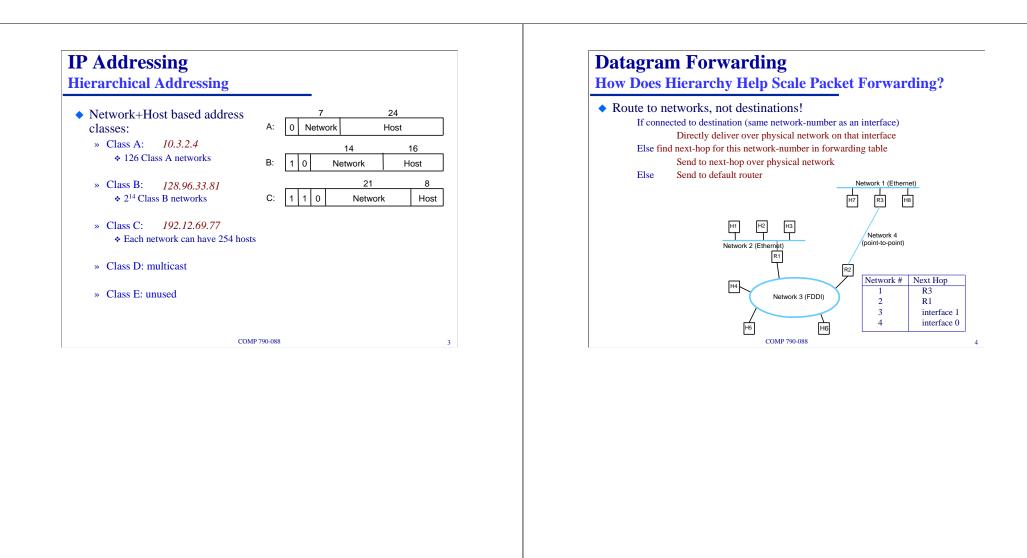


IP Addressing

How to Deal with Heterogeneity and Scale?


• Requirements:

- » Should be globally unique
- » Should facilitate easy mapping to link-layer addresses
- » Should facilitate scalable assignment
- » Should facilitate scalable routing

◆ Basic Idea:

- Assign addresses to interfaces (and not to hosts)
 Facilitates meaningful mapping to MAC addresses
- » Use hierarchical addressing
 - * Aids both address assignment and routing

COMP 790-088

Address Resolution

How to Deal with Heterogeneity?

- Different layer-2 protocols may use different addressing schemes
 - » How does the "deliver to a host on same physical network" happen?
 - » IP knows only the layer-3 address of the immediate destination
 * How does link-layer know which layer-2 address to deliver the packet to?
- Solution: translate/map IP addresses to MAC addresses
- Address Resolution Protocol (ARP):
 - » Exploits the fact that many link-layer technologies support broadcast
 - » Broadcasts a query "who has this IP address?"
 - » Target node responds back with link-layer address
 - Enough bits reserved in ARP messages to accommodate maximum possible link-layer address size (48 bits)

COMP 790-088

5

Address Assignment

How Does Hierarchical Addressing Help Scalability?

- Class A addresses typically assigned to large ISPs
 - » Customers assigned addresses from this larger pool
- Class B addresses assigned to medium-sized ISPs/organizations
 » Customers/departments assigned addresses from this larger pool
- » Customers/departments assigned addresses from this target p
- Class C addresses assigned to smaller organizations
 - » Individuals assigned from this pool
- DHCP helps recycle a smaller pool among larger number of hosts
 - » Machine new on the network can obtain an IP address from the DHCP server
 - » Self-configuring: can discover DHCP server using link-layer broadcast

Hierarchical addressing and DHCP help achieve scalability of network management !

COMP 790-088

IP Addressing

Summary

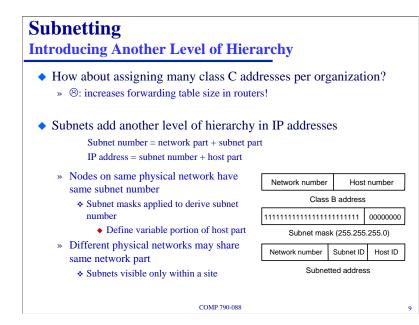
- How does IP accommodate heterogeneity?
 - » By offering a simple service model
 * That any link-layer can help support
 - By having a common packet format
 - * Adding a layer that everyone understands
 - » By having a global address space
 - $\boldsymbol{\ast}$ That can be mapped to layer-2 addresses
- How does it achieve scalability?
 - » Routing:
 - * By making forwarding decisions based on hierarchical addressing
 - » Manageability:
 - * By delegating the job of address assignment to administrative entities

COMP 790-088

7

Scaling of Address Space Exhaustion of IPv4 Addresses

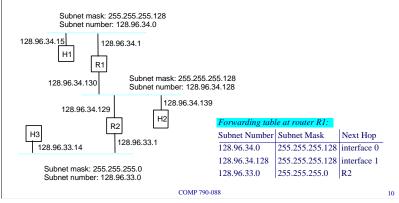
• IP addresses likely to run out

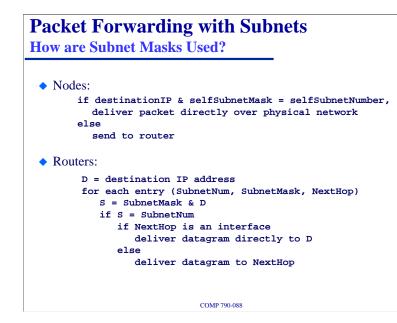

- » Can address at most 4 billion hosts
- » Allows only 16,000 class B addresses
- » Inefficient address assignment due to class-based addressing
 - ✤ A 2-node network will use a class C address (0.78% efficient)
 - ◆ A 257-node network will use a class B address (0.39% efficient)

• Solutions:

- » DHCP, NAT
- » Sub-netting
- » Super-netting
- » IPv6

COMP 790-088


COMP 790-088 © by Jasleen Kaur COMP 790-088 © by Jasleen Kaur 8



Subnet Masks

An Example

- Each host is configured with: IP address, Subnet mask Subnet number = (IP address) & (Subnet mask)
 - » Routers store subnet mask, subnet number for each attached subnet

Subnetting

Summary

- What table entries do routers outside the organization keep?
 - » Only one for the entire network!
 - Only routers inside see subnets
 Not everyone has same routing view / information
- How does subnetting help address scalability?
 - » Improves address assignment

 Don't have to assign a Class B/C for every new physical network
 - » Improves forwarding efficiency for outside routers
 * By aggregating routing information
- Multiple subnets can also be defined on same physical network
 - » Forced to talk through router
 - » Helps provide isolation between different departments sharing a LAN

COMP 790-088

11

Supernetting

Why Do We Need More?

- Subnetting does not solve:
 - » Exhaustion problem of Class B addresses
 Any organization with more than 255 nodes would still need a Class B address
 - » Growth in routing table sizes
 State in forwarding tables still grows in proportion to the number of networks
- Supernetting:
 - » Goal:
 - $\boldsymbol{\ast}$ Help scale assignment efficiency as well as routing table sizes
 - » Approach:
 - ✤ Aggregate routes !

COMP 790-088

13

Supernetting

Basic Idea

- Breaks the rigid boundaries between address classes
 - » Address space efficiency:
 - ✤ Prefixes can be of arbitrary length (and not just 8, 16, or 24)
 - » Forwarding table control:
 - Allow routing state aggregation at several levels
 - ◆ And not just at subnets-within-a-network level
 - $\boldsymbol{\textbf{\ast}}$ Assign contiguous network numbers (Class C addresses) to nearby networks
 - ◆ eg: consider 16 "nearby" networks: 192.2.16 192.4.31
 - Top 20 bits are common in these prefixes
 - Create a 20-bit network prefix to represent all of thse
 - Use a single routing table entry at routers "far away"
 - ♦ How?
 - Assign regional address space to service providers, which distribute among regional customers

Supernetting also known as Classless Interdomain Routing (CIDR)

COMP 790-088

14

Supernetting vs. Subnetting Philosophical Difference

Subnetting

- » Shares one address among multiple physical networks
- » Prevents wastage of Class C addresses
 - * By re-using same network address among several smaller networks

CIDR:

- » Collapses multiple addresses that would be assigned to a single AS onto one address
- » Prevents wastage of Class B addresses
 - * By assigning multiple Class C addresses instead

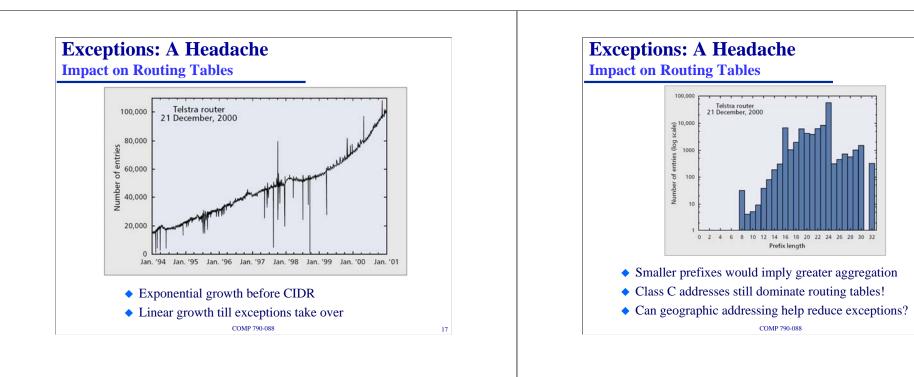
COMP 790-088

15

Forwarding Algo

Use of Network Prefixes

- Same as before, but prefix-length included in order to identify network number
 - » Network number is not class-based, but an aggregated prefix
 - » eg: 192.4.16/20


Caveat:

- » Some networks can interfere with the process of aggregation
 - eg: if a customer changes service providers (but retains IP addresses)
 Has to be routed through new service provider
 - Has different routing treatment than "nearby" networks
- Therefore, need to store "exceptions" in addition to aggregated routes
 Eg: 2 routing table entries: 208.12.16/20 and 208.12.21/24
- » Router needs to find the *longest matching prefix* when forwarding packets

Finding the longest match makes forwarding a complicated task !

COMP 790-088

16

COMP 790-088 © by Jasleen Kaur

Page 18

18

IPv6

128-bit Address Space

- IP version 6 uses 128-bit address spaces
 - » Enough to assign 1500 addresses per square foot of earth's surface
- Hosts and routers need to understand new packet format
 - » A feasible transition plan a must!
- Facilitating transitions:
 - » Dual-stack operation:
 - ✤ IPv6 nodes that can process both IPv4 and IPv6 packets
 - » Tunneling:
 - \clubsuit Tunnels used to send an IPv6 packet over an IPv4-only network

COMP 790-088

19