Inter-domain Routing

Jasleen Kaur

Fall 2014

Internet-scale Routing: Approaches

- DV and link-state protocols do not scale to global Internet
 - How to make routing scalable?

- Exploit the notion of autonomous systems to divide routing into two parts
 - Intra-domain routing: Routing within an autonomous system
 - eg: RIP (distance-vector type), OSPF (link-state type)
 - Inter-domain routing: Routing between autonomous systems
 - Hierarchically aggregate routing information

- Route propagation ("know a smarter router" policy):
 - Hosts know local (default) router
 - Local routers know site routers
 - Site routers know core (backbone) routers
 - Core routers know everything
Internet AS-level Architecture: Properties

- Tiered Internet service providing
- Multi-homed stub networks
- Peering relations
 - Points of presence (POPs)

Internet-scale Routing: Challenges

- Matter of scale!
 - Backbone routers must provide a match for any valid IP address
 - Even with CIDR, still need to maintain $O(100,000)$ prefixes

- Autonomous nature of domains:
 - Each domain runs own interior routing protocol and link-cost assignment scheme
 - Impossible to calculate meaningful path costs for paths that cross multiple domains
 - Therefore, inter-domain routing advertises only reachability information
 - Find any path that is loop-free (optimality not a consideration)
Internet-scale Routing: Challenges

- **Issue of trust:**
 - Provider A may be unwilling to believe route advertisements from provider B
 - Misconfigured routers, insufficient capacity to carry traffic, malicious intent

- **Need to support flexible routing policies:**
 - Prevention of transit traffic
 - Multi-homed corporations may not wish to carry traffic between the two providers
 - Provider A may want to implement special policies:
 - Use provider B only to reach these addresses
 - Use the path that crosses the fewest ASes
 - Use AS x in preference to AS y
 - Early-exit policy!

Border Gateway Protocol (BGP)

- **Architectural Components – each AS has:**
 - At least one BGP speaker (spokesperson for entire AS)
 - Establish BGP sessions to speakers in other ASes
 - Exchange reachability information among ASes
 - One or more Border Gateways (through which packets enter/leave the AS)
 - Routers charged with task of forwarding packets between ASes
BGP: Basic Idea

- **BGP is a Path-vector protocol:**
 - Advertises complete path for reaching a given destination
 - AS 2 advertises: networks 128.96, 192.4.153, 192.4.32, 192.4.3 can be reached directly from AS 2
 - Backbone AS advertises:
 - 128.96, 192.4.153, 192.4.32, 192.4.3 can be reached along path: (AS1, AS2)
 - 192.12.169, 192.4.54, 192.4.23 can be reached along path: (AS1, AS3)

BGP Advertisements: Implementing Policies

- Complete AS path helps implement loop-free routing
 - If AS finds itself in an advertisement, ignores it
- An AS will advertise only those routes that it considers good enough for itself
 - And these are the routes that it will actually use for forwarding data
- BGP speakers need not advertise routes, even if they know of one
 - Helps implement non-transit policy for multi-homed stub networks
 - If X does not want to route traffic to Z, then X will not advertise any routes to Z
 - Helps implement cost-related or business-related policies
 - Don’t advertise routes via competitor’s network (even if competitor has advertised routes to you)
 - Don’t advertise routes through peers that charge you for bytes routed through them
Putting It Together: Intra-AS & Inter-AS Routing

- Stub networks send to only border router (if single-homed)
- Provider AS:
 Border router injects information into the intra-domain routing protocol
 - "I have a link to customer-prefix Y of cost X"
 - All internal routers send packets for this destination to this border router
- Backbone AS:
 Use Interior-BGP (IBGP) to distribute info learned by BGP speakers to all routers
 - Enables each router to learn best border router to use for a given prefix

Why Different Intra- and Inter-AS Routing?

- **Policy**:
 - Inter-AS: administration wants control over how its traffic routed and who routes through its network
 - Intra-AS: single administration, so no “policy” decisions needed

- **Scale**:
 - Hierarchical routing saves table size, reduced update traffic

- **Performance**:
 - Intra-AS: can focus on performance
 - Inter-AS: policy may dominate over performance
BGP Performance: Path Recovery

- 2-year study of routing updates by the Routeviews project
- Observations:
 - Delay in Internet inter-domain path failovers averages 3 minutes
 - Some last 15 minutes
- Cause:
 - Mostly unforeseen interaction of protocol timers with specific vendor implementation decisions
- User-Impact: Failovers affect end-to-end performance significantly
 - Measured packet losses grow by 30 times
 - Latency grows by 4 times

BGP Performance: Misconfigurations

- Observations made in 2001 study:
 - Each day, 200-1200 prefixes (1% global BGP table) suffer misconfigurations
 - 2% of the time, increases routing update load by at least 10%
 - One observation *doubled* load across all vantage points
 - 3-4 new prefixes seen everyday result from misconfigurations
- Causes:
 - Involuntary slips by network operators
 - Router initialization bugs
 - Poor understanding of configuration semantics by operators
- User-Impact: connectivity is robust
 - Only 4% of bad announcements disrupt connectivity
BGP Performance: Path Inflations

- 2002 study observed fairly inflated paths

- Causes:
 - Many paths that use “early-exit” are inflated (longer RTTs)
 - Topology-insensitive load balancing can cause significant path inflation
 - Peering points between ISPs may not be on the “shortest path” for two end-hosts
 - Non-early exit policies
 - To avoid a congested peering point
 - Not all ISPs are directly connected to each other