There is a poll posted on piazza. Please take a minute to fill it out.
A Whirlwind Introduction to the Internet
Overview

◆ What’s the Internet
◆ Network core
◆ Network edge
◆ Access nets, physical media
◆ Internet Structure & ISPs
◆ Performance: loss, delay
◆ Security
◆ Protocol layers, service models

Introduce the major nouns and verbs of networking!

Some Definitions
The “nuts and bolts” view

◆ Billions of connected computing devices: hosts, **end-systems**
 » PCs, laptops, servers
 » Tablets, phones, e-readers, toasters running “network applications”

◆ Communication links
 » Different media (fiber, copper wire, radio, satellite)
 » Different transmission rates – bits per second (bps)
 ❖ 10^3 (Kbps) to 10^6 (Mbps) to 10^9 (Gbps)

◆ Switches & Routers:
 » Forward “packets” of data through the network
Just What is the Internet?
The “nuts and bolts” view

- Internet: “network of networks”
 - Loosely hierarchical
 - Public Internet versus private intranet

- Protocols:
 - Control sending, receiving of messages
 - e.g., TCP, IP, HTTP, SMTP, ….

- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force
Some Definitions
The “services” view

- Internet: A communication infrastructure enabling distributed applications
 » WWW, email, games, e-commerce, database, voting,…

- Communication services provided:
 » Connectionless:
 ◆ No guarantees
 » Connection-oriented:
 ◆ Guarantees order and completeness

Network Maps

Just how big is the Internet…?
A Whirlwind Introduction to the Internet
Overview

- What’s the Internet
- Network core
- Network edge
- Access nets, physical media
- Internet Structure & ISPs
- Performance: loss, delay
- Security
- Protocol layers, service models
The Structure of the Internet

The physical makeup of the Internet

- **Network core:**
 - Routers
 - Network of networks

- **Network edge:**
 - Applications running on hosts
 - "host" = "end system"

- **In between:** Access networks
 - Physical media: communication links

Network Structure

The network core

- A mesh of interconnected routers

- *The fundamental architectural question: How is data forwarded through the network?*
 - **Circuit switching:** "telephone model"
 - dedicated circuit (path) per call used by all data
 - **Packet switching:** "datagram model"
 - data sent in discrete "chunks" (packets)
 - each packet has a path chosen for it independently
The Network Core
Circuit Switching

- Resources reserved *end-to-end* for the connection (“call”)
 - Resources:
 - Link bandwidth, switch processing capacity, memory buffers, etc.
 - Reservation:
 - Dedicated fraction of available bandwidth, buffers, etc.

- 🌟: Circuit-like (guaranteed) performance
 - Call setup required
 - Call rejection (“busy signal”) possible

Circuit Switching
Allocating fractions of bandwidth — Multiplexing

- Network bandwidth divided into transmission “slots”
 - Slots allocated to calls
 - Slots are unused (“idle”) if not used by owning call
 - No sharing of slots!

- How to divide link bandwidth into slots?
 - Frequency division multiplexing (FDM)
 - Time division multiplexing (TDM)

Transmission Frequency 4 KHz
FDM
Call 1
Call 2
Call 3
Call 4
Link capacity

Time
TDM
Call data
frames/sec × bits/slot = TDM per-call transmission rate
The Network Core
Packet Switching

◆ Each sender divides its messages into "packets" (sequence of bits)
 » Each packet uses full link capacity until transmission completed
 » Senders’ packets share (compete for) network resources
 » Resources allocated & used as needed

◆ But now we have resource contention!
 » Aggregate resource demand can exceed amount available
 » Congestion: packets queue, wait for link availability

◆ Also introduces Store-and-Forward delays:
 » Packets move one hop at a time
 ❖ Routers receive complete packet over incoming link
 ❖ Then transmit over outgoing link

◆ Bandwidth division into slots
◆ Dedicated allocation
◆ Resource reservation

Packet Switching
Statistical multiplexing

◆ Packet-switching versus circuit switching:
 » Restaurant seating analogy
 » Other familiar analogies?
The Network Core
Packet switching v. Circuit switching

- Assume that on a 1 Mbps link:
 - Each user consumes 100Kbps when “active”
 - Each user active 10% of time
- Circuit-switching can support 10 users
- Packet switching can support 35 users
 - With 35 users the probability of more than 10 users active simultaneously is less than 0.0004

Packet Switching vs. Circuit Switching
Is packet switching a “no brainer”?

- ☺:
 - Great for bursty data ☺
 - Resource sharing
 - No call setup
 - Light-weight fault recovery

- Excessive congestion: packet delay and loss ☹
 - Protocols needed for reliable data transfer, congestion control

- How to provide circuit-like behavior?
 - Bandwidth guarantees needed for audio/video applications?
 - Still an unsolved problem (go to grad school!)
Packet Switching (Store and Forward)
Why switch packets instead of entire messages?

◆ “Message switching” example
 » Transmit a 7.5 Mb message over a network with 1.5 Mbps links
 » What is the total elapsed transmission time?

Packet Switching (Store and Forward)
Why switch packets instead of entire messages?

◆ Packet-switching: store and forward behavior
 » 1,500 bit packets, 1 packet forwarded every 1 ms

Animation
Packet Switching

Forwarding

- Forwarding:
 - The process of moving packets among routers from source to destination

- Datagram network:
 - Each packet carries a destination address
 - Destination address used to look up next hop
 - Route (next hop) may change at any time

- Virtual circuit (path) network:
 - Packets carry a "tag" (virtual circuit ID) that determines the next hop
 - Path determined at call setup time & remains fixed throughout call
 - Routers maintain per-call path state

Forwarding in Packet Switched Networks

Virtual circuit forwarding

- A (static) route is computed before any data is sent
- Packets contain a VC identifier
 - Identifier replaced at every hop
- Routers maintain per-connection state
 - And perform set-up/tear-down operations

(Why not choose a single VC identifier for the entire path and avoid replacing it at each hop?)
Forwarding in Packet Switched Networks

Datagram forwarding

- Packets contain complete destination address
 » Address specifies both a network and a host
- Each router examines the destination address
 » And forwards packet to the next router closest to the destination network
 ✓ Routers maintain a table of "next hops" to all destination networks
- Routers maintain no per-connection state

The Structure of the Internet

The physical makeup of the Internet

- Network core:
 » Routers
 » Network of networks
- Network edge:
 » Applications and hosts
- In between: Access networks
 » Physical media: communication links
Network Structure

The network edge

- End systems (hosts)
 - Live at the "edge of network"
 - Run applications

- Interaction paradigms:
 - Client/server model
 - Client requests, receives service from server
 - WWW browser/server, email client/server
 - Peer-to-peer model:
 - Host interactions symmetric
 - File sharing (BitTorrent, Limewire, Kazaa, eMule,...)
 - What about?
 - Remote login?
 - Newsgroups?
 - Telephony?

Transport Services @ The Network Edge

Connection-oriented service

- Connection-oriented service on the Internet:
 - TCP - Transmission Control Protocol [RFC 793]
- Goal: Transfer data between end systems
 - Handshaking: setup data transfer ahead of time
 - "Hello, hello-back" human protocol
 - Set up "state" in two communicating hosts
 - Transmit data

TCP service model

- reliable, in-order, byte-stream
 - Losses detected and recovered from
- Flow control:
 - Sender won’t overwhelm receiver
- Congestion control:
 - Senders “slow down sending rate” when network congested

Each of the above services can be defined only in the context of a “connection”!
Transport Services @ The Network Edge
Connectionless service

- Connectionless service on the Internet:
 - UDP - User Datagram Protocol [RFC 768]
 - Unreliable data transfer
 - No flow control
 - No congestion control

- Goal: Transfer data between end systems
 - Same as before!

- Applications using TCP:
 - HTTP (WWW),
 - FTP (file transfer),
 - Telnet (remote login),
 - SMTP (email)

- Applications using UDP:
 - DNS (name to address mapping),
 - Streaming media (some),
 - Teleconferencing,
 - Internet telephony (VoIP)

Network Taxonomy

- The Internet
 - Is a Datagram network
 - Provides two types of services to applications:
 - Connectionless (UDP)
 - Connection-oriented (TCP)
The Structure of the Internet
The physical makeup of the Internet

- Network core:
 - Routers
 - Network of networks

- Network edge:
 - Applications and hosts

- In between: Access networks
 - Physical media: communication links

Network Structure
Access networks and physical media

- How to connect end-systems to the Internet (edge router)?
 - Residential access nets
 - Institutional/enterprise access networks
 - Mobile access networks

- Differences/Issues:
 - Transmission speed (bits per second) of access network?
 - Shared or dedicated?
Access Networks

Example: Digital subscriber line (DSL)

- Uses the existing telephone line to connect to the “central office” DSLAM
 - Data sent over DSL phone line goes to Internet
 - Voice sent over DSL phone line goes to telephone net
- Lots of flavors of DSL but common data rates are:
 - A max of 2.5 Mbps upstream (typically < 1 Mbps)
 - ~24 Mbps downstream (possibly up to 50 Mbps)

Access Networks

Example: Cable networks

- Cable relies on *frequency division* multiplexing (FDM)
 - Different communication “channels” are transmitted in different frequency bands
Access Networks

Example: Cable networks

◆ HFC: hybrid fiber coax
 » Asymmetric: 10-300 Mbps downstream transmission rate, 2-10 Mbps upstream transmission rate

◆ Network of coax/fiber attaches homes to ISP router
 » Homes share the access network to the cable headend (unlike DSL, which has dedicated access to central office)

Access Networks

Example: Your home network!

◆ YOUR home network today is likely more complex than the entire UNC network was 25 years ago!
 » And has a higher capacity!
Access Networks

Example: Enterprise access

- Ethernet (mostly wired) is the dominant medium
 - Scalable (& symmetric): 10 Mbps, 100 Mbps, 1,000 Mbps (1 Gbps), 10,000 Mbps (10 Gbps)
 - End-systems typically physically connect to an Ethernet switch

- End-systems typically physically connect to an Ethernet switch

- Ethernet switch
- Institutional link to ISP (Internet)
- Institutional router
- Institutional mail, web servers

Example: Wireless access networks

wireless LANs:
- Access point per room (100 ft.)
- 802.11 b/g/n (WiFi): 11, 54, 450 Mbps transmission rate

wide-area wireless access
- Provided by telco (cellular) operator, 10s km range
- Between 1 and 10 Mbps
- 3G, 4G: LTE

- End-systems connect to router via a radio base station (an “access point”)
 - Inherently a shared transmission medium
Physical Transmission Media
Transmitting the bits and bytes

◆ Transmission is the propagation of an electromagnetic wave (or optical pulse) through a physical medium

◆ Media types
 » Guided media — signals propagate in solid media (copper, fiber)
 » Unguided media — signals propagate freely (radio, infrared)

Twisted pair (UTP)
Coaxial cable

Physical Transmission Media
Twisted pair copper wiring

◆ What do you use?
 » Twisted Pair (UTP) — Two insulated copper wires

◆ Category 3 UTP:
 » Traditional phone wires, 10 Mbps Ethernet

◆ Category 5/5e UTP:
 » 100Mbps Ethernet
 » Gigabit possible
 » Distance limited (100 m)

◆ Category 6/6a UTP:
 » 10Gbps Ethernet
 » Distance limited (37-55 m)
Physical Transmission Media
Coaxial and fiber optic cable

- Coaxial cable
 - Wire (signal carrier) within a wire (shield)
 - Baseband: single channel on cable
 - Broadband: multiple channels on cable
 - Bi-directional transmission
 - Largely used for cable TV

- Fiber optic cable
 - Glass fiber carrying light pulses
 - Higher-speed operation:
 - 100-1,000 Mbps Ethernet
 - High-speed point-to-point transmission (e.g., 10 Gbps)
 - Low signal attenuation – long distances
 - Low error rate

Physical Transmission Media
Radio frequency (“RF”)

- Signal carried in electromagnetic spectrum
 - No physical “wire”
- Bi-directional
- Physical environment effects propagation
 - Reflection/obstruction by objects
 - Interference

- Radio link types:
 - Microwave
 - Up to 45 Mbps channels
 - LAN (e.g., 802.11)
 - 2 Mbps, 11, 56 Mbps
 - Wide-area (e.g., cellular)
 - CDPD, 10’s Kbps
 - 3G, 100’s Kbps
 - 4G, 100’s Kbps - 1.5 Mbps
 - LTE, 10-20 Mbps
 - Satellite
 - Up to 50 Mbps channel (or multiple smaller channels)
 - 270 msec end-end delay
 - Geosynchronous versus LEOS