
1717COMP 790-088 -- Fall 2009

COMP 790-088 -- Distributed File Systems

Google File System

1818COMP 790-088 -- Fall 2009

Google is Really Different….

Huge Datacenters in 25+
Worldwide Locations

Datacenters house multiple
server clusters

Coming soon to Lenior, NC

each > football field

4 story cooling towers

The Dalles, OR (2006)

2007

2008

1919COMP 790-088 -- Fall 2009

Google is Really Different….

Each cluster has hundreds/thousands of Linux systems on
Ethernet switches

500,000+ total
servers

2020COMP 790-088 -- Fall 2009

Google Hardware Today

2121COMP 790-088 -- Fall 2009

Google Environment

Clusters of low-cost commodity hardware
Custom design using high-volume components

ATA disks, not SCSI (high capacity, low cost, somewhat
less reliable)

No “server-class” machines

Local switched network
Low end-to-end latency

more available bandwidth

low loss

2222COMP 790-088 -- Fall 2009

Google File System Design Goals

Familiar operations but NOT Unix/Posix
Specialized operation for Google applications

record_append()

GFS client API code linked into each application

Scalable -- O(1000s) of clients
Performance optimized for throughput

No client caches (big files, little temporal locality)

Highly available and fault tolerant
Relaxed file consistency semantics

Applications written to deal with issues

2323COMP 790-088 -- Fall 2009

File and Usage Characteristics

Many files are 100s of MB or 10s of GB
Results from web crawls, query logs, archives, etc.
Relatively small number of files (millions/cluster)

File operations:
Large sequential (streaming) reads/writes
Small random reads (rare random writes)

Files are mostly “write-once, read-many.”
Mutations are dominated by appends, many from hundreds of
concurrent writers

process

process

process

Appended file

2424COMP 790-088 -- Fall 2009

GFS Basics

Files named with conventional pathname hierarchy
E.g., /dir1/dir2/dir3/foobar

Files are composed of 64 MB “chunks”
Each GFS cluster has servers (Linux processes):

One primary Master Server
Several “Shadow” Master Servers
Hundreds of Chunk Servers

Each chunk is represented by a Linux file
Linux file system buffer provides caching and read-ahead
Linux file system extends file space as needed to chunk size

Each chunk is replicated (3 replicas default)
Chunks are checksummed in 64KB blocks for data integrity

2525COMP 790-088 -- Fall 2009

Master Server Functions

Maintain file name space (atomic create, delete names)
Maintain chunk metadata

Assign immutable globally-unique 64-bit identifier
Mapping from files name to chunk(s)
Current chunk replica locations

Refresh dynamically from chunk servers

Maintain access control data
Manage chunk-related actions

Assign primary replica and version number
Garbage collect deleted chunks and stale replicas

Stale replicas detected by old version numbers when chunk servers report

Migrate chunks for load balancing
Re-replicate chunks when servers fail

Heartbeat and state-exchange messages with chunk servers

2626COMP 790-088 -- Fall 2009

GFS Protocols for File Reads

Minimizes client interaction with master:
- Data operations directly with chunk servers.
- Clients cache chunk metadata until new open or timeout

2727COMP 790-088 -- Fall 2009

GFS Relaxed Consistency Model

Writes that are large or cross chunk boundaries may be broken into multiple
smaller ones by GFS
Sequential writes successful:

One copy semantics, writes serialized.
Concurrent writes successful:

One copy semantics
Writes not serialized in overlapping regions

Sequential or concurrent writes with failure:
Replicas may differ
Application should retry

All replicas equal

2828COMP 790-088 -- Fall 2009

GFS Applications Deal with Relaxed
Consistency

Mutations
Retry in case of failure at any replica

Regular checkpoints after successful sequences

Include application-generated record identifiers and
checksums

Reading
Use checksum validation and record identifiers to
discard padding and duplicates.

2929COMP 790-088 -- Fall 2009

GFS Chunk Replication (1/2)

1
2

1
2

1
2

Master

Client

C1

C2

C3

primary
Client

Fi
nd

Lo
ca

tio
n

C1,
C2(

pr
im

ar
y)

,C
3

1. Client contacts
master to get
replica state and
caches it

LRU buffers at
chunk servers

2. Client picks any chunk
server and pushes data.
Servers forward data along
“best” path to others.

ACK

ACK

ACK

3030COMP 790-088 -- Fall 2009

GFS Chunk Replication (2/2)

1
2

1
2

1
2

Master

Client

C1

C2

C3

Client

Write

Write

1
2

1
2

write order

write order

ACK

ACK

success/failure

3. Client sends write
request to primary

4. Primary assigns write order
and forwards to replicas

5. Primary collects ACKs and
responds to client. Applications
must retry write if there is any
failure.

success/

failure

3131COMP 790-088 -- Fall 2009

GFS record_append()

Client specifies only data and region size;
server returns actual offset to region
Guaranteed to append at least once atomically
File may contain padding and duplicates

Padding if region size won’t fit in chunk
Duplicates if it fails at some replicas and client
must retry record_append()

If record_append() completes successfully, all
replicas will contain at least one copy of the
region at the same offset

3232COMP 790-088 -- Fall 2009

GFS Record Append (1/3)

1
2

1
2

1
2

Master

Client

C1

C2

C3

primary
Client

Fi
nd

Lo
ca

tio
n

C1,
C2(

pr
im

ar
y)

,C
3

1. Client contacts
master to get
replica state and
caches it

LRU buffers at
chunk servers

2. Client picks any chunk
server and pushes data.
Servers forward data along
“best” path to others.

ACK

ACK

ACK

3333COMP 790-088 -- Fall 2009

GFS Record Append (2/3)

1
2

1
2

1
2

Master

Client

C1

C2

C3

Client

Write

Write

1@
2@

1@
2@

write order

write order

ACK

ACK

offset/failure

3. Client sends write
request to primary

4. If record fits in last chunk, primary
assigns write order and offset and
forwards to replicas

5. Primary collects ACKs and responds to
client with assigned offset. Applications
must retry write if there is any failure.

success/

failure

3434COMP 790-088 -- Fall 2009

GFS Record Append (3/3)

1
2

1
2

1
2

Master

Client

C1

C2

C3

Write

Retry on next chunk

3. Client sends write
request to primary

4. If record overflows last chunk,
primary and replicas pad last
chunk and offset points to next
chunk

Pad to next chunk

Pad to next chunk

5. Client must retry write from beginning

3535COMP 790-088 -- Fall 2009

Metrics for 2 GFS Clusters (2003)

210 MB/file
(70 MB/replica)

75 MB/file
(10 MB/replica)

13.5 KB/chunk
(mostly checksums)

80 bytes/file

3636COMP 790-088 -- Fall 2009

File Operation Statistics

(???)

