Welcome to this course! My name is Jasleen Kaur and I'm the instructor for this course. We'll spend today's class talking about the course outline, the course requirements, and your first homework.

But before we do that, I'd like for us all to spend some time and introduce ourselves. So if each of you can say 3 things: (1) what is your name, (2) what is your major and year, and (3) what is it that you expect to learn from this course.

So let me begin: my name is Jasleen and I conduct research in the design and analysis of networks and distributed systems. And I'm looking forward to a semester-worth of exchanging ideas with all of you.

How many have NOT had socket programming?

What do you think is the “Internet”?

Internet-scale Routing

Approaches

- DV and link-state protocols do not scale to the global Internet
 - How to make routing scalable?

- Exploit the notion of autonomous systems and divide routing into two parts
 - Intra-domain routing: Routing within an autonomous system
 - eg: RIP (distance-vector type), OSPF (link-state type)
 - Inter-domain routing: Routing between autonomous systems
 - Hierarchically aggregate routing information

- Route propagation (“know a smarter router” policy):
 - Hosts know local (default) router
 - Local routers know site routers
 - Site routers know core (backbone) routers
 - Core routers know everything
There are at least two ways to think about the Internet (and also about what we will cover in this course):

The first is in terms of the components that make up the Internet. So this would be a nuts-and-bolts view in which we can talk about several acronyms and terms that you may have come across, such as the:

- web
- TCP/IP
- inter-network
- routers
- switches, and so on…

The second way to think about it is the one that is more common, which is in terms of the services and applications that run over the Internet. So all of us do web-browsing, exchange emails, share files.

The important point to note is that these applications we care about do not operate solely by themselves. There are numerous services that all work together to provide a seamless view that an application is doing everything by itself.

— In this class we expose some of the seams. The services that enable such applications are all part of the Internet. So we will spend time talking about how these services work?

Internet-AS-level Architecture

Properties

- Tiered Internet service providing
- Multi-homed stub networks
- Peering relations
 - Points of presence (POPs)

Internet-scale Routing

Challenges

- Matter of scale!
 - Backbone routers must provide a match for any valid IP address
 - Even with CIDR, still needs to maintain $O(100,000)$ prefixes

- Autonomous nature of domains:
 - Each domain runs own interior routing protocol and link-cost assignment scheme
 - Impossible to calculate meaningful path costs for paths that cross multiple domains
 - Therefore, inter-domain routing advertises only reachability information
 - Find any path that is loop-free (optimality not a consideration)
Internet-scale Routing

Challenges

◆ Issue of trust:
 » Provider A may be unwilling to believe route advertisements from provider B
 » Misconfigured routers, insufficient capacity to carry traffic, malicious intent

◆ Need to support flexible routing policies:
 » Prevention of transit traffic
 ◆ Multi-homed corporations may not wish to carry traffic between the two providers
 » Provider A may want to implement special policies:
 ◆ Use provider B only to reach these addresses
 ◆ Use the path that crosses the fewest ASes
 ◆ Use AS x in preference to AS y
 ◆ Early-exit policy!

Border Gateway Protocol (BGP)

Architectural Components

◆ Each AS has:
 » At least one BGP speaker (spokesperson for entire AS)
 ◆ Establish BGP sessions to speakers in other ASes
 ◆ Exchange reachability information among ASes
 » One or more Border Gateways (through which packets enter/leave the AS)
 ◆ Routers charged with the task of forwarding packets between ASes
BGP is a Path-vector protocol:
- Advertises complete path for reaching a particular destination
- AS 2 advertises: networks 128.96, 192.4.153, 192.4.32, 192.4.3 can be reached directly from AS 2
- Backbone AS advertises:
 - 128.96, 192.4.153, 192.4.32, 192.4.3 can be reached along path: (AS1, AS2)
 - 192.12.169, 192.4.54, 192.4.23 can be reached along path: (AS1, AS3)

There are at least two ways to think about the Internet (and also about what we will cover in this course):

1. In terms of the components that make up the Internet. This is a nuts-and-bolts view in which we can talk about several acronyms and terms that you may have come across, such as the web, TCP/IP, inter-network, routers, switches, and so on.
2. In terms of the services and applications that run over the Internet. All of us do web-browsing, exchange emails, share files.

The important point to note is that these applications we care about do not operate solely by themselves. There are numerous services that all work together to provide a seamless view that an application is doing everything by itself.

—in this class we expose some of the seams. The services that enable such applications are all part of the Internet. So we will spend time talking about how these services work.

Complete AS path helps implement loop-free routing
- If AS finds itself in an advertisement, ignores it

An AS will advertise only those routes that it considers good enough for itself
- And these are the routes that it will actually use for forwarding data

BGP speakers need not advertise routes, even if they know of one
- Helps implement non-transit policy for multi-homed stub networks
 - If X does not want to route traffic to Z, then X will not advertise any routes to Z
- Helps implement cost-related or business-related policies
 - Don’t advertise routes via competitor’s network (even if competitor has advertised routes to you)
 - Don’t advertise routes through peers that charge you for bytes routed through them
Putting It All Together
Intra-AS & Inter-AS Routing

- Stub networks send to only border router (if single-homed)
- Provider AS:
 - Border router injects information into the intra-domain routing protocol
 - "I have a link to customer-prefix Y of cost X"
 - All internal routers send packets for this destination to this border router
- Backbone AS:
 - Use Interior-BGP (IBGP) to distribute info learned by BGP speakers to all routers
 - Enables each router to learn best border router to use for a given prefix

The Internet AS Hierarchy
Why different intra- and inter-AS routing?

- Policy:
 - Inter-AS: administration wants control over how its traffic routed and who routes through its network
 - Intra-AS: single administration, so no “policy” decisions needed
- Scale:
 - Hierarchical routing saves table size, reduced update traffic
- Performance:
 - Intra-AS: can focus on performance
 - Inter-AS: policy may dominate over performance
BGP Performance
Path Recovery

- 2-year study of routing updates by the Routeviews project

- Observations:
 » Delay in Internet inter-domain path failovers averages 3 minutes
 » Some last 15 minutes

- Cause:
 » Mostly unforeseen interaction of protocol timers with specific vendor implementation decisions

- User-Impact: Failovers affect end-to-end performance significantly
 » Measured packet losses grow by 30 times
 » Latency grows by 4 times

BGP Performance
Misconfigurations

- Observations made in 2001 study:
 » Each day, 200-1200 prefixes (1% global BGP table) suffer misconfigurations
 » 2% of the time, these increase routing update load by at least 10%
 » One observation doubled load across all vantage points
 » 3-4 new prefixes seen everyday result from misconfigurations

- Causes:
 » Involuntary slips by network operators
 » Router initialization bugs
 » Poor understanding of configuration semantics by operators

- User-Impact: connectivity is robust
 » Only 4% of bad announcements disrupt connectivity
BGP Performance
Path Inflation

- 2002 study observed fairly inflated paths

- Causes:
 - Many paths that use “early-exit” are inflated (longer RTTs)
 - Topology-insensitive load balancing can cause significant path inflation
 - Peering points between ISPs may not be on the “shortest path” for two end-hosts
 - Non-early exit policies
 - To avoid a congested peering point
 - Not all ISPs are directly connected to each other