COMP 790-088

Networked and Distributed Systems

Congestion Controi

Jasleen Kaur

October 7, 2009

COMP 790-088

COMP 790-088
© by Jasleen Kaur

Page 1

Network Congestion
Causes

¢ When and where does congestion occur? (And what is congestion?)

um of incomino trathic sxvepads pitogine canacity at laroe timesgen
When sum of incoming trathic exceeds outgoing capacity at large timesca
% Small timescale bursts are absorbed by queues

How often does congestion occur in the Internet?
» Don’t really know (have only anecdotal evidence)
» “Congestion collapse™ in the 80s led to design of TCP congestion-control

Link
% Scheduler
Input %
links

COMP 790-088

COMP 790-088
© by Jasleen Kaur

Page 2

Congestion Control Congestion Window (cwin)

Conceptual Idea New State Variable

¢ Why do we need congestion control? ¢ TCP sender maintains a new state variable: Congestion Window

» To enable sharing of common network resource by multiple data sources » Used by sender to limit how much data it is allowed to have in transit

+ Counterpart to flow control’s “AdvWVin"
Goal: apply back-pressure to slow down senders if network is » Denotes the maximum number of unacknowledged bytes
c(‘mgcslcd + MaxWin = min (cwin, AdvWin)
» Each host determines how much capacity is available in the network + EffectiveWin = MaxWin — (LBsent — LBacked)
+ This tells it how many packets it can safely have in transit » Sender not allowed to send faster than can be accommodated by slowest

» Once it has these many packet in transit, it uses “self-clocking™ to send more component (network or destination host)

+ The arrival of an ACK is a signal that one of its packets has left the network . Rk
= Hence, it is safe to insert a new packet ¢ Challenge: how to learn the right value for cwin?
» If available bandwidth changes, adjust number of packets in transit » Unlike destination, network does not explicitly inform sender

Approach: set cwin based on the level of congestion perceived
» Decrease cwin when congestion increases

» Increase cwin when congestion decreases

COMP 790-088 3 COMP 790-088 F

COMP 790-088 COMP 790-088
© by Jasleen Kaur Page 3 © by Jasleen Kaur Page 4

- - - - - - - -
Setting Congestion Window Additive Increase/Multiplicative Decrease
Saw-tooth Behavior Rationale
Source Destination 4 How does source detect network congestion? SRS coditioe™ sind d B —
[» Retransmission timeouts (which indicate packet Y _‘E"m[’rease Se a_n fI:CI‘Cd!st‘ " K’_d‘ne ’
1 losses, ; due to congestion) » Willingness to reduce congestion window greater than willingness to
:—f_-:_h_____h increase it
-)_!__f,ﬂ- = Fy Multlpllcatwe Decreuse: » lﬁccgssar} condition ll"or stability ' .
= De R i » Consequences of having too large a window are worse than having
——— » Decrease cwin by half every time a timeout occurs 100 small a window
e —
e + Additive Increase:
" » Increment ewin by 1 MSS per RTT
e » In practice, for each ACK:
70 cwin = cwin + MSS*(MSS/ewin)
60
50
o 40
¥ 30
20 -
10 Time (seconds)
T T T T T T T T T 1
10 20 30 40 50 60 70 80 90 100 J—— .
COMP 790-088 COMP 790-088
© by Jasleen Kaur Page 5 © by Jasleen Kaur Page 6

Slow Start Slow Start Behavior

Hastening Up Initial Bandwidth Discovery Hastening Up Initial Bandwidth Discovery . -
ource slination
4 Two problems with cwin behavior: # For every new ACK received:
» Initial additive ramp-up to appropriate cwin may take too long If (ewin > S§Thresh)
% Can we figure out the level of available bandwidih quickly? incremeni = incremeni*increment/cwin =
» After recovery from timeout, dumping cwin/2 may be too aggressive cwin = min (cwin + increment, AdvWin) >
% Such a “burst” of packets may lead to further losses, even if bandwidth is high —
.) ————
¢ After recovery from timeout:
¢ Slow-start mechanism: SSThresh = ewin/2
» Increase exponentially (rather than linearly), when cwin is below “SSThresh” ewin=1

% Double the number of packets-in-transit every RTT

» Forevery new ACK received: Can we do better? I

If (cwin = SSThresih)

70
increment = increment*increment/cwin 653 | ' |
ewin = min (cwin + increment, AdvWin) =
20
. 20
¢ After recovery from timeout: 0] | el . . , . ('/I
» set: SSThresh = ewin/2; ewin = 1 1.0 20 30 40 50 6.0 7.0 80 9.0

COMP 790-088 T COMP 790-088 £

COMP 790-088

COMP 790-088
© by Jasleen Kaur

Page 7 © by Jasleen Kaur Page 8

Fast Retransmit/Fast Recovery (FR/R)

Reducing the Latency For Loss Recovery sender Receiver
A Packet 1
¢ Fast Retransmit: Packet 2 .
Al 1
» Heuristic for triggering retransmissions sooner :x i“\v —
than timeouts L
» Exploits the fact that receivers send ACKs (in Packet 5| ACK 2
response to data received) even if they are Packet 6
duplicates of earlier ACKs Acke
» Use the receipt of 3 duplicate ACKSs as indicator Beke
that next segment was lost Retransmit
packet 3
¢ Fast Recovery: ACK 6
» Decrease ewin to SSThresh after fast retransmit
-
?0 i]
60
50
m 40
<30
20
10 /’/ —-I_//-’/
T T T T T T 1
1.0 20 30 4.0 5.0 8.0 7.0

COMP 790-088
© by Jasleen Kaur

Page 9

RTOs vs. FR/R

Frequency of Occurrence In Practice

4 Study of out-of-order segments in 3 million TCP transfers

008 Connections

o Conn | Bytes|

17.60 %6811 %
18.82 % | 74.88 %
48.65 % |96.08 %
2182%|78.45 %
27.31 % |83.30 %

Fig, 6. Connections That Transmit More Than 10 Segments

Total [% Network Retransmissions
Trace| 008 | Reorder # Total [% RTO[% Dupack[% PAT% SACK

abi [4099K 18 296.2K| 325 1.5 2.0 4.5
(45) (15.9) [(278)] (621)

lei [SLIK 0.47 499K | 463 59 1.9 49
(47.4) {6,0) (1L9)] (500

jap | 516K 29 499K | 475 [IRY 2.6 L7
9.0 | (124) {27] (1.8)

unc |697.7T K F=) H56K| 342 6.1 28 1.5
(53.5) (9.6) 44| 2.3

ibi | S04.2K 0.2 409 3 K| 331 140 4.8 0.0
(334) (14.0) 4.9 (0.0)

COMP 790-088

Table 2. Classification of 005 segments (numbers in parenthesis are normalized wor. 1o total retransmissions)

COMP 790-088
© by Jasleen Kaur

Page 10

Congestion Control in High Speed Networks

Unneeded Retransmissions
Premature Timeouts & Reordering-triggered FR/R The Sluggishness of TCP

Study of out-of-order segments in 3 million TCP transfers ¢ 10 Gbps network with 100 ms round-trip time
» Desired cwin = 83,000 packets

Initial bandwidth discovery:
» SSThresh usually set to no more than 32-64 segments
» Would take hours to achieve a sending rate of 10 Gbps

+ Bandwidth rediscovery after timeout:

Total [% Network Retransmissions 5
Trace| 00S | Reorder # Towl [RTO[% Dupack]% PA [% SACK] » Cwinresetto |
abi [AWIK| 18 296.2K| 323 ‘ .5 I 20 | is I sge : : R . 3 3
| a6 | aser logsl @sn » Additive increase would still take hours to recover 10 Gbps throughput
Total Our Approach
Trace |# Retran |Needed Unnceded

o Total fimplica] RTO [TDATPartialAck[Sack
0.0% [44% [58% [11%] 0.3% [L0%
68% | Ta% | 13w o] 03% |04%
13.3% | 29% (03%| 0.2% |0.0%
13.3% | 2.3% 1L.5% |0.1%

abi [29%6.2 K| 70.0%
ki | 499K | 46.1%
jap | 499K | 70.7% | 18.2%
unc |445.6 K | 38.5% | 38.5% | 3.3%
ibi (4993 K| 67.5% | 21.9% | 15.3% | 2.0% |1.0% 1.2% 0.0%
Table 2, Classification of OOS segments (numbers in parenthesis are normalized w.r. to total retransmissions)

COMP 790-088 1z

COMP TH-088

COMP 790-088
Page 12

COMP 790-088
Page 11 © by Jasleen Kaur

© by Jasleen Kaur

Congestion Control in High Speed Networks Scalable TCP

The Sluggishness of TCP Basic Idea

Steady-state Congestion

(PHtaIRTT) e o
Avoidance behavior: . . & Multiplicative increase: s [M
» 1 congestion events occur]) » Increase window more aggressively - WM
frequently, average throughput [: Standard TCP: cwin = cwin + |
will be less than C | Scalable TCP: ewin = (14 a)*cwin
| Time (RTT)
_— it = eer
¢ To achieve 10 Gbps with - — + Multiplicative decrease: PRI sartew)
e <
TCP, only 1 in (2*10'%) (ohtatRTT) — ¥ » Decrease window less aggressively e
(1=8iC
packets should be dropped c Cwin = b*cwin, where b > 0.5
» This is past the limits of f
achievable fiber error rates §

» Packet loss rate of 107 is
reasonable to expect

Time (RTT)

Figure 2: Scalable TCP sealing propoert jos.
Time (RTT)

Figure 1: Traditional TOP sealing propertios,

Average link utilization achieved is independent of link capacity I

COMP 790-088

COMP 790-088

COMP 790-088 COMP 790-088
© by Jasleen Kaur

Page 13 © by Jasleen Kaur Page 14

Achieving TCP Friendliness

How to Ensure Co-existence with Regular TCP Traffic?

& Define LowThresh
» Adopt TCP ewin behavior
below LowThresh
» Adopt high-speed growth
behavior when cwin is
above LowThresh

Increase in W per RTT

COMP 790-088

S5Thresh LowThresh

Current Window (W)

MaxWin

COMP 790-088
© by Jasleen Kaur

Page 15

