The Data Link Layer

Jasleen Kaur

Fall 2014

Today’s Overview

- Review of what you’ve read
 - Layered architecture, encoding, framing, BDP
- Error Detection
 - Checksums
- Media Access Control
Review Questions

- What is the Internet architecture’s layer model?
- What does layering mean? How is it implemented?
- What are the following encoding schemes?
 - NRZ, NRZI, Manchester, 4B/5B?
- What approaches are used to identify individual frames, if they can be of variable-length?
- What is statistical multiplexing?
- What is the delay-bandwidth product?

Protocol Layering in the Internet

- Application layer
 - Supporting network applications
 - ftp, SMTP, HTTP
- Transport layer
 - Host-host data transfer
 - TCP, UDP
- Network layer
 - Routing of packets from source to destination
 - IP, routing protocols
- Link layer
 - Data transfer between directly connected network elements
 - Ethernet, 802.11, SONET, …
- Physical layer
 - The insertion of individual bits “on the wire”
The Data Link Layer

- **Simplest way to create a network of nodes**
 - Connect the nodes directly with a physical medium

- **Point-to-point links:**
 - Choice of Media
 - Encoding
 - Framing
 - Error detection
 - Error recovery

- **Shared Media:**
 - Media access control
ERROR DETECTION

Checksums and CRCs

What Causes Errors?

- Bit errors occur due to electrical interference or thermal noise
 - Detect whether errors have occurred in the data frames received
 - Notify sender (for retransmission)
 - Or correct errors (based on error-correcting codes)
 - Or simply drop packet (to avoid wasting processing resources)

- Basic idea of error detection:
 - Use k redundant bits to enable receiver to detect errors in a packet of size n

- Goals:
 - Strong error detection properties (detect different types of errors)
 - Small overhead (k vs. n)
 - Efficient to implement
Naïve Approach: Packet Duplication

- Just append a duplicate copy of the frame

 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1

- Error detection:
 - Errors that corrupt same positions in both frames will go undetected

- Overhead:
 - 100% overhead (k = n)

- Efficiency?

Smarter Scheme: One-dimensional Parity

- Insert an extra bit to every set of 7 bits to balance the number of “1”s

 0 1 0 1 0 0 1 | 1

- Error detection:
 - Catches all 1-bit errors
 - Can it detect 2-bit errors?

- Overhead:
 - 14% (k = 1, n = 7)
Improve Efficiency: Two-dimensional Parity

- Compute parity also for each bit position across each of the bytes in a frame:
 - Add parity bit for parity byte also
 - 0 1 0 1 0 0 1 | 1
 - 1 1 0 1 0 0 1 | 0
 - 1 0 1 1 1 1 0 | 1
 - 0 0 0 1 1 1 0 | 1

- Error detection:
 - Catches all 1/2-bit errors
 - 0 1 1 0 1 0 0 | 1
 - 1 0 1 1 1 1 1 | 0
 - 0 1 0 1 1 0 0 | 1
 - 1 0 1 0 1 1 1 | 1
 - Can it detect 3-bit errors?
 - 1 0 1 0 1 1 1 | 1

- Overhead:
 - 30% (k = 15, n = 49)

Internet Checksum – Low Cost Detection

- Add up all 16-bit words and send the sum
 - Use 16-bit ones complement arithmetic
 - (-5) + (-3)
 - = -(0101) + -(0011)
 - = 1010 + 1100
 - = 0110 (+1 carry)
 - = 0111
 - = -(1000) = -8

- Error detection:
 - Weak (e.g., one increment, one decrement)
 - Not used at data link layer (used by UDP, TCP, IP)

- Overhead:
 - Only k = 16 redundant bits for any size n

- Easy to implement in software
Cyclic Redundancy Check (CRC)

- Represent n-bit message as $n-1$ degree polynomial
 - e.g., MSG=10011010 as $M(x) = x^7 + x^4 + x^3 + x^1$

- Let k be the degree of some divisor polynomial, $C(x)$
 - e.g., $C(x) = x^3 + x^2 + 1$

- Transmit polynomial $P(x)$ that is evenly divisible by $C(x)$
 - shift left k bits, i.e., $M(x)x^k$
 - subtract remainder of $M(x)x^k / C(x)$ from $M(x)x^k$

- Receiver polynomial $P(x) + E(x)$
 - $E(x) = 0$ if no errors

- Divide $(P(x) + E(x))$ by $C(x)$; remainder if:
 - $E(x)$ was zero (no error), or
 - $E(x)$ is exactly divisible by $C(x)$

CRC: Selecting $C(x)$

- Can catch:
 - All single-bit errors, as long as the x^k and x^0 terms have non-zero coefficients.
 - All double-bit errors, as long as $C(x)$ contains a factor with at least 3 terms
 - Any odd number of errors, as long as $C(x)$ contains the factor $(x + 1)$
 - Any ‘burst’ error (i.e., sequence of consecutive error bits) for which the length of the burst is less than k bits.
 - Most burst errors of larger than k bits can also be detected

- CRC algorithm is easily implemented in hardware
 - CRC-32 commonly used by link layer protocols ($k = 32$)
Error Detection: Summary

- **Goals:**
 - Strong error detection properties (detect different types of errors)
 - Small overhead \(k\) vs. \(n\)
 - Efficient to implement

- **Ideas used:**
 - Redundancy: error detection implemented at multiple layers
 - Why?
 - Software-easy implementations at higher layers
 - Checksum
 - Hardware-easy implementations at lower layers
 - CRC-32