Intra-domain Routing: Formulation

- Intra-domain routing ~ 100 routers
- Given:
 - Graph: where nodes are routers and edges are links
 - Cost: associated with each link
- Find:
 - Lowest-cost path between any two nodes
- Requirements:
 - Self-healing, traffic-sensitive, scalable

Need dynamic, distributed algorithms!
Two classes: based on “distance-vector” and “link-state”
Link-state Routing: Basic Idea

- Speed of convergence is key advantage of link-state routing

- Approach: if each node has complete info about all links, it can
 - Build complete map of network
 - And compute shortest path to any node

- Two key mechanisms:
 - Reliable dissemination (of complete link-state of the network)
 - Calculation of routes (from the sum of accumulated link-state)

Link State Routing: Reliable Flooding

- On link-cost changes, and periodically, each node creates a link-state packet (LSP) that contains:
 - For enabling route-computation
 - ID of node that created it
 - List of directly-connected neighbors + cost of link to each
 - For ensuring reliability of flooding
 - Sequence number
 - TTL for this packet

- Transmission of LSPs between adjacent routers is made reliable
 - Using ACKs and retransmissions

- When K receives an LSP originated at Y, it stores it if:
 - Has no previous state (or has only smaller seq number) from Y
 - If it stores, it also forwards to all neighbors (except one who forwarded LSP)
Link State Flooding Algorithm: Example

1.

2.

3.

4.

5.

6.

Link State Flooding Algorithm: Example

3.

4.

5.

6.
Link State Routing: Dijkstra’s Algorithm

1. **Initialization:**
 2. $N = \{A\}$
 3. for all nodes v
 4. if v adjacent to A
 5. then $D(v) = c(A,v)$
 6. else $D(v) = \infty$

7. **Loop**
 8. find node w not in N such that $D(w)$ is a minimum
 9. add node w to N
 10. update $D(v)$ for all nodes v adjacent to w and not in N:
 11. $D(v) = \min(D(v), D(w) + c(w,v))$
 12. /* new cost to node v is either old cost to v or known
 13. shortest path cost to w plus cost from w to v */
 14. **until all nodes in N**

Dijkstra’s Algorithm: Example

<table>
<thead>
<tr>
<th>Step</th>
<th>start N</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>infinity</td>
<td>infinity</td>
</tr>
</tbody>
</table>

N is the set of nodes to which we have computed the minimum cost path
$D(x)$ is the current minimum cost path to x
$c(n,m)$ is the cost of the link from n to m

N' is the set of nodes to which we have computed the minimum cost path
$D(x)$ is the current minimum cost path to x
$p(x)$ is the predecessor of x on the current minimum cost path to x
Link State Routing: Oscillating Routes

- “Route oscillations” are possible in link state algorithms
- Let the link cost equal the amount of carried traffic
 - Assume the link cost is updated as traffic changes

Least Cost Path Computations

- **Link-state vs. Distance-vector Algorithms**
 - **Message complexity:**
 - LS: With \(N \) nodes, \(E \) links, \(O(NxE) \) messages sent for flooding
 - DV: Exchange between neighbors only (may trigger further exchanges)
 - Due to reliable flooding, LS considered to generate less traffic
 - **Speed of Convergence:**
 - LS: \(O(N^2) \) algorithm and \(O(NxE) \) messages
 - May have oscillations depending on choice of metric
 - DV: Convergence time varies
 - Routing loops possible
 - Count-to-infinity problem
 - **Robustness:** what happens if there are failures?
 - LS: Node can advertise incorrect link cost
 - Each node computes only its own table
 - DV: Node can advertise incorrect path cost
 - Each node’s table used by others
 - Errors propagate through network