

Congestion Control

Jasleen Kaur

October 7, 2009

COMP 790-088

Network Congestion

Causes

- When and where does congestion occur? (And what is congestion?)
 - » When outgoing link capacity is a bottleneck (e.g., access links)
 - When sum of incoming traffic exceeds outgoing capacity at large timescales
 Small timescale bursts are absorbed by queues
- How often does congestion occur in the Internet?
 - » Don't really know (have only anecdotal evidence)
 - » "Congestion collapse" in the 80s led to design of TCP congestion-control

COMP 790-088 © by Jasleen Kaur COMP 790-088 © by Jasleen Kaur

Congestion Control

Conceptual Idea

- Why do we need congestion control?
 - » To enable sharing of common network resource by multiple data sources
- Goal: apply back-pressure to slow down senders if network is congested
 - » Each host determines how much capacity is available in the network
 This tells it how many packets it can safely have in transit
 - Once it has these many packet in transit, it uses "self-clocking" to send more
 The arrival of an ACK is a signal that one of its packets has left the network
 - Hence, it is safe to insert a new packet
 - » If available bandwidth changes, adjust number of packets in transit

COMP 790-088

Congestion Window (cwin)

New State Variable

- TCP sender maintains a new state variable: Congestion Window
 - >> Used by sender to limit how much data it is allowed to have in transit
 >> Counterpart to flow control's "AdvWin"
 - » Denotes the maximum number of unacknowledged bytes

 MaxWin = min (cwin, AdvWin)
 - ✤ EffectiveWin = MaxWin (LBsent LBacked)
 - » Sender not allowed to send faster than can be accommodated by slowest component (network or destination host)
- Challenge: how to learn the right value for *cwin*?
 - » Unlike destination, network does not explicitly inform sender
- Approach: set cwin based on the level of congestion perceived
 - » Decrease cwin when congestion increases
 - » Increase cwin when congestion decreases

COMP 790-088

COMP 790-088 © by Jasleen Kaur COMP 790-088 © by Jasleen Kaur

Additive Increase/Multiplicative Decrease Rationale

- Why is increase "additive" and decrease "multiplicative"?
 - » Willingness to reduce congestion window greater than willingness to increase it
 - » Necessary condition for stability
 - » Consequences of having too large a window are worse than having too small a window

COMP 790-088

COMP 790-088 © by Jasleen Kaur COMP 790-088 © by Jasleen Kaur

COMP 790-088 © by Jasleen Kaur

COMP 790-088 © by Jasleen Kaur

Prema	eede ture								rigg	gered	I FR	/R
 Stu 	dy of c	out-of	Ford	er se	ome	nts i	n 3 m	illic	n T	CP tra	insfer	*C
V Stu	ay of c	Jui-01	-oru	CI SC	gine	into i	n 5 m	mile	in 1	CI ut	marci	.5
_	Total	C. Natu	costs (Z Ma				atrono	missio			
Tn	ace OOS	% Netw Reord		% No ference	# Total	1% RTC			mission	10	molicit	Unexo
Tra	ace OOS	Reord		ference	# Total 296.2 K	% RTC 32.5	F % Dupac 11.5		A % S	ACK	mplicit %	Unexp 3.5
	ace OOS	Reord		ference			% Dupac	k % F	A % S	ACK	mplicit % 18.3 25.3)	Unexp 3.5 (4.8)
	ace OOS	Reord		ference	296.2 K	32.5 (45)	9 % Dupac 11.5 (15.9)	k % F	A % S	ACK	mplicit 9 18.3 25.3) Allr	Unexp 3.5 (4.8)
a	ace OOS bi 409.9 B	Reord 18		ference	296.2 K Ot	32.5	0 % Dupac 11.5 (15.9) oach	k % F	A % S	ACK		Unexp 3.5 (4.8) nan [6] [Unneeded
a	ace OOS bi 409.9 k	Reord	fer Inf	ference	296.2 K Ot	32.5 (45) ur Appr	0 % Dupac 11.5 (15.9) oach	k % F 2.0 (2.7 Sack	A % S) 4 8) (6.	ACK 1	Needed	
al Trac abi	ace OOS bi 409.9 k Total # Retran 296.2 K	Reord 18 Needed	%Total 20.1%	Implici	296.2 K Ot t RTO 5.8%	32.5 (45) ur Appro Inneede TDA 1.1%	0 % Dupac 11.5 (15.9) oach d PartialAck 0.2%	k % F 2.0 (2.7 Sack 1.0%	A % S) 4 8) (6 Unexp 7.6%	ACK Se II 1.5 21) C No Inference 9.9%	Needed 87.4%	Unneeded
al Trac abi lei	ace OOS bi 409.9 k # Retran 296.2 K 49.9 K	Reord 18 Needed 70.0% 46.1%	%Total 20.1% 26.8%	Implici 4.4% 7.1%	296.2 K Ot t RTO 5.8% 7.3%	32.5 (45) ur Appro Inneede TDA 1.1% 0.7%	0 % Dupac 11.5 (15.9) oach d PartialAck 0.2% 0.3%	k % F 2.0 (2.7 Sack 1.0% 0.4%	A % S 0 4 8) (6 Unexp 7.6% 10.9% 10.9%	ACK	Needed 87.4% 88.8%	Unneeded 12.6% 11.2%
al Trac abi lei jap	ace OOS bi 409.9 k # Retran 296.2 K 49.9 K	Reord 18 Needed 70.0% 46.1% 70.7%	%Total 20.1% 26.8% 18.2%	Implici 4.4% 7.1% 13.3%	296.2 K Ot t RTO 5.8% 7.3% 2.9%	32.5 (45) ur Appro- Inneede TDA 1.1% 0.7% 0.3%	0 % Dupac 11.5 (15.9) oach d PartialAck 0.2% 0.3% 0.2%	k % F 2.0 (2.7 Sack 1.0% 0.4% 0.0%	A % S) 4 8) (6 Unexp 7.6% 10.9% 1.7%	ACK 14 11 1.5 21) (2 1.0 10 ferre nece 9.9% 27.1% 11.1%	Needed 87.4% 88.8% 84.3%	Unneeded 12.6% 11.2% 15.7%
abi lei jap	ace OOS bi 409.9 k # Retran 296.2 K 49.9 K 49.9 K	Reord 18 Needed 70.0% 46.1% 70.7% 38.5%	%Total 20.1% 26.8% 18.2% 38.5%	Implici 4.4% 7.1% 13.3% 3.3%	296.2 K Ot t RTO 5.8% 7.3% 2.9% 13.3%	32.5 (45) ur Appro- Inneede TDA 1.1% 0.7% 0.3% 2.3%	0 % Dupac 11.5 (15.9) oach d PartialAck 0.2% 0.3% 0.2% 1.5%	k % F 2.0 (2.7 Sack 1.0% 0.4% 0.0% 0.1%	A % S) 4 8) (6. Unexp 7.6% 10.9% 1.7% 17.2% 17.2%	ACK % II 1.5 1 21) (2 No Inference 9.9% 27.1% 11.1% 23.0%	Needed 87,4% 88,8% 84,3% 64,3%	Unneeded 12.6% 11.2% 15.7% 35.7%
abi Irac abi lei jap unc ibi	ace OOS bi 409.9 k # Retran 296.2 K 49.9 K 49.9 K 445.6 K 499.3 K	Reord 18 Needed 70.0% 46.1% 70.7% 38.5% 67.5%	%Total 20.1% 26.8% 18.2% 38.5% 21.9%	Implici 9.6 13.3% 13.3% 15.3%	296.2 K Ot t RTO 5.8% 7.3% 2.9% 13.3% 2.0%	32.5 (45) ur Approvente TDA 1.1% 0.7% 0.3% 2.3% 1.0%	% Dupac 11.5 (15.9) oach d PartialAck 0.2% 0.3% 0.2% 1.5% 1.2%	k % F 2.0 (2.7 Sack 1.0% 0.4% 0.0% 0.1% 0.0%	A % S 0 4 80 4 81 (6 0 7.6% 10.9% 1.7% 17.2% 2.5%	ACK % II 5 21) (2 No Inference 9.9% 27.1% 11.1% 23.0% 10.6%	Needed 87.4% 88.8% 84.3% 64.3% 77.8%	Unneeded 12.6% 11.2% 15.7% 35.7% 22.2%
abi Irac abi lei jap unc ibi	ace OOS bi 409.9 k # Retran 296.2 K 49.9 K 49.9 K	Reord 18 Needed 70.0% 46.1% 70.7% 38.5% 67.5%	%Total 20.1% 26.8% 18.2% 38.5% 21.9%	Implici 9.6 13.3% 13.3% 15.3%	296.2 K Ot t RTO 5.8% 7.3% 2.9% 13.3% 2.0%	32.5 (45) ur Approvente TDA 1.1% 0.7% 0.3% 2.3% 1.0%	% Dupac 11.5 (15.9) oach d PartialAck 0.2% 0.3% 0.2% 1.5% 1.2%	k % F 2.0 (2.7 Sack 1.0% 0.4% 0.0% 0.1% 0.0%	A % S 0 4 80 4 81 (6 0 7.6% 10.9% 1.7% 17.2% 2.5%	ACK % II 5 21) (2 No Inference 9.9% 27.1% 11.1% 23.0% 10.6%	Needed 87.4% 88.8% 84.3% 64.3% 77.8%	Unneeded 12.6% 11.2% 15.7% 35.7% 22.2%

Congestion Control in High Speed Networks The Sluggishness of TCP

◆ 10 Gbps network with 100 ms round-trip time

» Desired *cwin* ≈ 83,000 packets

• Initial bandwidth discovery:

- » SSThresh usually set to no more than 32-64 segments
- » Would take hours to achieve a sending rate of 10 Gbps
- Bandwidth rediscovery after timeout:
 - » Cwin reset to 1
 - » Additive increase would still take hours to recover 10 Gbps throughput

COMP 790-088

COMP 790-088 © by Jasleen Kaur 11

COMP 790-088 © by Jasleen Kaur

COMP 790-088 © by Jasleen Kaur

