

COMP 790-088 © by Jasleen Kaur

ECN

Explicit Congestion Notification

◆ Basic Approach:

» Equally split responsibility of congestion control between routers and hosts

Router:

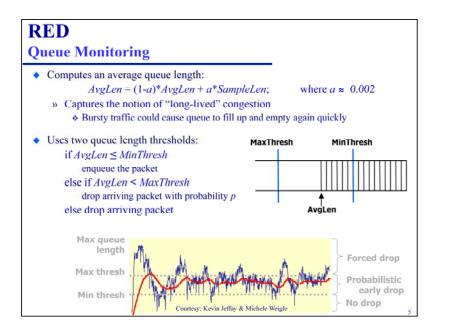
» Monitors the load it is experiencing

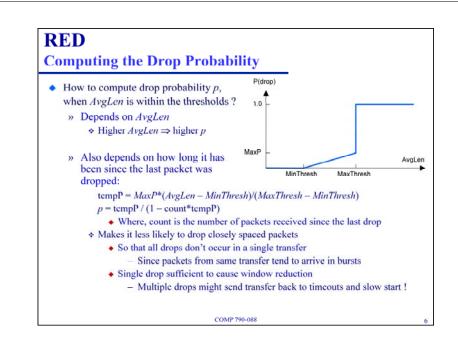
- ♦ Average queue length, average utilization, etc
- » Explicitly notifies end hosts when congestion is about to occur
 - * By setting a binary congestion bit in packets that it forwards
 - * Destination hosts echo the bit in ACKs sent to the source

◆ Source:

» Adjusts sending rate on receiving congestion notification

COMP 790-088


RED


Random Early Detection

- Two main characteristics:
 - » Implicit notification
 - Just drop packet (end-host detects loss and infers congestion)
 - » Early random drop
 - Don't wait for queues to be full
 - Drop packets with some drop probability whenever queue exceeds some drop level
- ◆ Is an example of an Active Queue Management (AQM) scheme
 - » Queues are monitored and managed before heavy congestion sets in
 - » Other examples: PI, REM, Blue, ...

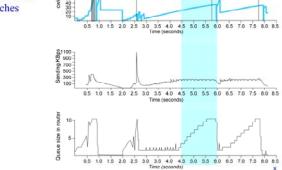
COMP 790-088

COMP 790-088 © by Jasleen Kaur COMP 790-088 © by Jasleen Kaur

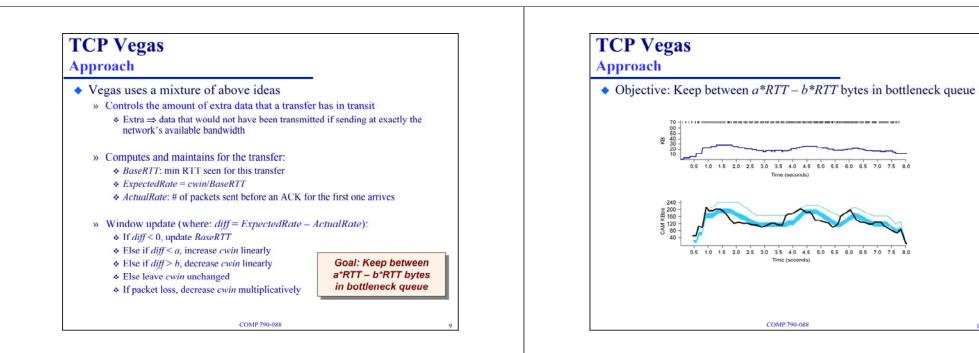
COMP 790-088 © by Jasleen Kaur

RED

Discussion


- Fairness of resource allocation:
 - » The probability that RED drops a packet from a given flow is proportional to the flow's current share of bandwidth
 - ♦ Flows that are sending more traffic are more likely to be penalized if queues grow
- ◆ How to set the *MinThresh* and *MaxThresh*?
 - » If traffic is bursty?
 - * MinThresh should be set high to allow good link utilization
 - » Given that sources take RTT delay to respond to first indication of congestion?
 - (MaxThresh-MinThresh) should be larger than typical increase in AvgLen in RTT
 MaxThresh = 2*MinThresh
 - Value of a should help filter out changes in queue length over timescales much smaller than 100 ms

COMP 790-088


End-point Congestion Avoidance

Congestion Indicators

- How can you detect incipient stages of congestion at end-hosts?
 - » See if there's a measurable increase in RTTs
 - » See if it is correlated with increase in cwin if (currWin – oldWin)/(currRTT – oldRTT) > 0, decrease cwin; else increase cwin
 - » Sending rate flattens as network approaches congestion

COMP 790-088 © by Jasleen Kaur

COMP 790-088 © by Jasleen Kaur

Delay-based Congestion Control Concerns

- ◆ Is it efficient?
 - » Will it react to transient queues (that loss-based TCP will simply let the buffers absorb)?
 - » Can the RTT signal be tainted by OS issues such as interrupt-coalescence, burst-switching, etc?
 - » Will Vegas react to queuing on the reverse path?
- ◆ Is it fair?
 - How will Vegas survive in a TCP-dominated world?
 Would it get a fair share of bandwidth against competing TCP transfers?
- How will it survive in wireless environments?
 - » Where several sources of random delays exist
 - Medium access times
 - Collision-induced exponential retransmissions
 - Environment-based rate-adaptation

COMP 790-088

COMP 790-088 © by Jasleen Kaur