
Congestion Avoidance and Control

Van Jacobson
Lawrence Berkeley Laboratory

Michael J. Karels
University of California at Berkeley

November, 1988

Introduction

Computer networks have experienced an explosive growth
over the past few years and with that growth have come severe
congestion problems. For example, it is now common to see
internet gateways drop 10% of the incoming packets because
of local buffer overflows. Our investigation of some of these
problems has shown that much of the cause lies in transport
protocol implementations (not in the protocols themselves):
The ‘obvious’ ways to implement a window-based transport
protocol can result in exactly the wrong behavior in response
to network congestion. We give examples of ‘wrong’ behav-
ior and describe some simple algorithms that can be used to
make right things happen. The algorithms are rooted in the
idea of achieving network stability by forcing the transport
connection to obey a ‘packet conservation’ principle. We
show how the algorithms derive from this principle and what
effect they have on traffic over congested networks.

In October of ’86, the Internet had the first of what became
a series of ‘congestion collapses’. During this period, the
data throughput from LBL to UC Berkeley (sites separated
by 400 yards and two IMP hops) dropped from 32 Kbps to 40
bps. We were fascinated by this sudden factor-of-thousand
drop in bandwidth and embarked on an investigation of why
things had gotten so bad. In particular, we wondered if the
4.3BSD (Berkeley UNIX) TCP was mis-behaving or if it could
be tuned to work better under abysmal network conditions.
The answer to both of these questions was “yes”.

Note: This is a very slightly revised version of a paper originally pre-
sented at SIGCOMM ’88 [11]. If you wish to reference this work, please
cite [11].

This work was supported in part by the U.S. Department of Energy
under Contract Number DE-AC03-76SF00098.

This work was supported by the U.S. Department of Commerce, Na-
tional Bureau of Standards, under Grant Number 60NANB8D0830.

Since that time, we have put seven new algorithms into
the 4BSD TCP:

(i) round-trip-time variance estimation

(ii) exponential retransmit timer backoff

(iii) slow-start

(iv) more aggressive receiver ack policy

(v) dynamic window sizing on congestion

(vi) Karn’s clamped retransmit backoff

(vii) fast retransmit

Our measurements and the reports of beta testers suggest that
the final product is fairly good at dealing with congested con-
ditions on the Internet.

This paper is a brief description of (i) – (v) and the ra-
tionale behind them. (vi) is an algorithm recently developed
by Phil Karn of Bell Communications Research, described
in [15]. (vii) is described in a soon-to-be-published RFC
(ARPANET “Request for Comments”).

Algorithms (i) – (v) spring from one observation: The
flow on a TCP connection (or ISO TP-4 or Xerox NS SPP con-
nection) should obey a ‘conservation of packets’ principle.
And, if this principle were obeyed, congestion collapse would
become the exception rather than the rule. Thus congestion
control involves finding places that violate conservation and
fixing them.

By ‘conservation of packets’ we mean that for a connec-
tion ‘in equilibrium’, i.e., running stably with a full window
of data in transit, the packet flow is what a physicist would
call ‘conservative’: A new packet isn’t put into the network
until an old packet leaves. The physics of flow predicts that
systems with this property should be robust in the face of
congestion.1 Observation of the Internet suggests that it was
not particularly robust. Why the discrepancy?

1 A conservative flow means that for any given time, the integral of the
packet density around the sender–receiver–sender loop is a constant. Since



2 CONSERVATION AT EQUILIBRIUM: ROUND-TRIP TIMING 2

There are only three ways for packet conservation to fail:

1. The connection doesn’t get to equilibrium, or

2. A sender injects a new packet before an old packet has
exited, or

3. The equilibrium can’t be reached because of resource
limits along the path.

In the following sections, we treat each of these in turn.

1 Getting to Equilibrium: Slow-start

Failure (1) has to be from a connection that is either starting
or restarting after a packet loss. Another way to look at the
conservation property is to say that the sender uses acks as
a ‘clock’ to strobe new packets into the network. Since the
receiver can generate acks no faster than data packets can get
through the network, the protocol is ‘self clocking’ (fig. 1).
Self clocking systems automatically adjust to bandwidth and
delay variations and have a wide dynamic range (important
considering that TCP spans a range from 800 Mbps Cray chan-
nels to 1200 bps packet radio links). But the same thing that
makes a self-clocked system stable when it’s running makes
it hard to start — to get data flowing there must be acks to
clock out packets but to get acks there must be data flowing.

To start the ‘clock’, we developed a slow-start algorithm
to gradually increase the amount of data in-transit.2 Al-
though we flatter ourselves that the design of this algorithm
is rather subtle, the implementation is trivial — one new state
variable and three lines of code in the sender:

Add a congestion window, cwnd, to the per-connection
state.

When starting or restarting after a loss, set cwnd to one
packet.

On each ack for new data, increase cwnd by one packet.

packets have to ‘diffuse’ around this loop, the integral is sufficiently contin-
uous to be a Lyapunov function for the system. A constant function trivially
meets the conditions for Lyapunov stability so the system is stable and any
superposition of such systems is stable. (See [2], chap. 11–12 or [20], chap. 9
for excellent introductions to system stability theory.)

2 Slow-start is quite similar to the CUTE algorithm described in [13]. We
didn’t know about CUTE at the time we were developing slow-start but we
should have—CUTE preceded our work by several months.

When describing our algorithm at the Feb., 1987, Internet Engineering
Task Force (IETF) meeting, we called it soft-start, a reference to an elec-
tronics engineer’s technique to limit in-rush current. The name slow-start
was coined by John Nagle in a message to the IETF mailing list in March,
’87. This name was clearly superior to ours and we promptly adopted it.

When sending, send the minimum of the receiver’s
advertised window and cwnd.

Actually, the slow-start window increase isn’t that slow:
it takes time log2 where is the round-trip-time and

is the window size in packets (fig. 2). This means the
window opens quickly enough to have a negligible effect
on performance, even on links with a large bandwidth–delay
product. And the algorithm guarantees that a connection will
source data at a rate at most twice the maximum possible
on the path. Without slow-start, by contrast, when 10 Mbps
Ethernet hosts talk over the 56 Kbps Arpanet via IP gateways,
the first-hop gateway sees a burst of eight packets delivered at
200 times the path bandwidth. This burst of packets often puts
the connection into a persistent failure mode of continuous
retransmissions (figures 3 and 4).

2 Conservation at equilibrium:
round-trip timing

Once data is flowing reliably, problems (2) and (3) should
be addressed. Assuming that the protocol implementation
is correct, (2) must represent a failure of sender’s retransmit
timer. A good round trip time estimator, the core of the
retransmit timer, is the single most important feature of any
protocol implementation that expects to survive heavy load.
And it is frequently botched ([26] and [12] describe typical
problems).

One mistake is not estimating the variation, , of the
round trip time, . From queuing theory we know that and
the variation in increase quickly with load. If the load is

(the ratio of average arrival rate to average departure rate),
and scale like 1 1 . To make this concrete, if the

network is running at 75% of capacity, as the Arpanet was
in last April’s collapse, one should expect round-trip-time to
vary by a factor of sixteen ( 2 to 2 ).

The TCP protocol specification[23] suggests estimating
mean round trip time via the low-pass filter

1

where is the average RTT estimate, is a round trip time
measurement from the most recently acked data packet, and

is a filter gain constant with a suggested value of 0.9. Once
the estimate is updated, the retransmit timeout interval,

, for the next packet sent is set to .
The parameter accounts for RTT variation (see [4], sec-

tion 5). The suggested 2 can adapt to loads of at most
30%. Above this point, a connection will respond to load
increases by retransmitting packets that have only been de-
layed in transit. This forces the network to do useless work,



2 CONSERVATION AT EQUILIBRIUM: ROUND-TRIP TIMING 3

Figure 1: Window Flow Control ‘Self-clocking’

Pr

ArAs

Pb

ReceiverSender

Ab

This is a schematic representation of a sender and receiver on high bandwidth networks connected
by a slower, long-haul net. The sender is just starting and has shipped a window’s worth of packets,
back-to-back. The ack for the first of those packets is about to arrive back at the sender (the vertical
line at the mouth of the lower left funnel).
The vertical dimension is bandwidth, the horizontal dimension is time. Each of the shaded boxes is
a packet. Bandwidth Time Bits so the area of each box is the packet size. The number of bits
doesn’t change as a packet goes through the network so a packet squeezed into the smaller long-haul
bandwidth must spread out in time. The time represents the minimum packet spacing on the
slowest link in the path (the bottleneck). As the packets leave the bottleneck for the destination net,
nothing changes the inter-packet interval so on the receiver’s net packet spacing . If the
receiver processing time is the same for all packets, the spacing between acks on the receiver’s net

. If the time slot was big enough for a packet, it’s big enough for an ack so the
ack spacing is preserved along the return path. Thus the ack spacing on the sender’s net .
So, if packets after the first burst are sent only in response to an ack, the sender’s packet spacing will
exactly match the packet time on the slowest link in the path.

wasting bandwidth on duplicates of packets that will even-
tually be delivered, at a time when it’s known to be having
trouble with useful work. I.e., this is the network equivalent
of pouring gasoline on a fire.

We developed a cheap method for estimating variation
(see appendix A)3 and the resulting retransmit timer essen-
tially eliminates spurious retransmissions. A pleasant side
effect of estimating rather than using a fixed value is that
low load as well as high load performance improves, partic-
ularly over high delay paths such as satellite links (figures 5
and 6).

Another timer mistake is in the backoff after a retrans-
mit: If a packet has to be retransmitted more than once, how
should the retransmits be spaced? For a transport endpoint
embedded in a network of unknown topology and with an

3 We are far from the first to recognize that transport needs to estimate both
mean and variation. See, for example, [5]. But we do think our estimator is
simpler than most.

unknown, unknowable and constantly changing population
of competing conversations, only one scheme has any hope
of working—exponential backoff—but a proof of this is be-
yond the scope of this paper.4 To finesse a proof, note that
a network is, to a very good approximation, a linear system.
That is, it is composed of elements that behave like linear op-
erators — integrators, delays, gain stages, etc. Linear system
theory says that if a system is stable, the stability is exponen-
tial. This suggests that an unstable system (a network subject

4 See [7]. Several authors have shown that backoffs ‘slower’ than ex-
ponential are stable given finite populations and knowledge of the global
traffic. However, [16] shows that nothing slower than exponential behav-
ior will work in the general case. To feed your intuition, consider that an IP
gateway has essentially the same behavior as the ‘ether’ in an ALOHA net or
Ethernet. Justifying exponential retransmit backoff is the same as showing
that no collision backoff slower than an exponential will guarantee stability
on an Ethernet. Unfortunately, with an infinite user population even ex-
ponential backoff won’t guarantee stability (although it ‘almost’ does—see
[1]). Fortunately, we don’t (yet) have to deal with an infinite user population.



3 ADAPTING TO THE PATH: CONGESTION AVOIDANCE 4

Figure 2: The Chronology of a Slow-start

1

2
3

1

One Round Trip Time

0R

1R

2

4
5

3

6
7

2R

4

8
9

5

10
11

6

12
13

7

14
15

3R

One Packet Time

The horizontal direction is time. The continuous time line has been chopped into one-round-trip-time
pieces stacked vertically with increasing time going down the page. The grey, numbered boxes are
packets. The white numbered boxes are the corresponding acks. As each ack arrives, two packets
are generated: one for the ack (the ack says a packet has left the system so a new packet is added to
take its place) and one because an ack opens the congestion window by one packet. It may be clear
from the figure why an add-one-packet-to-window policy opens the window exponentially in time.
If the local net is much faster than the long haul net, the ack’s two packets arrive at the bottleneck
at essentially the same time. These two packets are shown stacked on top of one another (indicating
that one of them would have to occupy space in the gateway’s outbound queue). Thus the short-term
queue demand on the gateway is increasing exponentially and opening a window of size packets
will require 2 packets of buffer capacity at the bottleneck.

to random load shocks and prone to congestive collapse5 )
can be stabilized by adding some exponential damping (ex-
ponential timer backoff) to its primary excitation (senders,
traffic sources).

3 Adapting to the path: congestion
avoidance

If the timers are in good shape, it is possible to state with
some confidence that a timeout indicates a lost packet and not

5 The phrase congestion collapse (describing a positive feedback insta-
bility due to poor retransmit timers) is again the coinage of John Nagle, this
time from [22].

a broken timer. At this point, something can be done about
(3). Packets get lost for two reasons: they are damaged in
transit, or the network is congested and somewhere on the
path there was insufficient buffer capacity. On most network
paths, loss due to damage is rare ( 1%) so it is probable that
a packet loss is due to congestion in the network.6

6 Because a packet loss empties the window, the throughput of any win-
dow flow control protocol is quite sensitive to damage loss. For an RFC793
standard TCP running with window (where is at most the bandwidth-
delay product), a loss probability of degrades throughput by a factor of
1 2 1 . E.g., a 1% damage loss rate on an Arpanet path (8 packet

window) degrades TCP throughput by 14%.
The congestion control scheme we propose is insensitive to damage loss

until the loss rate is on the order of the window equilibration length (the
number of packets it takes the window to regain its original size after a loss).
If the pre-loss size is , equilibration takes roughly 2 3 packets so, for the



3 ADAPTING TO THE PATH: CONGESTION AVOIDANCE 5

A ‘congestion avoidance’ strategy, such as the one pro-
posed in [14], will have two components: The network must
be able to signal the transport endpoints that congestion is
occurring (or about to occur). And the endpoints must have a
policy that decreases utilization if this signal is received and
increases utilization if the signal isn’t received.

If packet loss is (almost) always due to congestion and
if a timeout is (almost) always due to a lost packet, we have
a good candidate for the ‘network is congested’ signal. Par-
ticularly since this signal is delivered automatically by all
existing networks, without special modification (as opposed
to [14] which requires a new bit in the packet headers and a
modification to all existing gateways to set this bit).

The other part of a congestion avoidance strategy, the
endnode action, is almost identical in the DEC/ISO scheme and
our TCP7 and follows directly from a first-order time-series
model of the network:8 Say network load is measured by
average queue length over fixed intervals of some appropriate
length (something near the round trip time). If is the load
at interval , an uncongested network can be modeled by
saying changes slowly compared to the sampling time.
I.e.,

( constant). If the network is subject to congestion, this
zeroth order model breaks down. The average queue length
becomes the sum of two terms, the above that accounts
for the average arrival rate of new traffic and intrinsic delay,
and a new term that accounts for the fraction of traffic left
over from the last time interval and the effect of this left-over
traffic (e.g., induced retransmits):

1

(These are the first two terms in a Taylor series expansion of
. There is reason to believe one might eventually need a

three term, second order model, but not until the Internet has
grown substantially.)

Arpanet, the loss sensitivity threshold is about 5%. At this high loss rate, the
empty window effect described above has already degraded throughput by
44% and the additional degradation from the congestion avoidance window
shrinking is the least of one’s problems.

We are concerned that the congestion control noise sensitivity is quadratic
in but it will take at least another generation of network evolution to
reach window sizes where this will be significant. If experience shows this
sensitivity to be a liability, a trivial modification to the algorithm makes it
linear in . An in-progress paper explores this subject in detail.

7 This is not an accident: We copied Jain’s scheme after hearing his
presentation at [9] and realizing that the scheme was, in a sense, universal.

8 See any good control theory text for the relationship between a system
model and admissible controls for that system. A nice introduction appears
in [20], chap. 8.

When the network is congested, must be large and
the queue lengths will start increasing exponentially.9 The
system will stabilize only if the traffic sources throttle back
at least as quickly as the queues are growing. Since a source
controls load in a window-based protocol by adjusting the
size of the window, , we end up with the sender policy

On congestion:

1 1

I.e., a multiplicative decrease of the window size (which be-
comes an exponential decrease over time if the congestion
persists).

If there’s no congestion, must be near zero and the
load approximately constant. The network announces, via a
dropped packet, when demand is excessive but says nothing
if a connection is using less than its fair share (since the net-
work is stateless, it cannot know this). Thus a connection has
to increase its bandwidth utilization to find out the current
limit. E.g., you could have been sharing the path with some-
one else and converged to a window that gives you each half
the available bandwidth. If she shuts down, 50% of the band-
width will be wasted unless your window size is increased.
What should the increase policy be?

The first thought is to use a symmetric, multiplicative in-
crease, possibly with a longer time constant, 1 ,
1 1 . This is a mistake. The result will oscillate
wildly and, on the average, deliver poor throughput. The an-
alytic reason for this has to do with that fact that it is easy
to drive the net into saturation but hard for the net to recover
(what [17], chap. 2.1, calls the rush-hour effect).10 Thus

9 I.e., the system behaves like 1 , a difference equation with
the solution

0

which goes exponentially to infinity for any 1.
10 In fig. 1, note that the ‘pipesize’ is 16 packets, 8 in each path, but the

sender is using a window of 22 packets. The six excess packets will form
a queue at the entry to the bottleneck and that queue cannot shrink, even
though the sender carefully clocks out packets at the bottleneck link rate.
This stable queue is another, unfortunate, aspect of conservation: The queue
would shrink only if the gateway could move packets into the skinny pipe
faster than the sender dumped packets into the fat pipe. But the system tunes
itself so each time the gateway pulls a packet off the front of its queue, the
sender lays a new packet on the end.

A gateway needs excess output capacity (i.e., 1) to dissipate a queue
and the clearing time will scale like 1 2 ([17], chap. 2 is an excellent
discussion of this). Since at equilibrium our transport connection ‘wants’ to
run the bottleneck link at 100% ( 1), we have to be sure that during the
non-equilibrium window adjustment, our control policy allows the gateway
enough free bandwidth to dissipate queues that inevitably form due to path
testing and traffic fluctuations. By an argument similar to the one used to
show exponential timer backoff is necessary, it’s possible to show that an
exponential (multiplicative) window increase policy will be ‘faster’ than the
dissipation time for some traffic mix and, thus, leads to an unbounded growth
of the bottleneck queue.



4 THE GATEWAY SIDE OF CONGESTION CONTROL 6

overestimating the available bandwidth is costly. But an ex-
ponential, almost regardless of its time constant, increases so
quickly that overestimates are inevitable.

Without justification, we’ll state that the best increase pol-
icy is to make small, constant changes to the window size:11

On no congestion:

1

where is the pipesize (the delay-bandwidth product of
the path minus protocol overhead — i.e., the largest sensible
window for the unloaded path). This is the additive increase
/ multiplicative decrease policy suggested in [14] and the
policy we’ve implemented in TCP. The only difference be-
tween the two implementations is the choice of constants for

and . We used 0.5 and 1 for reasons partially explained
in appendix D. A more complete analysis is in yet another
in-progress paper.

The preceding has probably made the congestion control
algorithm sound hairy but it’s not. Like slow-start, it’s three
lines of code:

On any timeout, set cwnd to half the current window
size (this is the multiplicative decrease).

On each ack for new data, increase cwnd by 1/cwnd
(this is the additive increase).12

When sending, send the minimum of the receiver’s
advertised window and cwnd.

Note that this algorithm is only congestion avoidance, it
doesn’t include the previously described slow-start. Since
the packet loss that signals congestion will result in a re-start,
it will almost certainly be necessary to slow-start in addition
to the above. But, because both congestion avoidance and
slow-start are triggered by a timeout and both manipulate
the congestion window, they are frequently confused. They
areactually independent algorithms with completely different
objectives. To emphasize the difference, the two algorithms

11 See [3] for a complete analysis of these increase and decrease policies.
Also see [7] and [8] for a control-theoretic analysis of a similar class of
control policies.

12 This increment rule may be less than obvious. We want to increase the
window by at most one packet over a time interval of length (the round
trip time). To make the algorithm ‘self-clocked’, it’s better to increment
by a small amount on each ack rather than by a large amount at the end of
the interval. (Assuming, of course, the sender has effective silly window
avoidance (see [4], section 3) and doesn’t attempt to send packet fragments
because of the fractionally sized window.) A window of size cwnd packets
will generate at most cwnd acks in one . Thus an increment of 1/cwnd
per ack will increase the window by at most one packet in one . In
TCP, windows and packet sizes are in bytes so the increment translates to
maxseg*maxseg/cwndwhere maxseg is the maximum segment size and cwnd
is expressed in bytes, not packets.

have been presented separately even though in practise they
should be implemented together. Appendix B describes a
combined slow-start/congestion avoidance algorithm.13

Figures 7 through 12 show the behavior of TCP connec-
tions with and without congestion avoidance. Although the
test conditions (e.g., 16 KB windows) were deliberately cho-
sen to stimulate congestion, the test scenario isn’t far from
common practice: The Arpanet IMP end-to-end protocol al-
lows at most eight packets in transit between any pair of
gateways. The default 4.3BSD window size is eight packets
(4 KB). Thus simultaneous conversations between, say, any
two hosts at Berkeley and any two hosts at MIT would exceed
the network capacity of the UCB–MIT IMP path and would
lead14 to the type of behavior shown.

4 Future work: the gateway side of
congestion control

While algorithms at the transport endpoints can insure the net-
work capacity isn’t exceeded, they cannot insure fair sharing
of that capacity. Only in gateways, at the convergence of
flows, is there enough information to control sharing and fair
allocation. Thus, we view the gateway ‘congestion detection’
algorithm as the next big step.

The goal of this algorithm to send a signal to the endnodes
as early as possible, but not so early that the gateway becomes

13 We have also developed a rate-based variant of the congestion avoid-
ance algorithm to apply to connectionless traffic (e.g., domain server queries,
RPC requests). Remembering that the goal of the increase and decrease poli-
cies is bandwidth adjustment, and that ‘time’ (the controlled parameter in a
rate-based scheme) appears in the denominator of bandwidth, the algorithm
follows immediately: The multiplicative decrease remains a multiplica-
tive decrease (e.g., double the interval between packets). But subtracting
a constant amount from interval does not result in an additive increase in
bandwidth. This approach has been tried, e.g., [18] and [24], and appears
to oscillate badly. To see why, note that for an inter-packet interval and
decrement , the bandwidth change of a decrease-interval-by-constant pol-
icy is

1 1

a non-linear, and destablizing, increase.
An update policy that does result in a linear increase of bandwidth over

time is
1

1

where is the interval between sends when the th packet is sent and is
the desired rate of increase in packets per packet/sec.

We have simulated the above algorithm and it appears to perform well. To
test the predictions of that simulation against reality, we have a cooperative
project with Sun Microsystems to prototype RPC dynamic congestion control
algorithms using NFS as a test-bed (since NFS is known to have congestion
problems yet it would be desirable to have it work over the same range of
networks as TCP).

14 did lead.



4 THE GATEWAY SIDE OF CONGESTION CONTROL 7

starved for traffic. Since we plan to continue using packet
drops as a congestion signal, gateway ‘self protection’ from
a mis-behaving host should fall-out for free: That host will
simply have most of its packets dropped as the gateway trys
to tell it that it’s using more than its fair share. Thus, like
the endnode algorithm, the gateway algorithm should reduce
congestion even if no endnode is modified to do congestion
avoidance. And nodes that do implement congestion avoid-
ance will get their fair share of bandwidth and a minimum
number of packet drops.

Since congestion grows exponentially, detecting it early
is important. If detected early, small adjustments to the
senders’ windows will cure it. Otherwise massive adjust-
ments are necessary to give the net enough spare capacity
to pump out the backlog. But, given the bursty nature of
traffic, reliable detection is a non-trivial problem. Jain[14]
proposes a scheme based on averaging between queue regen-
eration points. This should yield good burst filtering but we
think it might have convergence problems under high load
or significant second-order dynamics in the traffic.15 We
plan to use some of our earlier work on ARMAX models for
round-trip-time/queue length prediction as the basis of de-
tection. Preliminary results suggest that this approach works
well at high load, is immune to second-order effects in the
traffic and is computationally cheap enough to not slow down
kilopacket-per-second gateways.

Acknowledgements

Weare grateful to the members of the Internet Activity Board’s
End-to-End and Internet-Engineering task forces for this past
year’s interest, encouragement, cogent questions and network
insights. Bob Braden of ISI and Craig Partridge of BBN were
particularly helpful in the preparation of this paper: their
careful reading of early drafts improved it immensely.

The first author is also deeply in debt to Jeff Mogul of
DEC Western Research Lab. Without Jeff’s interest and pa-
tient prodding, this paper would never have existed.

15 These problems stem from the fact that the average time between re-
generation points scales like 1 1 and the variance like 1 3

(see Feller[6], chap. VI.9). Thus the congestion detector becomes sluggish
as congestion increases and its signal-to-noise ratio decreases dramatically.



4 THE GATEWAY SIDE OF CONGESTION CONTROL 8

Figure 3: Startup behavior of TCP without Slow-start

•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••

•••
•••
•••
•••

•

•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•• •••

•••
•••

•••
•••
•••
•••

• •••
•••
•••
•••
•••
•••
•••
•••
•••
•••
••

•

•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•

•
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••

• •••
•••
•••
•••
•••
•••
•••
•••
•••
•••
••

•

•••
•••
•••
•••
•••
•••
•••
•

•
•••
•••
•••
•••
•••
•••
• •••

•••
•••

Send Time (sec)

P
ac

ke
t S

eq
ue

nc
e 

N
um

be
r 

(K
B

)

0 2 4 6 8 10

0
10

20
30

40
50

60
70

Trace data of the start of a TCP conversation between two Sun 3/50s running Sun OS 3.5 (the 4.3BSD

TCP). The two Suns were on different Ethernets connected by IP gateways driving a 230.4 Kbps
point-to-point link (essentially the setup shown in fig. 7). The window size for the connection was
16KB (32 512-byte packets) and there were 30 packets of buffer available at the bottleneck gateway.
The actual path contains six store-and-forward hops so the pipe plus gateway queue has enough
capacity for a full window but the gateway queue alone does not.
Each dot is a 512 data-byte packet. The x-axis is the time the packet was sent. The y-axis is the
sequence number in the packet header. Thus a vertical array of dots indicate back-to-back packets
and two dots with the same y but different x indicate a retransmit.
‘Desirable’ behavior on this graph would be a relatively smooth line of dots extending diagonally
from the lower left to the upper right. The slope of this line would equal the available bandwidth.
Nothing in this trace resembles desirable behavior.
The dashed line shows the 20 KBps bandwidth available for this connection. Only 35% of this
bandwidth was used; the rest was wasted on retransmits. Almost everything is retransmitted at least
once and data from 54 to 58 KB is sent five times.



4 THE GATEWAY SIDE OF CONGESTION CONTROL 9

Figure 4: Startup behavior of TCP with Slow-start

• •• ••• •••••
•••••
••• •••••

••••••
•••••
•••••
•••••
•• ••• •••••

•••••
••••••
•••••
•••• •••••

•••••
•••••
•••••

•••••
•••••
•• •••• •••••

•••••
•••••
•••••

•••••
•• • •••••

••••• •••••
•••••
•••••

•••••
•••••

•••••
•• •••••

•••••
•••••
•••••

•••••
•••••

•• •••••
•••••

•••••
••••••

•••••
•••••
• •••••

•••••
•••••

•••••
•••••

•••••
• ••• •••••

•• •••••
•••••

•••••
•••••

••

Send Time (sec)

P
ac

ke
t S

eq
ue

nc
e 

N
um

be
r 

(K
B

)

0 2 4 6 8 10

0
20

40
60

80
10

0
12

0
14

0
16

0

Same conditions as the previous figure (same time of day, same Suns, same network path, same buffer
and window sizes), except the machines were running the 4 3 TCP with slow-start. No bandwidth
is wasted on retransmits but two seconds is spent on the slow-start so the effective bandwidth of this
part of the trace is 16 KBps — two times better than figure 3. (This is slightly misleading: Unlike
the previous figure, the slope of the trace is 20 KBps and the effect of the 2 second offset decreases
as the trace lengthens. E.g., if this trace had run a minute, the effective bandwidth would have been
19 KBps. The effective bandwidth without slow-start stays at 7 KBps no matter how long the trace.)



4 THE GATEWAY SIDE OF CONGESTION CONTROL 10

Figure 5: Performance of an RFC793 retransmit timer

•

• • • •

•
•

• •

• •

• •

•
•
• •

• •

•
•

• • • • •
•

•
•
•

• • • • •

• •
•

•
•

• • • • • •

•
•

• • •

• •
•

•

• •
•

•

•
•
•

•

• •
•

•

• • •

•
• •

•
•
•

• •

•
• •

•

• •

•
•

•
•

• • •

• • •

•

•

•
•

•

• •

Packet

R
T

T
 (

se
c.

)

0 10 20 30 40 50 60 70 80 90 100 110

0
2

4
6

8
10

12

Trace data showing per-packet round trip time on a well-behaved Arpanet connection. The x-axis
is the packet number (packets were numbered sequentially, starting with one) and the y-axis is the
elapsed time from the send of the packet to the sender’s receipt of its ack. During this portion of the
trace, no packets were dropped or retransmitted.
The packets are indicated by a dot. A dashed line connects them to make the sequence easier to
follow. The solid line shows the behavior of a retransmit timer computed according to the rules of
RFC793.

Figure 6: Performance of a Mean+Variance retransmit timer

•

• • • •

•
•

• •

• •

• •

•
•
• •

• •

•
•

• • • • •
•

•
•
•

• • • • •

• •
•

•
•

• • • • • •

•
•

• • •

• •
•

•

• •
•

•

•
•
•

•

• •
•

•

• • •

•
• •

•
•
•

• •

•
• •

•

• •

•
•

•
•

• • •

• • •

•

•

•
•

•

• •

Packet

R
T

T
 (

se
c.

)

0 10 20 30 40 50 60 70 80 90 100 110

0
2

4
6

8
10

12

Same data as above but the solid line shows a retransmit timer computed according to the algorithm
in appendix A.



4 THE GATEWAY SIDE OF CONGESTION CONTROL 11

Figure 7: Multiple conversation test setup

Polo
(sun 3/50)

Hot
(sun 3/50)

Surf
(sun 3/50)

Renoir
(vax 750)

VanGogh
(vax 8600)

Monet
(vax 750)

Okeeffe
(CCI)

Vs
(sun 3/50)

csam cartan
230.4 Kbs
Microwave

10 Mbs Ethernets

Test setup to examine the interaction of multiple, simultaneous TCP conversations sharing a bottleneck
link. 1 MByte transfers (2048 512-data-byte packets) were initiated 3 seconds apart from four
machines at LBL to four machines at UCB, one conversation per machine pair (the dotted lines above
show the pairing). All traffic went via a 230.4 Kbps link connecting IP router csam at LBL to IP
router cartan at UCB. The microwave link queue can hold up to 50 packets. Each connection was
given a window of 16 KB (32 512-byte packets). Thus any two connections could overflow the
available buffering and the four connections exceeded the queue capacity by 160%.



4 THE GATEWAY SIDE OF CONGESTION CONTROL 12

Figure 8: Multiple, simultaneous TCPs with no congestion avoidance

Time (sec)

S
eq

ue
nc

e 
N

um
be

r 
(K

B
)

0 50 100 150 200

0
20

0
40

0
60

0
80

0
10

00
12

00

Trace data from four simultaneous TCP conversations without congestion avoidance over the paths
shown in figure 7. 4,000 of 11,000 packets sent were retransmissions (i.e., half the data packets were
retransmitted). Since the link data bandwidth is 25 KBps, each of the four conversations should have
received 6 KBps. Instead, one conversation got 8 KBps, two got 5 KBps, one got 0.5 KBps and 6
KBps has vanished.



4 THE GATEWAY SIDE OF CONGESTION CONTROL 13

Figure 9: Multiple, simultaneous TCPs with congestion avoidance

Time (sec)

S
eq

ue
nc

e 
N

um
be

r 
(K

B
)

0 50 100 150 200

0
20

0
40

0
60

0
80

0
10

00
12

00

Trace data from four simultaneous TCP conversations using congestion avoidance over the paths
shown in figure 7. 89 of 8281 packets sent were retransmissions (i.e., 1% of the data packets had
to be retransmitted). Two of the conversations got 8 KBps and two got 4.5 KBps (i.e., all the link
bandwidth is accounted for — see fig. 11). The difference between the high and low bandwidth
senders was due to the receivers. The 4.5 KBps senders were talking to 4.3BSD receivers which
would delay an ack until 35% of the window was filled or 200 ms had passed (i.e., an ack was delayed
for 5–7 packets on the average). This meant the sender would deliver bursts of 5–7 packets on each
ack.
The 8 KBps senders were talking to 4.3 BSD receivers which would delay an ack for at most one
packet (because of an ack’s ‘clock’ rôle, the authors believe that the minimum ack frequency should
be every other packet). I.e., the sender would deliver bursts of at most two packets. The probability
of loss increases rapidly with burst size so senders talking to old-style receivers saw three times the
loss rate (1.8% vs. 0.5%). The higher loss rate meant more time spent in retransmit wait and, because
of the congestion avoidance, smaller average window sizes.



4 THE GATEWAY SIDE OF CONGESTION CONTROL 14

Figure 10: Total bandwidth used by old and new TCPs

Time (sec)

R
el

at
iv

e 
B

an
dw

id
th

0 20 40 60 80 100 120

0.
8

1.
0

1.
2

1.
4

1.
6

The thin line shows the total bandwidth used by the four senders without congestion avoidance (fig. 8),
averaged over 5 second intervals and normalized to the 25 KBps link bandwidth. Note that the senders
send, on the average, 25% more than will fit in the wire. The thick line is the same data for the senders
with congestion avoidance (fig. 9). The first 5 second interval is low (because of the slow-start), then
there is about 20 seconds of damped oscillation as the congestion control ‘regulator’ for each TCP finds
the correct window size. The remaining time the senders run at the wire bandwidth. (The activity
around 110 seconds is a bandwidth ‘re-negotiation’ due to connection one shutting down. The activity
around 80 seconds is a reflection of the ‘flat spot’ in fig. 9 where most of conversation two’s bandwidth
is suddenly shifted to conversations three and four — competing conversations frequently exhibit this
type of ‘punctuated equilibrium’ behavior and we hope to investigate its dynamics in a future paper.)



4 THE GATEWAY SIDE OF CONGESTION CONTROL 15

Figure 11: Effective bandwidth of old and new TCPs

Time (sec)

R
el

at
iv

e 
B

an
dw

id
th

0 20 40 60 80 100 120

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

Figure 10 showed the old TCPs were using 25% more than the bottleneck link bandwidth. Thus, once
the bottleneck queue filled, 25% of the the senders’ packets were being discarded. If the discards,
and only the discards, were retransmitted, the senders would have received the full 25 KBps link
bandwidth (i.e., their behavior would have been anti-social but not self-destructive). But fig. 8 noted
that around 25% of the link bandwidth was unaccounted for. Here we average the total amount of data
acked per five second interval. (This gives the effective or delivered bandwidth of the link.) The thin
line is once again the old TCPs. Note that only 75% of the link bandwidth is being used for data (the
remainder must have been used by retransmissions of packets that didn’t need to be retransmitted).
The thick line shows delivered bandwidth for the new TCPs. There is the same slow-start and turn-on
transient followed by a long period of operation right at the link bandwidth.



4 THE GATEWAY SIDE OF CONGESTION CONTROL 16

Figure 12: Window adjustment detail

•

•
•

•

•

•

• •
• •

•

•

•

•
• •

• •

•

•

•
•

• •
•

•

Time (sec)

R
el

at
iv

e 
B

an
dw

id
th

0 20 40 60 800.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Because of the five second averaging time (needed to smooth out the spikes in the old TCP data), the
congestion avoidance window policy is difficult to make out in figures 10 and 11. Here we show
effective throughput (data acked) for TCPs with congestion control, averaged over a three second
interval.
When a packet is dropped, the sender sends until it fills the window, then stops until the retransmission
timeout. Since the receiver cannot ack data beyond the dropped packet, on this plot we’d expect to
see a negative-going spike whose amplitude equals the sender’s window size (minus one packet). If
the retransmit happens in the next interval (the intervals were chosen to match the retransmit timeout),
we’d expect to see a positive-going spike of the same amplitude when receiver acks the out-of-order
data it cached. Thus the height of these spikes is a direct measure of the sender’s window size.
The data clearly shows three of these events (at 15, 33 and 57 seconds) and the window size appears to
be decreasing exponentially. The dotted line is a least squares fit to the six window size measurements
obtained from these events. The fit time constant was 28 seconds. (The long time constant is due
to lack of a congestion avoidance algorithm in the gateway. With a ‘drop’ algorithm running in the
gateway, the time constant should be around 4 seconds)



A A FAST ALGORITHM FOR RTT MEAN AND VARIATION 17

A A fast algorithm for rtt mean and
variation

A.1 Theory

The RFC793 algorithm for estimating the mean round trip
time is one of the simplest examples of a class of estima-
tors called recursive prediction error or stochastic gradient
algorithms. In the past 20 years these algorithms have revolu-
tionized estimation and control theory [19] and it’s probably
worth looking at the RFC793 estimator in some detail.

Given a new measurement of the RTT (round trip time),
TCP updates an estimate of the average RTT by

1

where is a ‘gain’ (0 1) that should be related to the
signal-to-noise ratio (or, equivalently, variance) of . This
makes a more sense, and computes faster, if we rearrange and
collect terms multiplied by to get

Think of as a prediction of the next measurement.
is the error in that prediction and the expression above says
we make a new prediction based on the old prediction plus
some fraction of the prediction error. The prediction error is
the sum of two components: (1) error due to ‘noise’ in the
measurement (random, unpredictable effects like fluctuations
in competing traffic) and (2) error due to a bad choice of .
Calling the random error and the estimation error ,

The term gives a kick in the right direction while
the term gives it a kick in a random direction. Over a
number of samples, the random kicks cancel each other out so
this algorithm tends to converge to the correct average. But

represents a compromise: We want a large to get mileage
out of but a small to minimize the damage from .
Since the terms move toward the real average no matter
what value we use for , it’s almost always better to use a
gain that’s too small rather than one that’s too large. Typical
gain choices are 0.1–0.2 (though it’s a good idea to take long
look at your raw data before picking a gain).

It’sprobably obvious that will oscillate randomly around
the true average and the standard deviation of will be

sdev . Also that converges to the true average ex-
ponentially with time constant 1 . So a smaller gives a
stabler at the expense of taking a much longer time to get
to the true average.

If we want some measure of the variation in , say to
compute a good value for the TCP retransmit timer, there are

several alternatives. Variance, 2 , is the conventional choice
because it has some nice mathematical properties. But com-
puting variance requires squaring so an estimator for
it will contain a multiply with a danger of integer overflow.
Also, most applications will want variation in the same units
as and , so we’ll be forced to take the square root of
the variance to use it (i.e., at least a divide, multiply and two
adds).

A variation measure that’s easy to compute is the mean
prediction error or mean deviation, the average of .
Also, since

2
2

2 2

mean deviation is a more conservative (i.e., larger) estimate
of variation than standard deviation.16

There’s often a simple relation between mdev and sdev.
E.g., if the prediction errors are normally distributed,

2 . For most common distributions the factor to go
from to is near one ( 2 1 25). I.e.,
is a good approximation of and is much easier to com-
pute.

A.2 Practice

Fast estimators for average and mean deviation given
measurement follow directly from the above. Both es-
timators compute means so there are two instances of the
RFC793 algorithm:

To be computed quickly, the above should be done in inte-
ger arithmetic. But the expressions contain fractions ( 1)
so some scaling is needed to keep everything integer. A recip-
rocal power of 2 (i.e., 1 2 for some ) is a particularly
good choice for since the scaling can be implemented with
shifts. Multiplying through by 1 gives

2 2

2 2

To minimize round-off error, the scaled versions of
and , and , should be kept rather than the unscaled
versions. Picking 125 1

8 (close to the .1 suggested in
RFC793) and expressing the above in C:

16 Purists may note that we elided a factor of 1 , the number of samples,
from the previous inequality. It makes no difference to the result.



B SLOW-START + CONGESTION AVOIDANCE ALGORITHM 18

update Average estimator
m = (sa 3);
sa += m;

update Deviation estimator
if (m 0)

m = m;
m = (sv 3);
sv += m;

It’s not necessary to use the same gain for and . To
force the timer to go up quickly in response to changes in
the RTT, it’s a good idea to give a larger gain. In particu-
lar, because of window–delay mismatch there are often RTT

artifacts at integer multiples of the window size.17 To filter
these, one would like 1 in the estimator to be at least
as large as the window size (in packets) and 1 in the
estimator to be less than the window size.18

Using a gain of .25 on the deviation and computing the
retransmit timer, , as 4 , the final timer code looks
like:

m = (sa 3);
sa += m;
if (m 0)

m = m;
m = (sv 2);
sv += m;
rto = (sa 3) + sv;

Ingeneral this computation will correctly round : Because
of the truncation when computing , will converge
to the true mean rounded up to the next tick. Likewise with

. Thus, on the average, there is half a tick of bias in each.
The computation should be rounded by half a tick and
one tick needs to be added to account for sends being phased
randomly with respect to the clock. So, the 1.75 tick bias
contribution from 4 approximately equals the desired half
tick rounding plus one tick phase correction.

17 E.g., see packets 10–50 of figure 5. Note that these window effects are
due to characteristics of the Arpa/Milnet subnet. In general, window effects
on the timer are at most a second-order consideration and depend a great
deal on the underlying network. E.g., if one were using the Wideband with a
256 packet window, 1/256 would not be a good gain for (1/16 might be).

18 Although it may not be obvious, the absolute value in the calculation of
introduces an asymmetry in the timer: Because has the same sign as an

increase and the opposite sign of a decrease, more gain in makes the timer
go up quickly and come down slowly, ‘automatically’ giving the behavior
suggested in [21]. E.g., see the region between packets 50 and 80 in figure
6.

B The combined slow-start with
congestion avoidance algorithm

The sender keeps two state variables for congestion con-
trol: a slow-start/congestion window, cwnd, and a threshold
size, ssthresh, to switch between the two algorithms. The
sender’s output routine always sends the minimum of cwnd
and the window advertised by the receiver. On a timeout,
half the current window size is recorded in ssthresh (this is
the multiplicative decrease part of the congestion avoidance
algorithm), then cwnd is set to 1 packet (this initiates slow-
start). When new data is acked, the sender does

if (cwnd ssthresh)
if we’re still doing slow start
open window exponentially

cwnd += 1;
else

otherwise do Congestion
Avoidance increment by 1

cwnd += 1 cwnd;

Thus slow-start opens the window quickly to what con-
gestion avoidance thinks is a safe operating point (half the
window that got us into trouble), then congestion avoidance
takes over and slowly increases the window size to probe for
more bandwidth becoming available on the path.

Note that the else clause of the above code will malfunc-
tion if cwnd is an integer in unscaled, one-packet units. I.e.,
if the maximum window for the path is packets, cwnd must
cover the range 0 with resolution of at least 1 . 19 Since
sending packets smaller than the maximum transmission unit
for the path lowers efficiency, the implementor must take care
that the fractionally sized cwnd does not result in small pack-
ets being sent. In reasonable TCP implementations, existing
silly-window avoidance code should prevent runt packets but
this point should be carefully checked.

C Window adjustment interaction
with round-trip timing

Some TCP connections, particularly those over a very low
speed link such as a dial-up SLIP line[25], may experience

19 For TCP this happens automatically since windows are expressed in
bytes, not packets. For protocols such as ISO TP4, the implementor should
scale cwnd so that the calculations above can be done with integer arithmetic
and the scale factor should be large enough to avoid the fixed point (zero) of
1 in the congestion avoidance increment.



C WINDOW ADJUSTMENT INTERACTION WITH ROUND-TRIP TIMING 19

an unfortunate interaction between congestion window ad-
justment and retransmit timing: Network paths tend to di-
vide into two classes: delay-dominated, where the store-
and-forward and/or transit delays determine the RTT, and
bandwidth-dominated, where (bottleneck) link bandwidth and
average packet size determine the RTT.20 On a bandwidth-
dominated path of bandwidth , a congestion-avoidance win-
dow increment of will increase the RTT of post-increment
packets by

If the path RTT variation is small, may exceed the 4
cushion in , a retransmit timeout will occur and, after a
few cycles of this, ssthresh (and, thus, cwnd) end up clamped
at small values.

The calculation in appendix A was designed to pre-
vent this type of spurious retransmission timeout during slow-
start. In particular, the RTT variation is multiplied by four
in the calculation because of the following: A spurious
retransmit occurs if the retransmit timeout computed at the
end of slow-start round , , is ever less than or equal to
the actual RTT of the next round. In the worst case of all the
delay being due the window, doubles each round (since
the window size doubles). Thus 1 2 (where is
the measured RTT at slow-start round ). But

1

2

and

4

3

2

1

so spurious retransmit timeouts cannot occur.21

Spurious retransmission due to a window increase can oc-
cur during the congestion avoidance window increment since
the window can only be changed in one packet increments so,
for a packet size , there may be as many as 1 packets
between increments, long enough for any increase due
to the last window increment to decay away to nothing. But
this problem is unlikely on a bandwidth-dominated path since

20 E.g., TCP over a 2400 baud packet radio link is bandwidth-dominated
since the transmission time for a (typical) 576 byte IP packet is 2.4 seconds,
longer than any possible terrestrial transit delay.

21 The original SIGCOMM ’88 version of this paper suggested calculating
as 2 rather than 4 . Since that time we have had much more

experience with low speed SLIP links and observed spurious retransmissions
during connection startup. An investigation of why these occured led to the
analysis above and the change to the calculation in app. A.

the increments would have to be more than twelve packets
apart (the decay time of the filter times its gain in the
calculation) which implies that a ridiculously large window
is being used for the path.22 Thus one should regard these
timeouts as appropriate punishment for gross mis-tuning and
their effect will simply be to reduce the window to something
more appropriate for the path.

Although slow-start and congestion avoidance are de-
signed to not trigger this kind of spurious retransmission, an
interaction with higher level protocols frequently does: Ap-
plication protocols like SMTP and NNTP have a ‘negotiation’
phase where a few packets are exchanged stop-and-wait, fol-
lowed by data transfer phase where all of a mail message
or news article is sent. Unfortunately, the ‘negotiation’ ex-
changes open the congestion window so the start of the data
transfer phase will dump several packets into the network
with no slow-start and, on a bandwidth-dominated path, faster
than can track the RTT increase caused by these packets.
The root cause of this problem is the same one described
in sec. 1: dumping too many packets into an empty pipe
(the pipe is empty since the negotiation exchange was con-
ducted stop-and-wait) with no ack ‘clock’. The fix proposed
in sec. 1, slow-start, will also prevent this problem if the TCP

implementation can detect the phase change. And detection
is simple: The pipe is empty because we haven’t sent any-
thing for at least a round-trip-time (another way to view RTT

is as the time it takes the pipe to empty after the most recent
send). So, if nothing has been sent for at least one RTT, the
next send should set cwnd to one packet to force a slow-start.
I.e., if the connection state variable lastsnd holds the time the
last packet was sent, the following code should appear early
in the TCP output routine:

int idle = (snd max == snd una);
if (idle && now lastsnd rto)

cwnd = 1;

The boolean idle is true if there is no data in transit (all data
sent has been acked) so the if says “if there’s nothing in transit
and we haven’t sent anything for ‘a long time’, slow-start.”
Our experience has been that either the current RTT estimate
or the estimate can be used for ‘a long time’ with good
results23

22 The the largest sensible window for a path is the bottleneck bandwidth
times the round-trip delay and, by definition, the delay is negligible for a
bandwidth-dominated path so the window should only be a few packets.

23 The estimate is more convenient since it is kept in units of time
while RTT is scaled. Also, because of send/receive symmetry, the time of the
last receive can be used rather than the last send — If the protocol implements
‘keepalives’, this state variable may already exist.



REFERENCES 20

D Window Adjustment Policy

A reason for using 1
2 as a the decrease term, as opposed to

the 7
8 in [14], was the following handwaving: When a packet

is dropped, you’re either starting (or restarting after a drop)
or steady-state sending. If you’re starting, you know that
half the current window size ‘worked’, i.e., that a window’s
worth of packets were exchanged with no drops (slow-start
guarantees this). Thus on congestion you set the window to
the largest size that you know works then slowly increase the
size. If the connection is steady-state running and a packet
is dropped, it’s probably because a new connection started
up and took some of your bandwidth. We usually run our
nets with 0 5 so it’s probable that there are now exactly
two conversations sharing the bandwidth. I.e., you should
reduce your window by half because the bandwidth available
to you has been reduced by half. And, if there are more
than two conversations sharing the bandwidth, halving your
window is conservative — and being conservative at high
traffic intensities is probably wise.

Although a factor of two change in window size seems a
large performance penalty, in system terms the cost is neg-
ligible: Currently, packets are dropped only when a large
queue has formed. Even with the ISO IP ‘congestion expe-
rienced’ bit [10] to force senders to reduce their windows,
we’re stuck with the queue because the bottleneck is running
at 100% utilization with no excess bandwidth available to
dissipate the queue. If a packet is tossed, some sender shuts
up for two RTT, exactly the time needed to empty the queue.
If that sender restarts with the correct window size, the queue
won’t reform. Thus the delay has been reduced to minimum
without the system losing any bottleneck bandwidth.

The 1-packet increase has less justification than the 0.5
decrease. In fact, it’s almost certainly too large. If the al-
gorithm converges to a window size of , there are 2

packets between drops with an additive increase policy. We
were shooting for an average drop rate of 1% and found
that on the Arpanet (the worst case of the four networks we
tested), windows converged to 8–12 packets. This yields 1
packet increments for a 1% average drop rate.

But, since we’ve done nothing in the gateways, the win-
dow we converge to is the maximum the gateway can accept
without dropping packets. I.e., in the terms of [14], we are
just to the left of the cliff rather than just to the right of the
knee. If the gateways are fixed so they start dropping packets
when the queue gets pushed past the knee, our increment will
be much too aggressive and should be dropped by about a fac-
tor of four (since our measurements on an unloaded Arpanet
place its ‘pipe size’ at 4–5 packets). It appears trivial to im-
plement a second order control loop to adaptively determine
the appropriate increment to use for a path. But second order

problems are on hold until we’ve spent some time on the first
order part of the algorithm for the gateways.

References

[1] ALDOUS, D. J. Ultimate instability of exponential
back-off protocol for acknowledgment based transmis-
sion control of random access communication chan-
nels. IEEE Transactions on Information Theory IT-33,
2 (Mar. 1987).

[2] BORRELLI, R., AND COLEMAN, C. Differential Equa-
tions. Prentice-Hall Inc., 1987.

[3] CHIU, D.-M., AND JAIN, R. Networks with a connec-
tionless network layer; part iii: Analysis of the increase
and decrease algorithms. Tech. Rep. DEC-TR-509,
Digital Equipment Corporation, Stanford, CA, Aug.
1987.

[4] CLARK, D. Window and Acknowlegement Strategy in
TCP. ARPANET Working Group Requests for Com-
ment, DDN Network Information Center, SRI Interna-
tional, Menlo Park, CA, July 1982. RFC-813.

[5] EDGE, S. W. An adaptive timeout algorithm for re-
transmission across a packet switching network. In
Proceedings of SIGCOMM ’83 (Mar. 1983), ACM.

[6] FELLER, W. Probability Theory and its Applications,
second ed., vol. II. John Wiley & Sons, 1971.

[7] HAJEK, B. Stochastic approximation methods for
decentralized control of multiaccess communications.
IEEE Transactions on Information Theory IT-31, 2
(Mar. 1985).

[8] HAJEK, B., AND VAN LOON, T. Decentralized dy-
namic control of a multiaccess broadcast channel. IEEE
Transactions on Automatic Control AC-27, 3 (June
1982).

[9] Proceedings of the Sixth Internet Engineering Task
Force (Boston, MA, Apr. 1987). Proceedings avail-
able as NIC document IETF-87/2P from DDN Network
Information Center, SRI International, Menlo Park, CA.

[10] INTERNATIONAL ORGANIZATION FOR STANDARDIZA-
TION. ISO International Standard 8473, Information
ProcessingSystems — Open Systems Interconnection —
Connectionless-mode Network Service Protocol Speci-
fication, Mar. 1986.



REFERENCES 21

[11] JACOBSON, V. Congestion avoidance and control. In
Proceedings of SIGCOMM ’88 (Stanford, CA, Aug.
1988), ACM.

[12] JAIN, R. Divergence of timeout algorithms for packet
retransmissions. In Proceedings Fifth Annual Interna-
tional Phoenix Conference on Computers and Commu-
nications (Scottsdale, AZ, Mar. 1986).

[13] JAIN, R. A timeout-based congestion control scheme
for window flow-controlled networks. IEEE Journal
on Selected Areas in Communications SAC-4, 7 (Oct.
1986).

[14] JAIN, R., RAMAKRISHNAN, K., AND CHIU, D.-M. Con-
gestion avoidance in computer networks with a con-
nectionless network layer. Tech. Rep. DEC-TR-506,
Digital Equipment Corporation, Aug. 1987.

[15] KARN, P., AND PARTRIDGE, C. Estimating round-trip
times in reliable transport protocols. In Proceedings of
SIGCOMM ’87 (Aug. 1987), ACM.

[16] KELLY, F. P. Stochastic models of computer communi-
cation systems. Journal of the Royal Statistical Society
B 47, 3 (1985), 379–395.

[17] KLEINROCK, L. Queueing Systems, vol. II. John Wiley
& Sons, 1976.

[18] KLINE, C. Supercomputers on the Internet: A case
study. In Proceedings of SIGCOMM ’87 (Aug. 1987),
ACM.

[19] LJUNG, L., AND SODERSTROM, T. Theory and Practice
of Recursive Identification. MIT Press, 1983.

[20] LUENBERGER, D. G. Introduction to Dynamic Systems.
John Wiley & Sons, 1979.

[21] MILLS, D. Internet Delay Experiments. ARPANET

Working Group Requests for Comment, DDN Network
Information Center, SRI International, Menlo Park, CA,
Dec. 1983. RFC-889.

[22] NAGLE, J. Congestion Control in IP/TCP Internet-
works. ARPANET Working Group Requests for Com-
ment, DDN Network Information Center, SRI Interna-
tional, Menlo Park, CA, Jan. 1984. RFC-896.

[23] POSTEL, J., Ed. Transmission Control Protocol Specifi-
cation. SRI International, Menlo Park, CA, Sept. 1981.
RFC-793.

[24] PRUE, W., AND POSTEL, J. Something A Host Could
Do with Source Quench. ARPANET Working Group
Requests for Comment, DDN Network Information
Center, SRI International, Menlo Park, CA, July 1987.
RFC-1016.

[25] ROMKEY, J. A Nonstandard for Transmission of IP
Datagrams Over Serial Lines: Slip. ARPANET Working
Group Requests for Comment, DDN Network Informa-
tion Center, SRI International, Menlo Park, CA, June
1988. RFC-1055.

[26] ZHANG, L. Why TCP timers don’t work well. In Pro-
ceedings of SIGCOMM ’86 (Aug. 1986), ACM.


