COMP 790-088: Networked & Distributed Systems

Distributed Hash Tables
Jasleen Kaur

November 11, 2009

Distributed Hash Table (DHTSs)

+ Hash table: data structure that maps “keys" to “values™

» essential building block in software systems

¢ Distributed Hash Table: similar, but spread across the Internet
» Each node stores (key, value) pairs
» Interface:
+ insert(key. value)
+ lookup(key)
@ Join/leave
» Each DHT node in the overlay supports single operation:
< given input key, route messages wward node holding key

+ “Middleware™ for building distributed systems
» DNS, File Systems, 13, Content distribution, ...,




DHT In Action

=

s

g~}

Operation: take key as input; route messages to node holding key

DHT In Action: insert()

(KyVy) oy

Operation: take key as input; route messages to node holding key




DHT In Action: lookup()

lookup (Ky)

Operation: take key as input; route messages to node holding key

DHT Design Goals

+ An “overlay” network with:

flexible mapping of keys to physical nodes
small network diameter

small degree

local routing decisions

¥

¥

M

b

4 A “storage” or “memory” mechanism with

» best-effort persistence (soft state)

+ We'll look at two designs:
» Chord
» Pastry




Chord

+ Based on logical m-bit identifiers
» 010 2™-1 ordered in an identifier “circle” (modulo 2™)

+ (Key, Value) pairs are stored/located by using a consistent hash
function, CH, to map keys, K, onto a point, @, on the circle
» @@= CH{K)

+ System nodes are also mapped onto points, /N, on the same
identifier circle
» # Key values may be greater than # Nodes

+ Node N; stores all (K, V) pairs where K maps to a point @ such
that Nj is the first node where
» @< N; (N;isthe successor of @)

Hash IP address to Node ID (N)

(example with m=6)

162.2.137.47— [ Hash |— 21

(USA)

203.199.213.5— — 8
(India)

166.111.4.37 —+[ Hash |— 42

(China)

69.229.60.105—[_Hash |—14

(USA)
64.236.24.12 — —1
(USA)

N48
20?.46.150.20—’—“ 38 120.126\1.20
(USA)

198.175.96.33— [ Hash |—32

44.82.100.130—| Hash |—63
(LK)

138.96.146.2 —| Hash |—51

(Franca)

129.126.11.23—| Hash |—48
(Germany)

144.82.100.130
NE3

NS51
138.96.1492

N42
166.111.4.37

207 46.150.20

MN32
198.175.96.33




Nodes Maintain Successor Pointer (S’)

NB3 N1
S'={N1,64.236.24.12)- @ * S'=[NB, 203.188.213.5}

N8

S'=[N14, 169.220.60.105}

- N51 N14
5'=[N63, 144.82.100.130 S'=[N21, 152.2.137.47}

N4g
S'=[N51, 138.96.146.2}

Nz21
N4Z 5'={N32, 198.175.96.33}

5'=(N48, 120.126.11 .23’\9
e

S'=(N42, 166.111.4.37} 2
S'=(N38, 207.46.150.20)

Key locations in example

Stores any key in
(52...83)

Stores any
key in
(49...51)

Stores any
key in
(43...48)

Stores any
key in
(39...42)

key in
(33...38)

N3

Stores keys 0,1

Stores any

N1

Stores
any key in
(9...14)

Stores.
any key in
(15...21)

Stores any
key in
(22...32)




Chord

« DHT API:
» Each node stores (key, value) pairs
» Interface:
+ insert(key, value)
# lookup(key)
<+ Join/leave
» Each DHT node in the overlay supports single operation:

< given input key, route messages toward node holding key

Simple Lookup -- recursive mode
(part one: find successor of key)

= “some name™—=
K54, NE3 N1
FOO} ® @
NS6 N8{— lookup(K54)
FindSuccessor(K54)
NS1 @ o4
FindSuccessor(K54),
N48 indSuccessar(K54)
FindSuccessor(K54)
N21
M42
F.MSummm% indSuccessor(iK54)
N3
FindSuccessor(K54) 53

54




Simple Lookup -- recursive mode
| (part two: return successor & send query)

“some name™— |_Hash |
i@ @M
) lookup(K54)
Nse @ T @ Na¢— lookup(K54)
FOO 4
S(K54)=N58
NS1 N14
S'(K54)=N58
Nag S(K54)=N56
S/(K54)=N56
NZ1
N42

\S.I‘iﬂ:msa S (NS

S'(K54)=N56

Memory: O(1) NI @—

Mean lookup is O(n/2)
= Not Scalable!

N32

54

Scalable Lookup With Small Node State
(part one: use local “finger table”)

Nsa. @ N1
nse @
*
/f’? 8+1,N14
N 2ot B+2,N14
- P 8+4,N14
o0 i 8+8.N21
< \ 8+16,N32
s, '

= P ¥ 8+32,N42

Finger table at node j:
for 1=ksm

N3 @ ‘ finger(k] =
N32|  SuccessorNode((j+2%*)mod2m)

mmmm—=—

14




Scalable Lookup With Small Node State
(part two: use remote finger table data)

T “some name ™

K54, NE3 N1

e o

NS6 &< lookip(K54)

8+1,N14

s

AETEID 8+8.N21

42+4,N45 8+16,N32

#2 a1 8+32,N42

42+16,N63 :

42432 N14 P

54

Scalable Lookup With Small Node State
(part three: locate successor node)

“some name™— 54
Nig @M
) lookup(K54)

&< lookiip(K54)

N5E
8+1,N14
42+1N4g | No1 Sage
4242 N48 g:;':;‘:
:g:;'ﬁ‘;? 8+16,N32
42+16,N63 Ba2Na2

42+32 N14 oz

Mean lookup is: O{{log,n)/2)
S With m table entries
|
® . = Scalable!

Finger tables help halve the ID-space
distance in each step




Chord

& DHT API:
» Each node stores (key, value) pairs
» Interface:
# lookupikey)
+ insert(key, value)
% Join/leave
» Each DHT node in the overlay supports single operation:

< given input key, route messages toward node holding key

Node Join
(example, Hash(128.250.6.182) = 26)

+ Nodes also maintain a
predecessor link (not
used for search)

+ (1) Joining node
contacts any existing
node to find successor

# (2) Successor link
created from returned
value.




Node Join
(example, Hash(128.250.6.182) = 26)

# (3) Successor Notified o 0

and data for keys <26
moved and predecessor NS6 /

link made. //

* (4) Periodic Stabilize N
protocol run by all
nodes updates successor yug
link in predecessor node
(N21) and predecessor
link in new node;
Fix_ Fingers also run to
fix finger tables (uses
FindSuccessor() search)

N8B

N14

Replication & Robustness:

Each node maintains list of r successors

MBS, N1

S'=[N63, 144.82.100.130
N1,6423624.12  psg
N8, 203.199.213.5
N14, 169.229.60.105}

NS1 @

N48

N42

Applications can replicate  [N3s @

data at k of the r successors 32
to provide high availability in
event of node failures

Protects against simultaneous
node failures that could result in
loss of correct successor links

NZ21
§'={N32, 198.175.96.33
N38, 207.46.150.20
N42, 166.111.4.37
N48, 128.126.11.23}

20




The Chord Theorems

Theorem f¥.1: Forany setof N nodes and & keys, with high
probability, the following is true,
1} Each node is responsible for at most (1 4 €)K /N keys.
2) When an (N + L)th node joins or leaves the network, the
responsibility for O{K /N keys changes hands (and only
10 or from the joining or leaving node).

Thearem I.2: With high probability, the number of nodes
that must be contacted to find a successor inan N-node network

is Oflog N}

Theorem IV.3: 1P any sequence of join operations is exee
interleaved with stabilizations, then at some time after the last
Jjoin the successor peinters will form a cy<le on all the nedes in
the network,

21

The Chord Theorems (cont.)

Thevwem - 1 we

with corect finger poi

1 stable network with N
wd another set of up to

joins the network,

Wl all successor pointers (but pe
all finger peinters) are correct, then lookups will still take

CWlog ') time with high probability.

Theorem JV5: If we use a successor list of length
r = fHlogN) in a network that is initially stable, and
then every node fails with probability 172, then with high prob-
ability findsuccessor retums the closest
the que

ng sucecssor to

Thearem TV.A: In a network that is init
nade then fails with probability 1/2, then the
execute find_successor is Oflog N).

v stable, if every
xpected time to

22




