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COMP 790-088 -- Distributed File Systems

Google File System
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Google is Really Different….

Huge Datacenters in 25+ 
Worldwide Locations

Datacenters house multiple 
server clusters

Coming soon to Lenior, NC

each > football field

4 story cooling towers

The Dalles, OR (2006) 

2007

2008
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Google is Really Different….

Each cluster has hundreds/thousands of Linux systems on 
Ethernet switches

500,000+ total
servers
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Google Hardware Today
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Google Environment

Clusters of low-cost commodity hardware
Custom design using high-volume components

ATA disks, not SCSI (high capacity, low cost, somewhat 
less reliable)

No “server-class” machines 

Local switched network
Low end-to-end latency

more available bandwidth

low loss
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Google File System Design Goals

Familiar operations but NOT Unix/Posix
Specialized operation for Google applications

record_append()

GFS client API code linked into each application

Scalable -- O(1000s) of clients
Performance optimized for throughput

No client caches (big files, little temporal locality)

Highly available and fault tolerant 
Relaxed file consistency semantics

Applications written to deal with issues
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File and Usage Characteristics

Many files are 100s of MB or 10s of GB
Results from web crawls, query logs, archives, etc.
Relatively small number of files (millions/cluster)

File operations:
Large sequential (streaming) reads/writes
Small random reads (rare random writes)

Files are mostly “write-once, read-many.”
Mutations are dominated by appends, many from hundreds of 
concurrent writers

process

process

process

Appended file
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GFS Basics

Files named with conventional pathname hierarchy
E.g., /dir1/dir2/dir3/foobar

Files are composed of 64 MB “chunks”
Each GFS cluster has servers (Linux processes):

One primary Master Server
Several “Shadow” Master Servers
Hundreds of Chunk Servers

Each chunk is represented by a Linux file
Linux file system buffer provides caching and read-ahead
Linux file system extends file space as needed to chunk size

Each chunk is replicated (3 replicas default)
Chunks are checksummed in 64KB blocks for data integrity
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Master Server Functions

Maintain file name space (atomic create, delete names)
Maintain chunk metadata

Assign immutable globally-unique 64-bit identifier
Mapping from files name to chunk(s)
Current chunk replica locations

Refresh dynamically from chunk servers

Maintain access control data
Manage chunk-related actions

Assign primary replica and version number
Garbage collect deleted chunks and stale replicas

Stale replicas detected by old version numbers when chunk servers report

Migrate chunks for load balancing
Re-replicate chunks when servers fail

Heartbeat and state-exchange messages with chunk servers
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GFS Protocols for File Reads

Minimizes client interaction with master:
- Data operations directly with chunk servers.
- Clients cache chunk metadata until new open or timeout
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GFS Relaxed Consistency Model

Writes that are large or cross chunk boundaries may be broken into multiple 
smaller ones by GFS
Sequential writes successful:

One copy semantics, writes serialized.
Concurrent writes successful:

One copy semantics
Writes not serialized in overlapping regions

Sequential or concurrent writes with failure:
Replicas may differ
Application should retry

All replicas equal
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GFS Applications Deal with Relaxed 
Consistency

Mutations
Retry in case of failure at any replica

Regular checkpoints after successful sequences

Include application-generated record identifiers and 
checksums

Reading
Use checksum validation and record identifiers to 
discard padding and duplicates.
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GFS Chunk Replication (1/2)
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GFS Chunk Replication (2/2)
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3. Client sends write 
request to primary

4. Primary assigns write order 
and forwards to replicas 

5. Primary collects ACKs and 
responds to client.  Applications 
must retry write if there is any 
failure.
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GFS record_append()

Client specifies only data and region size; 
server returns actual offset to region
Guaranteed to append at least once atomically
File may contain padding and duplicates

Padding if region size won’t fit in chunk
Duplicates if it fails at some replicas and client 
must retry record_append()

If record_append() completes successfully, all 
replicas will contain at least one copy of the 
region at the same offset
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GFS Record Append (1/3)
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GFS Record Append (2/3)
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3. Client sends write 
request to primary

4. If record fits in last chunk, primary 
assigns write order and offset and 
forwards to replicas 

5. Primary collects ACKs and responds to 
client with assigned offset.  Applications 
must retry write if there is any failure.

success/
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GFS Record Append (3/3)
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Metrics for 2 GFS Clusters (2003)

210 MB/file 
(70 MB/replica)

75 MB/file 
(10 MB/replica)

13.5 KB/chunk
(mostly checksums)

80 bytes/file

3636COMP 790-088 -- Fall 2009

File Operation Statistics

(???)


