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Abstract
Gridded volumetric data sets representing simulation or
tomography output are commonly visualized by display-
ing a triangulated isosurface for a particular isovalue.
When the grid is stored in a standard format, the entire
volume must be loaded from disk, even though only a frac-
tion of the grid cells may intersect the isosurface.

We propose a compressed on-disk representation for
regular volume grids that allows streaming, I/O-efficient,
out-of-core isosurface extraction. Unlike previous meth-
ods, we provide a guaranteed bound on the ratio between
the number of cells loaded and number of cells intersect-
ing the isosurface that applies for any isovalue. As grid
cells are decompressed, we immediately extract vertices
and triangles of the isosurface. Our output is a coherent
streaming mesh, which facilitates subsequent processing,
including on-the-fly simplification and compression.

1 Introduction
The increases in sizes of geometric data sets acquired by
sampling devices and computed by scientific simulations
has fostered demand for scalable processing techniques.
In particular, stream processing is emerging as an I/O-
efficient algorithmic framework that is sufficiently inde-
pendent from the size of input and output data. Stream
algorithms that seamlessly operate on large data sets us-
ing relative little memory have been developed for sepa-
rate tasks, such as simplification, compression, and mesh
generation [11]. But stream processing also creates the
possibility of pipelining these algorithms together to work
concurrently on the same dataset.

In order to stream-process geometric data it must be
kept in a streamable representation. For polygon meshes,
a streaming format provides concurrent access to coher-
ently ordered vertices and triangles [11]. Such stream-
ing meshes are represented as an interleaved sequence
of vertices and triangles and include additional finaliza-
tion information that specifies when vertices are no longer
used. This information enables stream-processing algo-
rithms to complete the computations involving finalized
vertices and their triangles, optionally output the result,
and then safely free up space for new mesh elements.
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In this paper, we develop a mesh representation that
supports the extraction of isosurfaces from regular grid-
ded volume data in two ways. First, for a chosen ρ ≥ 1,
it guarantees that the number of volume grid cells read
from the disk is at most ρ times the number that inter-
sect any isosurface. Second, and more importantly, it ex-
tracts directly to a streaming format, an important step for
achieving end-to-end streaming pipelines in scientific vi-
sualization. This allows us, for example, to pipe the iso-
surface to a simplification process to get immediate visual
feedback while it is being extracted. It also allows us to
directly compress the isosurface as we write it to disk, or
for transmission to a remote display site.

Related prior work. Isenburg and Lindstrom [11]
present the underlying theory of creating and working
with a streaming representation for polygonal meshes.
They define coherent and compatible orderings of mesh
vertices and triangles and present metrics and diagrams
that characterize how streamable a particular mesh lay-
out is. They also mention a straight-forward, but I/O-
inefficient, method for creating streaming isosurface out-
put. Their implementation for marching-cubes isosurface
extraction [13] loads the volume grid layer by layer, out-
puts all vertices of one volume layer, followed by a set of
triangles, and always finalizes the vertices from the previ-
ous layer before moving on to the next layer.

Such an approach is suitable in cases where the volume
data changes often and only the isosurfaces for one or two
isovalues are extracted, but not suitable for the common
case, where volume grids are created by computationally
intense simulations once, and different isosurfaces are ex-
tracted repeatedly to study the data. It is inefficient to
scan the entire volume grid to extract an isosurface, as in
general only a small percentage of grid cells will actually
intersect a particular isosurface. Several external memory
techniques have been proposed to avoid the I/O-overhead
associated with a layer by layer scan of the volume. The
common idea is to find an on-disk arrangement of the vol-
ume grid that allows selective loading of cells, and avoids
loading those that clearly do not intersect the isosurface.

Chiang et al. [2] adapt the idea of treating isosurface
extraction as an interval stabbing problem [3] to an out-
of-core setting. They rearrange the on-disk layout of the
volume grid into clusters of cells or meta cells that are
referenced by an interval tree. This allows them to query
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only those meta cells that contain at least one cell inter-
secting the isosurface. One benefit of their approach is
that all preprocessing can be done out-of-core using multi-
ple external sorts. However, although the number of cells
they need to load tends to be a within practical ratio to the
number of intersecting cells, they cannot provide a tight
bound on their number. Furthermore, this method cannot
produce coherent streaming mesh output since the order
in which the meta cells are processed does not follow the
geometry of the extracted isosurface.

Static data decompositions that guarantee good exter-
nal memory performance and parallel load balancing for
large rectilinear grids were first introduced in [1] and suc-
cessively improved with random data distribution [20] and
view-dependent data selection [21]. The coarse-to-fine
adaptive refinement used in [6] avoids loading fine res-
olution data for isosurfaces that are further from the view-
point. Recent developments [19] deal with accurate esti-
mate of the isosurface extraction cost to fine-tune the per-
formance in external-memory. These, and all techniques
that reorder or partition rectilinear grids, face the problem
of increasing storage cost to maintain connectivity infor-
mation that would otherwise be implicit.

The need for compact representations of geometry
data has motivated research on geometric compression.
Most works have focused on irregular triangulated surface
meshes [15, 16, 8], with some generalizations to com-
press irregular volume meshes [7, 10]. Efficient encod-
ings for regular volume grids has been investigated in two
contexts. Some approaches compress the entire volume
grid [5, 9], others compress only a single isosurface for
a particular isovalue [14, 12] by encoding its occupancy
grid plus information to refine the vertex placement. In
either case the respective grid is compressed with a com-
plete layer by layer traversal. In contrast, our scheme
compresses a partial volume grid that encodes all isosur-
faces within a range of isovalues. To support streaming,
we do this with a traversal that follows the geometry of
the isosurfaces and not by sweeping the grid.

Contributions. This paper provides a method for en-
coding and storing regularly gridded volumetric data on
disk in a compressed format that supports streaming, out-
of-core isosurface extraction while providing guarantees
on the I/O-efficiency. For this, we partition the space
of isovalues into ranges such that each range satisfies a
specified upper bound on the ratio of the number of cells
loaded from disk to the number of cells intersecting any
isosurface within that range. The decoder loads and un-
compresses only those parts of the volume grid that are
relevant for the range containing the selected isosurface,
which is extracted as a streaming mesh. We present re-
sults from experiments on a few sample datasets.

Our current implementation of the encoder works in-

core and therefore requires substantial amounts of main
memory when encoding large volume grids. While this is
a limitation, in practice we find that really large datasets
are usually created on high-end computing equipment
with sufficient memory resources. The same computers
could also be used to encode the volume data before dis-
tributing it for subsequent study on commodity PCs. Nev-
ertheless, in the future we hope to also have a version of
the encoder that operates out-of-core.

Outline. Section 2 reviews required background mate-
rial and gives some definitions. Section 3 explains how to
partition the gridded volume data into ranges of isovalues.
Section 4 describes how to compress the resulting partial
volume grids for compact storage on disk. Section 5 ex-
plains how to extract an isosurface from the compressed
grids in a streaming fashion. Section 6 discusses results.
We conclude and list future work in Section 7.

2 Preliminaries
We assume that the volumetric data is the sampling of a
scalar function f : R

3 → R. The function value is ex-
tended to all points in the domain by creating a regular
grid with scalar values at the grid points, and using a suit-
able interpolation function over each grid element, a unit
cube, which we shall refer to as the cell.

For each cell c, the SPAN(c) is the interval [MINVAL(c),
MAXVAL(c)], where MINVAL(c), and MAXVAL(c) return
the minimum and maximum scalar value stored at the grid
points of c. For cells u and v that share a face Fuv ,
SPAN(Fuv) is the interval of the scalar values stored at
the grid points of the common face.

An isosurface (also called level-set) is the preimage of
a constant value, Ik = f−1(k), for k ∈ R. The set
of cells Ak that intersect the isosurface Ik are called ac-
tive cells; these are organized into face-connected compo-
nents. Isosurfaces can be extracted by continuation [18]:
starting from a seed cell in an isosurface component, the
entire component can be extracted by breadth-first traver-
sal through the cell adjacency graph. A seed set is a set of
cells that contains at least one seed cell for each connected
component of each possible isosurface.

We will use continuation over ranges, so we make a few
extra definitions. A range R is an interval of R. We de-
fine the active cells for a range R as AR =

⋃
k∈R Ak,

which is the set of cells that are active for any isosurface
with an isovalue in R. To define continuation, we con-
sider the cells that are face-adjacent to a cell u. Given a
range R and a cell u, a cell v is R-connected to u if there
exists a path of cells, between u and v, such that, every
consecutive pair of cells in the path are face-adjacent, and
R ∩ SPAN(w) �= ∅ for every cell w in the path. The con-
nected component for cell u, denoted KR

u ⊆ AR, is the
set of cells that are R-connected to cell u.
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3 Partitioning the Volume Grid
We begin with an overview of an algorithm that extracts
a connected component of an isosurface, given a starting
cell that intersects this component. During each iteration
we process a cell that is face-adjacent to one or more pre-
viously processed cells. We extract isosurface vertices
and triangles for the currently processed cell and enqueue
any unprocessed face-adjacent neighbors that also inter-
sect the isosurface. Thus, we process a stream of volume
grid cells and produce a stream of isosurface vertices and
triangles. We stop processing when the queue is empty.

To organize the volume data on disk, we encode the vol-
ume grid cells in the order of visitation for a particular iso-
surface into a file. The extraction procedure decodes the
grid cells from disk visiting them in the same order as the
encoder. Instead of accessing the entire volume dataset,
only those cells that are relevant for extracting this partic-
ular isosurface are read. At any time only the cells in the
queue and some bookkeeping information about vertices
shared between cells needs to be kept in memory.

Instead of encoding the required grid cells for every
possible isovalue we partition the space of isovalues into
ranges, and encode for each range the cells that con-
tain the corresponding union of isosurfaces. An obvious
concern is I/O-efficiency; for any particular isovalue we
would ideally process only those cells that intersect the
isosurface. In practice we settle for the number of pro-
cessed cells to be bound by a constant factor of the num-
ber of cells intersecting the isosurface.

We now sketch our algorithm that preprocesses a vol-
ume grid and stores it as several compressed files on disk.
The input to the algorithm is a gridded volume data set
representing a scalar function f , and a parameter ρ. The
output is determined in two steps:

First, we partition the space of possible isovalues f
into a set of non-overlapping ranges such that, for each
range R, the number of active cells for the all isosurfaces
in R is at most ρ times the number of active cells for any
individual isosurface in R. In notation,

|AR| ≤ ρmin
k∈R

{|Ak|}.

Second, for each range R, we produce seed cells for each
connected component of AR. For each seed, we propa-
gate through the connected component and compress the
values of f in propagation order to disk.

Range Partition. If, for each cell with non-empty span,
we record the start and end of its interval, then range parti-
tioning can be performed by a simple greedy process that
will produce the smallest number of ranges satisfying the
desired condition. Note that the number of intervals in-
tersecting any value k is simply the number of interval
starts minus the number of interval ends that are less than
or equal to k. We simply scan the list of starts and ends

in increasing order, keeping track of the current and to-
tal number of cells in the current range, and the minimum
number intersected by any isosurface in the range. We cut
off a new range whenever their ratio exceeds ρ.

Alternatively, one could use dynamic programming to
determine the smallest parameter ρ to achieve a given
number of ranges, or other desired properties.

Propagation Order. Given a cell c and an open range
Rc, we compute the set of cells that are Rc-connected to
c by performing a breadth-first search starting from c. We
think of this procedure as a propagation of the range Rc

and implement it as shown below:

PROPAGATERANGE(Cell c, Range Rc)
ENQUEUE(Q, c)
Mark(c)
while(Q not empty) do

u = DEQUEUE(Q)
for each face-adjacent cell v do

if ((v not marked) AND

(Rc ∩ SPAN(v) �= ∅) then
ENQUEUE(Q, v)
Mark(v)

endif
done

done

We enqueue an unmarked face-adjacent cell only if its
span intersects Rc in a non-empty interval. This excludes
flat cells; cells with the same function value at all grid
points, and non flat cells whose span intersects Rc in a
point. We can ignore these cells as they do not contribute
to any isosurface within the range Rc. Thus, the result of
a call to PROPAGATERANGE is a set of covered cells in
the range, bounded by cells that are hit, but not covered,
namely the cells that poke above or below the range (or
both), and the flat cells that lie within the range. We use
the order that the range propagation induces on the grid
cells to store the data associated with them on disk. In
Section 4 we will show how this data can be compressed
for efficient storage. As we will explain in the next para-
graph, we use subsequent calls to PROPAGATERANGE to
visit yet-uncovered portions of non-flat cells.

Seed set based covering. Since PROPAGATERANGE can
produce the set of cells that are covered by a given seed in
a given range, we greedily apply it until the entire data set
is covered. We initially choose an arbitrary non-flat seed
cell c, select a partition range R = [a, b] that intersects
SPAN(c), and call PROPAGATERANGE(c,R) to obtain the
connected component KR

c , which is bounded above and
below by portions of isosurfaces Ia and Ib.

For subsequent calls to PROPAGATERANGE, we prop-
agate one seed cell and range per connected component
of Aa ∩ KR

c and Ab ∩ KR
c , which are the active cells of

Ia and Ib. We maintain a collection of connected compo-
nents of Aa ∩ KR

c in a union-find (UF) data structure [4],
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and with each UF-root we maintain the seed cell for that
component. (We process cells in Ab ∩ KR

c in a simi-
lar fashion.) We give our initial seed cell c a new UF-
component equipped with a pointer to c. We perform the
following when propagating from cell u to its adjacent
node v. If v is unmarked and has a residual lower range
[a′, a] with a′ ≤ a, then v ∈ Aa ∩ KR

c and we create
a new UF-component equipped with a pointer to v. If
u ∈ Aa ∩ KR

c , (i.e. it has a non-null UF-component),
we union v’s UF-component with u’s. If v ∈ Aa ∩ KR

c

and is marked, we do not create a new UF-component, but
perform the union of the UF-components of u and v as in
the unmarked case. If v is a flat cell, it could be part of a
sea; a connected component of flat-cells. We select a seed
for such a sea as it could contain islands; connected com-
ponents of non-flat cells. We create a new sea-component
for v, and merge sea-components associated with adjacent
non-flat cells.

When PROPAGATERANGE terminates, the root of each
UF-component contains a pointer to a seed cell for a com-
ponent of Ia, Ib, or a sea. For each component of Ia, we
select from the partition the range with upper end-point
equal to a, and for each component of Ib we select the
range with lower end-point equal to b. We invoke PROP-
AGATERANGE on each of these seed cell/range pairs. We
do not encode flat cells, but discover seeds for islands by
propagation from sea seed cells. Since the domain is sim-
ply connected, isosurfaces nest, so to avoid generating a
new seed for an already visited component, it is sufficient
to remember a single component that started a propaga-
tion. We stop propagation when we exhaust all seeds.

4 Encoding Partial Volume Grids

For efficient storage to disk, we compress for each range
of isovalues only those parts of the volume grid that are
relevant for that particular range. These partial volume
grids are composed of all grid cells that are active for the
respective range. There are two types of information to
encode: which are the active grid cells and what are the
scalar values associated with their grid points. The infor-
mation about which grid cells are active can – to a certain
extent – be derived from propagating the range. The scalar
values associated with the grid points of the seed cells and
the grid points of the cells visited during range propaga-
tion are compressed using predictive coding.

Our approach is similar to the compression tech-
nique for hexahedral volume meshes by Isenburg and Al-
liez [10]. Each iteration of their encoding algorithm com-
presses a hexahedron that is face-adjacent to one or more
previously compressed hexahedra. This involves speci-
fying local connectivity around the hexahedron and the
3D position (plus optional scalar values) associated with

those vertices of the hexahedron that are encountered for
the first time. This vertex data is predicted from the data
of previously compressed, neighboring vertices. This pro-
cess maps naturally to our traversal of volume grid cells
during the PROPAGATERANGE procedure.

Given a seed cell and a range, our procedure visits face-
adjacent cells in a deterministic order that can often be
derived from the scalar values of previously visited cells.
Only occasionally we need explicit flag bits that tell the
decoder if a cell is to be visited or not because it could not
be decided from the previously decoded data alone.

A processed cell is in one of nine configurations face-
adjacent to previously visited cells. These configurations
are detailed in [10] and we provide them for convenience
in Figure 1. The grid points whose scalar values are not
yet encoded are called free points, and exist only in the
hut, step, and corner configurations. We compress their
scalar values when such a configuration occurs. Because
a cell can in addition be point- or edge-adjacent to previ-
ously processed cells, some of its free points may already
be encoded. To avoid re-encoding the values of such grid
points we check for point- and edge-adjacent cells in the
propagation queue.

The decoder reads the compressed data and performs
an exact replay of the range propagating procedure. At
this time any isosurface within the respective range can
be extracted.

hut step bridge

roof corner tunnel

gap pit den

Figure 1: Nine different configurations in which a cell (blue) can
be face-adjacent to processed cells (green). Free grid points are
drawn as unfilled circles.

We use a prediction scheme similar to [10] to com-
press the scalar values at the free points. We predict the
value at a grid point based on values from previously en-
coded grid points, compute the difference between the
predicted and the actual value, and then store only this
corrective value. Since these corrections tend to spread
around zero they can be efficiently compressed with an
arithmetic coder [17]. Whenever possible we use a single
parallelogram prediction [16] within a face of the cell as
as shown in Figure 2. Seed cells are special cases, since

Encoding Grids, Mascarenhas, Isenburg, Pascucci, Snoeyink 4 appeared in 3DPVT ’2004



none of their scalar values have previously been encoded.
The value at grid point p0 is predicted as 0, the values at
p1 and p2 cannot be parallelogram predicted and are in-
stead predicted as a previously encoded value, say that at
p0. All subsequent values use the parallelogram rule, ex-
cept for p4 of the “hut” configuration which extends a ray
from p8 through p0 if p8 exists, or uses p0 otherwise.

0
2

7
6

4
5

1
3

8
hut

point prediction rule
p0 0
p1 p0

p2 p1

p3 p0 − p1 + p2

p4 2p0 − p8 or p0

p5 p1 − p0 + p4

p6 p2 − p1 + p5

p7 p3 − p2 + p6

Figure 2: Prediction rules for scalar values at grid points.

In PROPAGATERANGE an unmarked cell v that is face-
adjacent to the current cell u is visited only if Rc ∩
SPAN(v) �= ∅, where Rc is the propagation range. To
evaluate this condition the decoder would already need
all scalar values of v, which may not yet all be decoded.
Therefore the decoder tests first if Rc ∩ SPAN(Fuv) �= ∅
using the face Fuv of the already decoded cell u and, if
true, adds v to the queue. If Rc ∩ SPAN(Fuv) = ∅, the
encoder outputs a flag bit, 1, if Rc ∩ SPAN(v) �= ∅, or
0 otherwise. Then the decoder will read this flag bit to
decide if v is to be added to the queue or not.

We use four arithmetic contexts to encode the correc-
tive values and one to encode the flag bits. We switch be-
tween the four contexts based on the prediction rule used:
no prediction, delta, ray shooting, or parallelogram.

5 Streaming Isosurfaces
Our decoder simultaneously extracts the vertices and the
triangles of the isosurface. While it does not know in ad-
vance how many vertices and triangles the final mesh will
have, it does know when vertices will no longer be used
for subsequent triangles. It comes therefore quite natu-
ral to output the extracted mesh using a streaming for-
mat [11]. A streaming mesh format can be as simple as
the ASCII example in Figure 3. It interleaves vertices and
the triangles that use them, and in addition specifies when
vertices are referenced for the last time.

The fact that vertices and triangles can be written in an
interleaved fashion enables our extraction process to im-
mediately output the mesh data as it is produced. This
can be done in a single pass—even if the the final ver-
tex and triangle counts are not known a priori. Compare
this to the possible alternative of using a standard indexed
format where a block of vertices is followed by a block
of triangles. A mesh generating application could then ei-

1
2

3
4

5

1 2 3 4 # standard .obj 
# 
v -0.1 1.1 0.2
v  0.4 0.2 0.5
v  0.6 0.9 0.4
v  0.7 0.6 0.6
v  0.9 -0.1 0.5
v  1.1 1.0 0.4 
f  1  2  3
f  3  2  4 
f  4  2  5
f  3  4  5
f  1  3  6
f  6  3  5

# streaming .sma 
# 
v -0.1 1.1 0.2
v  0.4 0.2 0.5
v  0.6 0.9 0.4
f  1  2  3
v  0.7 0.6 0.6
f  3  2  4 
v  0.9 -0.1 0.5
f  4  2  5
x 2
f  3  4  5
x 4
v  1.1 1.0 0.4 
f  1  3  6
x 1
f  6  3  5
x 6
x 3
x 5

a)

b)

6

5 6

1
2

3
4

5

1 2 3 4

6

5 6

Figure 3: (a) standard OBJ format: all ver-
tices are introduced in the beginning and
remain active until the end. (b) streaming
mesh format: vertices are introduced when needed and finalized
when no longer used—illustrated here with the ’x’ command.

ther accumulate all vertices and triangles in memory. That
would prohibit the generation of meshes that are larger
than the available main memory. It could also memory
map a binary file and fill in the vertex and triangle arrays.
But that would require to at least know the final number
of mesh vertices in advance. Or it could write the pro-
duced vertices and triangles into two temporary files that
are concatenated afterwards. But that would mean that the
mesh is no longer produced in a single pass.

When producing large meshes, there is a big payoff
in arranging vertices and triangles in a coherent manner.
Isenburg and Lindstrom [11] describe metrics that mea-
sure, and diagrams that visualize the coherency in a mesh
layout (e.g. in the ordering of vertices and triangles) and
advocate to produce streaming meshes that are low in both
width and span. The width of a streaming mesh corre-
sponds to the maximal number of vertices that are ac-
tive at the same time, whereas the span corresponds to
the longest duration that any vertex remains active.

From our point of view, a vertex is active from the mo-
ment we output it until the moment we specify it as final-
ized. To avoid bloating the width, we need to output ver-
tices just before the first triangle that references them and
finalize them immediately after the last triangle that refer-
ences them. The isosurface vertices lie on the edges of the
volume grid and are incident to the cycle of triangles that
is extracted from the cycle of volume grid cells sharing
this edge. Hence, we output an isosurface vertex just be-
fore the first triangle of the first cell of such a cycle is writ-
ten and we finalize it when the last triangle from the last
cell of this cycle is written. For this, we maintain refer-
ence counters for each edge that intersects the isosurface.
We initialize the count to the number of cells adjacent to
the edge, decrement it as we process these cells, and fi-
nalize the corresponding vertex when the count reaches
zero. This produces compact streaming meshes that have
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dataset total # encoded compressed bits per point encoding
name points (T ) points (E) size (C) Ebpp Tbpp time

ENGINE 7,208,960 10,374,052 4.8 MB 3.88 5.58 (03:54)
JETDATA 16,777,216 4,086,503 2.6 MB 5.33 1.30 (02:25)
PPM256 16,777,216 12,731,615 7.7 MB 5.07 3.85 (04:58)
PPM512 134,217,728 50,340,331 30.5 MB 5.08 1.90 (25:55)

Table 1: Encoder performance for ρ = 3. The compressed size is the total of all files on disk. The bits per point for the encoded
points is Ebpp = 8C/E, and the bits per point for the total points in the data set is Tbpp = 8C/T . The time is given in (mm:ss).

range
compressed # encoded # encoded

size cells points

[0, 3) 0.00 MB 0 0
[3, 4) 0.02 MB 64,965 128,968
[4, 52) 1.90 MB 2,212,832 3,100,227

[52, 122) 2.54 MB 3,026,904 3,936,116
[122, 193) 1.70 MB 1,818,150 2,572,010
[193, 228) 1.00 MB 1,124,313 1,634,383
[228, 229) 0.46 MB 644,101 1,209,279
[229, 230) 0.04 MB 86,321 150,632
[230, 255) 0.00 MB 0 0

Table 2: The compressed size of the individual files for each of
the nine range partitions of the PPM256 dataset at ρ = 3 and
the number of cells and points in the corresponding partial grid.

ρ
# encoded compressed bits per point
points (E) size (C) Ebpp Tbpp

2 17,854,894 11.0 MB 5.16 5.50
3 12,731,615 7.70 MB 5.07 3.85
4 10,460,851 6.50 MB 5.20 3.25
5 9,854,635 6.02 MB 5.12 3.00
6 8,318,042 5.08 MB 5.12 2.54
7 8,020,754 4.84 MB 5.06 2.42

Table 3: Compression performance on PPM256 for varying ρ.

the lowest possible width for a given triangle ordering.
The triangle order of our output mesh is determined by

the traversal of the volumetric cells, which is breadth-first.
It was shown that a breadth-first traversal results in suffi-
ciently low width for most practical applications [11], and
furthermore assures that the “lifetime” of each vertex is
proportional to the width, which translates into low span.
It should be noted that although we traverse the volume
grid component by component this does not imply that
the isosurface is also traversed component-wise. Multi-
ple isosurface components can be contained within a vol-
ume grid component and may be encountered in parallel.
However, the number of isosurface components that are
maximally traversed at the same time is limited to those
contained within one component of the volume grid.

The coherence in the streaming mesh output we pro-
duce is illustrated in Figure 4 in the form of layout dia-

grams. These diagram display the coherency in reference
between vertices, which are indexed along the vertical
axis, and triangles, which are indexed along the horizon-
tal axis – both are numbered in the order they are output.
Triangles that share the same vertex are connected with
horizontal line segments and vertices that are referenced
by the same triangle are connected with vertical line seg-
ments. The closer these line segments group around the
diagonal the more coherent is the layout.

The only other published alternative way of creating
streaming isosurface output employs a marching-cubes
implementation that streams the mesh layer by layer [11].
This approach outputs all vertices of one volume layer,
followed by a set of triangles, and always finalizes the
vertices from the previous layer before moving on to the
next layer. Hence, both width and span of their streaming
meshes are bound by the maximal number of vertices and
triangles per layer. Note that this approach will traverse
all isosurface components in parallel that simultaneously
have an intersection with the sweeping plane.

6 Results
In this section we describe the performance of our encoder
and decoder on a two processor 2.80GHz Intel Xeon PC
with 4GB of RAM.

Datasets All datasets are regular gridded volumes with
scalar values quantized to 8 bits.

ENGINE Dimensions: 256× 256× 110. This dataset is a
CT scan of two cylinders of an engine block.

JETDATA Data from the simulation of a supersonic fluid
jet. Dimensions: 256 × 256 × 256.

PPM256, PPM512 Data from the simulation study of
the Richtmeyer-Meshkov instability, which occurs,
for example, when a shock passes through an inter-
face of two fluids of differing density. The dimen-
sions of the original dataset are 2048×2048×1920,
we use a moderate 256× 256× 256 sized and larger
512 × 512 × 512 sized chunk of this dataset.

Encoder The performance of the encoder on our datasets
with ρ = 3 is shown in Table 1. We compute two quan-
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dataset decode # active # cells
cells/sec

decode + # triangles
tri/sec

max.
name time cells decoded extract extracted queue

ENGINE 2.03 s 329,154 875,917 431K 3.76 s 659,416 175K 7,334
JETDATA 1.72 s 269,735 794,897 462K 3.12 s 541,892 173K 3,372
PPM256 4.06 s 980,009 1,818,150 447K 9.17 s 1,969,892 215K 5,298
PPM512 19.70 s 4,055,366 7,395,253 375K 42.70 s 8,149,282 190K 20,713

Table 4: Decoder performance measurements for data-sets encoded with ρ = 3. We set the isovalue to 127. We list the times for
decoding the volume component containing the isosurface, for decoding and extracting the isosurface, the isosurface triangle count,
and the maximum number of propagation queue elements used by the decoder. Each queue element uses 76 bytes.

tities to describe the achieved compression. First, bits per
point for the grid points that were encoded Ebpp, and sec-
ond, bits per point for the total number of grid points in
the dataset Tbpp. Because we do not encode flat cells,
and because most common dataset have a large number
of flat cells, we expect the second quantity Tbpp to be
smaller than the first quantity Ebpp. Notice, however,
that for the ENGINE dataset the number of encoded points
is larger than the total number of points as the duplica-
tion of points from cells that span multiple propagation
ranges outweighs the gain from avoiding flat cells. The
last column summarizes the encoding time, with the cur-
rent implementation. Since encoding is done once for the
entire dataset, as a preprocess for isosurface extraction
later, we have not spent much effort on optimizing the
code to make the encoding process run fastest and with
the smallest memory footprint possible. This currently
prevents us from encoding larger datasets, like the entire
PPM dataset, and is our next target for improvement.

Table 2 shows the range partitioning for PPM256 with
ρ = 3 along with the compressed file size. It also reports
the number of encoded cells and points that are associated
with the partial grids that cover each particular range. This
is the amount of data that is read from disk and these are
the number of cells and points that are decoded when an
isosurface falling within that range is extracted.

Table 3 shows the compression performance on the
PPM256 dataset for varying ρ. With increasing ρ, the
number of ranges in the partition decrease, reducing du-
plicate encoding of points. We notice the number of en-
coded points, the compressed size, and Tbpp decrease,
whereas Ebpp remains about the same for all values of
ρ. This is, because the compressed data size varies more
or less in proportion with the number of points encoded.

Decoder and streaming isosurfaces. In Table 4, we list
running times and various counts for decoding and ex-
tracting isosurfaces from volume grids that were com-
pressed with ρ = 3. We also report separate timings for
only decoding the partial volume grids without extracting
an isosurface. Figure 4 illustrates the stream characteris-
tics of the extracted meshes using layout diagrams [11].
The diagrams show a thin diagonal line, which indicates

isovalue
decode + # triangles

tri/sec
max.

extract extracted queue

10 9.4 s 1,645,388 175K 10,064
50 11.1 s 2,272,748 204K 10,064

100 13.2 s 2,305,468 174K 10,246
220 5.2 s 1,022,658 196K 3,799

Table 5: Decoder performance for extracting isosurfaces corre-
sponding to four different isovalues from PPM256 with ρ = 3.

dataset Isenburg & Lindstrom [11] our
name x y z method

ENGINE 8,955 8,262 19,903 5,302
JETDATA 3,222 6,738 6,342 2,578
PPM256 17,713 17,556 15,115 5,777
PPM512 37,154 37,482 75,504 22,744

Table 6: Stream-width (maximum number of active vertices) for
isosurfaces at value=127. For Isenburg & Lindstrom’s method
we list the stream-width along each sweep direction.

good stream quality. The column for maximal queue size
measures the maximum number of decoded cells that are
in memory at the same time during the decode and ex-
traction process. We observe that this quantity remains
modest even for the relatively large 8 million triangle iso-
surface that is extracted from the PPM512 dataset. In
fact, the memory footprint of the decoder remains below
7 MB for all datasets.

Table 5 summarizes the performance of the decoder
for extracting isosurfaces corresponding to four different
isovalues from the PPM256 dataset. We get similar de-
code plus extraction times for similar sized isosurfaces.
The maximal queue size for the first two isovalues is the
same because they fall into the same range partition. This
means that the same file (or the same partial grid) is de-
compressed during extraction of these isosurfaces.

Table 6 compares the stream-widths of isosurfaces ob-
tained through our method with those obtained through
the method of Isenburg and Lindstrom [11] for an isovalue
of 127. Because Isenburg and Lindstrom process the vol-
ume layer by layer, the stream-width of their isosurfaces
depends on the sweep direction.
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Figure 4: Isosurfaces at value=127 for JETDATA, ENGINE, PPM256, and PPM512 with their layout diagrams.

7 Conclusion and Future Work
We have presented an in-core encoder for compressing
gridded volumetric data on disk, and an out-of-core de-
coder that performs I/O-efficient isosurface extraction into
a streaming format. We ensure I/O-efficiency by specify-
ing an upper bound, which applies to all isosurfaces, on
the ratio of the number of cells loaded from disk to the
number of cells intersecting the isosurface.

In the future, we would like to experiment with huge
datasets like the entire PPM volume. Encoding such data
will either require large memory resources or special out-
of-core techniques. But whichever way the preprocessing
is done, once encoded, our compressed volume grid rep-
resentation allows efficient isosurface extraction on com-
modity PCs. While we have restricted our attention to reg-
ular gridded volumes, our techniques can also be extended
to irregular volume meshes, although this will require ex-
plicit coding of the connectivity.
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