuities in the represented real-world
object, which in turn is reason to associatemultiple properties to sets
of corners around a vertex. A substantialnumber of polygon meshes
from the Viewpoint Premier collection [28] have vertices with mul-
tiple properties only along group boundaries. These meshes share
a single normal, colour, or texture coordinate among all corners
around a vertex that belong to the same group. In this case the su-
per face structure is sufficient to establish the mapping between the
property data and the appropriate set of corners. No additional in-
formation like corner or vertex bits is required.

5 SUMMARY

We have presented a new compression algorithm that encodes the
connectivity of surface meshes directly in their polygonal represen-
tation. This has several benefits compared to methods that compress
pre-triangulated polygon meshes: The original connectivity is pre-
served. Properties associated with faces and corners need not to be
replicated. Subsequent stripification algorithms can generate better
triangle strips. Predictive coding for geometry and property data can
exploit additional convexity and planarity constraints.

Our method also improves on approaches that triangulate meshes
prior to compression, but recover the polygons by marking edges.
Although the freedom to triangulate polygons on demand can lead
to compact encodings for the triangulated mesh, for example using
Touma and Gotsman’s scheme [25], the number of bits required to
mark the edges would be as high as 3 bpv. This holds true espe-
cially for meshes with low triangle counts, as there is less connec-
tivity information to compress. For the case of quadrangularmeshes
the Edgebreaker extensions [13, 15] give better encodings.

We have also introduced a method to encode structures on a poly-
gon mesh. Such structures can specify classifications of faces, hier-
archies, smoothing groups, or mesh partitions. The conceptof super
faces naturally extends our algorithm and leads to elegant and effi-
cient encodings of such structural information—this has not been
addressed by previous compression schemes. The edge-based na-
ture of Face-Fixer combined with reverse decoding make the imple-
mentation of super faces extremely simple.

The techniques presented here lead to more compact and com-
plete representations of polygonal models. The model collection

from Viewpoint [28], for example, consists of data sets that contain
few triangles, but are rich in structural information and associated
properties. Especially with such 3D content moving towards net-
worked environments, our methods will find many applications.

We owe a debt of gratitude to many people for their thoughts and
time. We especially thank Davis King and Jarek Rossignac for dis-
cussions, Mike Maniscalco and Stefan Gumhold for tips on arith-
metic coding, and Viewpoint Datalabs for the polygon models.

References
[1] C. Bajaj, V. Pascucci, and G. Zhuang. Progressive compression and transmission

of arbitrary triangular meshes. In Visualization 99, pages 307–316, 1999.

[2] D. Cohen-Or, D. Levin, and O. Remez. Progressive compression of arbitrary tri-
angular meshes. In Visualization 99 Conference Proceedings, pages 67–72, 1999.

[3] M. Deering. Geometry compression. In SIGGRAPH 95, pages 13–20, 1995.

[4] M. Denny and C. Sohler. Encoding a triangulation as a permutation of its point
set. In Proc. of 9th Canadian Conf. on Comp. Geom., pages 39–43, 1997.

[5] F. Evans, S. S. Skiena, and A. Varshney. Optimizing triangle strips for fast ren-
dering. In Visualization 96 Conference Proceedings, pages 319–326, 1996.

[6] L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions
and the computation of Voronoi Diagrams. ACM ToG, 4(2):74–123, 1985.

[7] S. Gumhold and W. Strasser. Real time compression of triangle mesh connectiv-
ity. In SIGGRAPH 98 Conference Proceedings, pages 133–140, 1998.

[8] H. Hoppe. Progressive meshes. In SIGGRAPH 96, pages 99–108, 1996.

[9] M. Isenburg and J. Snoeyink. Mesh collapse compression. In Proceedings of
SIBGRAPI 99, Campinas, Brazil, pages 27–28, 1999.

[10] M. Isenburg and J. Snoeyink. Spirale reversi: Reverse decoding of the Edge-
breaker encoding. Technical Report TR–99–08, Computer Science, UBC, 1999.

[11] K. Keeler and J. Westbrook. Short encodings of planar graphs and maps. In Dis-
crete Applied Mathematics, pages 239–252, 1995.

[12] D. King and J. Rossignac. Guaranteed 3.67v bit encoding of planar triangle
graphs. In Proc. of 11th Canadian Conf. on Comp. Geom., pages 146–149, 1999.

[13] D. King, J. Rossignac, and A. Szymczak. Connectivity compression for irregular
quadrilateral meshes. Technical Report TR–99–36, GVU, Georgia Tech, 1999.

[14] D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal of Com-
puting, 12(1):28–35, 1983.

[15] B. Kronrod and C. Gotsman. Efficient coding of non-triangularmeshes. In Proc.
of 16th Europ. Workshop on Computational Geometry, pages 24–26, 2000.

[16] J. Li, C. C. Kuo, and H. Chen. Mesh connectivity coding by dual graph approach.
Contribution Document MPEG98/m3530 Tokyo, mar 1998.

[17] R. Parajola and Rossignac. Compressed progressive meshes. Technical Report
TR–99–05, GVU, Georgia Tech, 1999.

[18] J. Rossignac. Edgebreaker: Connectivity compressionfor triangle meshes. IEEE
Transactions on Visualization and Computer Graphics, 5(1), 1999.

[19] J. Rossignac and A. Szymczak. Wrap&zip: Linear decoding of planar triangle
graphs. The Journal of ComputationalGeometry, Theory and Applications, 1999.

[20] J. Snoeyink and M. van Kreveld. Linear-time reconstruction of Delaunay trian-
gulations with applications. In Proc. of Europ. Symp. Alg., pages 459–471, 1997.

[21] D. M. Y. Sommerville. An Introductionto the Geometry of N Dimensions. Dutton
Publications, New York, 1929.

[22] G. Taubin, A. Guéziec, W.P. Horn, and F. Lazarus. Progressive forest split com-
pression. In SIGGRAPH 98 Conference Proceedings, pages 123–132, 1998.

[23] G. Taubin, W.P. Horn, F. Lazarus, and J. Rossignac. Geometry coding and
VRML. Proceedings of the IEEE, 86(6):1228–1243, 1998.

[24] G. Taubin and J. Rossignac. Geometric compression through topologicalsurgery.
ACM Transactions on Graphics, 17(2):84–115, 1998.

[25] C. Touma and C. Gotsman. Triangle mesh compression. In Graphics Interface
98 Conference Proceedings, pages 26–34, 1998.

[26] G. Turan. Succinct representations of graphs. Dis. Apl. Math., 8:289–294, 1984.

[27] W.T. Tutte. A census of planar triangulations. Cnd. Jrn. Math., 14:21–38, 1962.

[28] Viewpoint. Premier Catalog (2000 Edition) www.viewpoint.com.

[29] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data compres-
sion. Communications of the ACM, 30(6):520–540, 1987.

[30] M. Woo, J. Neider, and T. Davis. Open GL Programming Guide. A.W., 1996.

Face Fixer, march 2000 8 appeared in SIGGRAPH ’2000


