Designing Algorithms

Comp-110 Recitation
Sep 2, 2011

Review

• Algorithm
 – A step by step sequence of instructions for solving a problem
 – In a finite amount of time.

• Representing algorithms
 – Flow Chart
 – Pseudo Code
Problem: Eat potato chips

• Pseudo-Code

1. Take a packet full of chips
2. Open the packet
3. Repeat
 • Eat chips
 • Until packet is empty OR you are full.

Flow Chart Elements
Example 1

- **Problem:** Convert a binary number into decimal

- **Binary number**
 - Base 2
 - Uses only 0 and 1
 - Ex: 1010, 111, 10101 etc.

- **Decimal number**
 - Base 10
 - Uses digits 0 – 9
 - Ex: 10, 7, 21 etc.
Example 1

<table>
<thead>
<tr>
<th>Positions</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary Number</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>2^4</td>
<td>2^3</td>
<td>2^2</td>
<td>2^1</td>
<td>2^0</td>
</tr>
<tr>
<td>Decimal Number</td>
<td>16</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Algorithm: Pseudo-Code

- Enter a binary number
- Initialize `decimal_number` to 0
- Pick the binary digit `bit` at `position = 0`
- Repeat until all bits are picked
 - Raise 2 to the power `position` and multiply by `bit`.
 - Add the result to `decimal_number`
 - Pick the `bit` at next `position`
- Print `decimal_number`
Algorithm: Flow Chart

Example 2

- Problem: Print factorial of a number

- Factorial calculation:
 - If n=0, result = 1.
 - If n>=1, result = n*(n-1)*(n-2)....*3*2*1.

Example:
factorial of 5 = 5 * 4 * 3 * 2 * 1 = 120
Algorithm: Pseudo-Code

1. Enter any positive integer \(n \)
2. Initialize \(\text{result} \) to 1.
3. Repeat until \(n \) is greater than 1.
 3.1 Multiply \(n \) to \(\text{result} \).
 3.2 Decrement \(n \) by 1.
4. Print \(\text{result} \).

Algorithm: Flow Chart

Start

Get any positive integer \(n \)

Initialize \(\text{result} \) to 1

Is \(n \geq 1 \)?

Yes

\(\text{result} = \text{result} \times n \)

No

Print \(\text{result} \)

Stop

Decrement \(n \) by 1
Exercise

• Problem: Find the largest among three integers.

• Write the algorithm and flow chart.

Algorithm: Pseudo-Code

• Enter three integers
• Read the integers \(a, b \) and \(c \).
• Initialize \(\text{largest} = a \)
• If \(b > \text{largest} \) then assign \(b \) to \(\text{largest} \).
• If \(c > \text{largest} \) then assign \(c \) to \(\text{largest} \).
• Print \(\text{largest} \).
Algorithm: Flow Chart

Start

Get three integers a, b and c

Initialize largest to a

Is b > largest

Yes

largest = b

No

Is c > largest

Yes

largest = c

No

Print largest

Stop