1. Consider the network shown below. Enumerate all the paths from A to F that do not contain any loops. For each path you list give the cost of the path.

![Network Diagram](image)

2. Consider the network fragment shown below. Switch X has only two attached neighbors, W and Y. W has a minimum-cost path to destination A (not shown) of 5, and Y has a minimum-cost path to A of 6. The complete paths from W and Y to A (and between W and Y) are not shown. All link costs in the network have strictly positive integer values.

![Network Fragment](image)

a) Give X’s distance table (row) entries for destinations W, Y, and A.
b) Give a link-cost change for either \(c(X,W) \) or \(c(X,Y) \) such that \(X \) will inform its neighbors of a new minimum-cost path to \(A \) as a result of executing the distance vector algorithm in the text.

c) Give a link-cost change for either \(c(X,W) \) or \(c(X,Y) \) such that \(X \) will not inform its neighbors of a new minimum-cost path to \(A \) as a result of executing the distance vector algorithm.

3. Compute the distance tables for \(X \), \(Y \), and \(Z \) shown in the rightmost column of the table below. After computation of the new distance tables, which nodes will send which updated values to which neighbors?

4. Consider a router that interconnects three subnets: Subnet 1, Subnet 2, and Subnet 3. Suppose all of the interfaces in each of these three subnets are required to have the prefix 223.1.17/24. Also suppose that Subnet 1 is required to support up to 125 interfaces, and Subnets 2 and 3 are each required to support up to 60 interfaces. Provide three network addresses (of the form a.b.c.d/x) for these subnets that satisfy these constraints.