COMP 790-088 -- Distributed File Systems

Google File System

COMP 790-088 -- Fall 2009 17

\am Google is Redlly Different....

The Dalles, OR (2006

¢ Huge Datacentersin 25+
Worldwide Locations each > footbati field =

& Datacenters house multiple
server clusters

4 Coming soon to Lenior, NC

COMP 790-088 -- Fall 2009

18

Googleis Really Different....

& Each cluster has hundreds/thousands of Linux systems on
Ethernet switches

¢ 500,000+ total P
servers

b
e
FC::
L
s
r
=}
=
=
=
=
=
=
=
=3
-

COMP 790-088 -- Fall 2009

Google Hardware Today

COMP 790-088 -- Fall 2009

20

N Google Environment

¢ Clusters of low-cost commodity hardware
+ Custom design using high-volume components

+ ATA disks, not SCSI (high capacity, low cost, somewhat
lessreliable)

+ No “server-class’ machines
¢ Local switched network

+ Low end-to-end latency

+ more available bandwidth

+ low loss

COMP 790-088 -- Fall 2009 21

1 Google File System Design Goals

& Familiar operations but NOT Unix/Posix

+ Specialized operation for Google applications
« record_append()

+ GFS client API code linked into each application
< Scalable -- O(1000s) of clients
+ Performance optimized for throughput

+ No client caches (big files, little temporal locality)
¢ Highly available and fault tolerant
¢ Relaxed file consistency semantics

+ Applications written to deal with issues

COMP 790-088 -- Fall 2009 2

File and Usage Characteristics

¢ Many filesare 100s of MB or 10s of GB
+ Results from web crawls, query logs, archives, etc.
+ Relatively small number of files (millions/cluster)

& File operations:
+ Large sequential (streaming) reads/writes
+ Small random reads (rare random writes)

& Filesare mostly “write-once, read-many.”

¢ Mutations are dominated by appends, many from hundreds of
concurrent writers

\Q
Appended file
=

[I I I .
/E

COMP 790-088 -- Fall 2009

23

GFS Basics

Files named with conventiona pathname hierarchy
+ E.g., /dirl/dir2/dir3/foobar
¢ Files are composed of 64 MB *“chunks”
& Each GFS cluster has servers (Linux processes):
+ One primary Master Server
+ Several “ Shadow” Master Servers
+ Hundreds of Chunk Servers
& Each chunk isrepresented by aLinux file
+ Linux file system buffer provides caching and read-ahead
+ Linux file system extends file space as needed to chunk size
¢ Each chunk isreplicated (3 replicas default)
+ Chunks are checksummed in 64KB blocks for data integrity

COMP 790-088 -- Fall 2009 24

Master Server Functions

¢ Maintain file name space (atomic create, del ete names)

¢ Maintain chunk metadata
+ Assign immutable globally-unique 64-bit identifier
+ Mapping from files name to chunk(s)
+ Current chunk replicalocations
 Refresh dynamically from chunk servers
¢ Maintain access control data

¢ Manage chunk-related actions
+ Assign primary replica and version number
+ Garbage collect deleted chunks and stale replicas
« Stalereplicas detected by old version numbers when chunk servers report
+ Migrate chunks for load balancing
+ Re-replicate chunks when serversfail

& Heartbeat and state-exchange messages with chunk servers

COMP 790-088 -- Fall 2009 o5

GFS Protocolsfor File Reads

Application (file name, chunk index) | GIS master - ffoo/bar

chunk 2ef0

GF'S client File namespace /"

(chunk handle, i
chunk locations)

Instructions to chunkserver

Chunkserver state

(chunk handle, byte range)

GFS chunkserver GFS chunkserver

chunk data . " . -
Legend: Linux file system Linux file system

mmmp Data messages Lcﬂ Liﬂ _— Liﬂ Lf’_ﬂ _—
—= Control messages T T
Minimizes client interaction with master:

- Data operations directly with chunk servers.

- Clients cache chunk metadata until new open or timeout

COMP 790-088 -- Fall 2009 26

GFS Relaxed Consistency Model

& Writesthat are large or cross chunk boundaries may be broken into multiple
smaller ones by GFS

& Sequential writes successful:
+ One copy semantics, writes serialized.
& Concurrent writes successful:
+ One copy semantics
+ Writes not serialized in overlapping regions

W

| %\m | }AII replicas equal
& Sequentid or concurrent writes with failure:

+ Replicas may differ
+ Application should retry

COMP 790-088 -- Fall 2009

27

GFS Applications Deal with Relaxed
Consistency

& Mutations
+ Retry in case of failure at any replica
+ Regular checkpoints after successful sequences

+ Include application-generated record identifiers and
checksums

¢ Reading

+ Use checksum validation and record identifiers to
discard padding and duplicates.

COMP 790-088 -- Fall 2009 28

1. Client contacts Master
master to get
replica state and

GFS Chunk Replication (1/2)

LRU buffers at
chunk servers

|

Client

caches it
¢ > ©
Client ACK
primary

c2 =

2. Client picks any chunk

server and pushes data. G 4

Servers forward data along

“best” path to others. vl
C3

COMP 790-088 -- Fall 2009

29

GFS Chunk Replication (2/2)

4. Primary assigns write order

and forwards to replicas

Master
3. Client sends write
request to primary
—
Client Writa
—
S
ccess/fa i /Ure
—
5. Primary collects ACKs and —~

ACK
write order E

Write
S
Cc2 ,Iz DI

Client

Successt

. failure
write order E ACK
il

responds to client. Applications
must retry write if there is any
failure.

COMP 790-088 -- Fall 2009

==

30

W GFSrecord append()

Client specifies only data and region size;
server returns actual offset to region
¢ Guaranteed to append at |east once atomically

< File may contain padding and duplicates
+ Padding if region size won't fit in chunk
+ Duplicatesif it fails at some replicas and client
must retry record_append()
< |f record append() completes successfully, all
replicas will contain at least one copy of the
region at the same offset

COMP 790-088 -- Fall 2009

31

1. Client contacts Master LRU buffers at
master to get chunk servers

replica state and

Client

caches it
< ¢ | Cl [
: A
Client ACK
primary
==
2. Client picks any chunk ACK A
server and pushes data.
Servers forward data along
“best” path to others. o3 |
ACK L2 |

COMP 790-088 -- Fall 2009

32

must retry write if there is any failure.

| GFS Record Append (2/3)

Master 4. If record fits in last chunk, primary
assigns write order and offset and
forwards to replicas

3. Client sends write 7
request to primary Cl =
Client Wrj ; [1G ACK
ite .
Offse(/f z Cc2 1 4&‘ Client
Alure 2 su{ces.b"
. @] failure
write order:| ACK
. T
5. Primary collects ACKs and responds to C3 :
client with assigned offset. Applications

COMP 790-088 -- Fall 2009

33

Master
3. Client sends write
request to primary
Client Tite

5. Client must retry write from beginning

| GFS Record Append (3/3)

4. If record overflows last chunk,
primary and replicas pad last
chunk and offset points to next
chunk

|

C1

W\ Pad to next chunk
Re,
M c2 B

Pad to next chunk

cs

COMP 790-088 -- Fall 2009

34

Metrics for 2 GFS Clusters (2003)

210 MBffile

|- (70 MB/replica)

—————75 MB/file
(10 MB/replica)

13.5 KB/chunk

| Cluster | A | B |
Chunkservers 342 227
Available disk space 72 TB 180 TB
Used disk space 55 TB 155 TB 4
Number of Files 735 k 737 K
Number of Dead files 22k 232k
Number of Chunks 992 k| 1550 k
Metadata at chunkservers 13 GB 21 GB 4
Metadata at master 48 MB 60 MB

(mostly checksums)

Read rate (last minute)
Read rate (last hour)

F83 MB/s
562 MB/s

380 MB/s
384 MB/s

80 bytes/file

Read rate (since restart) 589 MB/s | 49 MB/s
Write rate (last minute) 1 MB/s | 101 MB/s
Write rate (last hour) 2 MB/s | 117 MB/s
Write rate (since restart) 25 MB/s 13 MB/s

Master ops (last minute)
Master ops (last hour)
Master ops (since restart)

325 Ops/s
381 Ops/s
202 Ops/s

533 Ops/s
518 Ops/s
347 Ops/s

COMP 790-088 -- Fall 2009

85

File Operation Statistics

Operation Head Write Record Append
Cluster X Y| XY X Y
Ok 0.4 2.6 t] 4] 4]]
1B.1K 0.1 4.1 6.6 4.9 0.2 9.2
TK.LBK (5.2 38.5 4 1.0 18.9 15.2
SRLLG4IK 2009 45.1 17.8 43.0 | 78.0 2.8
GAK. 128K 01 0.7 23 19| < .1 1.3
128K, 2561 0.2 03316 04| <.1 10.6
256K 512K 0.1 0.1 42 77| <1 1.2
512K 1M 3.9 6.9 | 355 287 2.2 25.5
LML .inf 0.1 1.8 1.5 12.3 0.7 2.2

Operation

Tead Write Record Append
Y v < -

Table 4: Operations Breakdown by Size (%).

COMP 790-088 -- Fall 2009

Cluster X X Y
1B 1K < A< 0| <1< 0] <. < .1
1K 81K 138 3.9 | <.1<.1 | <.1 0.1
11.4 9.3 2.4 5.9 2.3 0.3

0.3 0.7 0.3 0.3 | 227 1.2

b 0 0.6 6.5 0.2 < .1 hE
256K..512K 1.4 0.3 X B 3584
S12K. AN 65.9 55.1 | T4.1 58.0 A 16.8
IM.inf .4 301 3.4 250 | 530 T4

(777)

Table 5: Bytes Transferred Breakdown by Opera

36

