Infrastructure-less Wireless Networks

- Standard Mobile IP needs an infrastructure
 - Home Agent/Foreign Agent in the fixed network
 - DNS, routing etc. are not designed for mobility
- Sometimes there is no infrastructure!
 - Remote areas, ad-hoc meetings, disaster areas
 - Cost and time may be arguments against infrastructure!
- Main issue: routing
 - No default router available
 - Every node should be able to forward
Solution: Wireless Ad-hoc Networks

- Network without infrastructure
 - Use components of participants for networking

- Examples
 - Single-hop: All partners max. one hop apart
 - Bluetooth piconet, PDAs in a room, gaming devices...
 - Multi-hop: Cover larger distances, circumvent obstacles
 - Bluetooth scatternet, police network, car-to-car networks...

- MANET: Mobile Ad-hoc Networks

MANET: Mobile Ad-hoc Networking

Focus: Routing in Ad-hoc Networks
Outline

- Routing in wired networks
 - Distance vector routing, link-state routing
- Limitations in wireless networks
- Ad-hoc routing protocols:
 - DSR, AODV, ...

Unicast Routing in Wired Networks

- Given:
 - Graph: where nodes are routers and edges are links
 - Cost: associated with each link
- Find:
 - Lowest-cost path between any two nodes
- Requirements:
 - Self-healing, traffic-sensitive, scalable
 - Dynamic and distributed algorithms

Two classes: “distance-vector” and “link-state”
Distance Vector Routing: Basics

Basics:
- Each node:
 - Constructs a vector of distances to all other nodes
 - “Distance vector”
 - Distributes to immediate neighbors
- Neighbors use the distributed information to update their own distance vectors
- This distributed exchange-update-exchange should lead to globally consistent distance vectors (and routing tables)

Distance Table Data Structure

- Each node has its own table with a...
 - Row for each possible destination
 - Column for each directly-attached adjacent node (neighbor)
- Each table entry gives cost to reach destination via that adjacent node
 - Distance = Cost

\[D^X(Y,Z) = \text{distance from X to Y via Z as first hop} \]
\[= c(X,Z) + \min_w \{ D^Y(Y,w) \} \]
\[w = \{ \text{neighbors of Z} \} \]
The distance table gives the routing table.

- Just take the minimum cost per destination.

Distance Vector Example

\[
D^d(X,Y) = c(X,Y) + \min_w\{D^d(Y,w)\}
\]
\[
= 7 + 1 = 8
\]

\[
D^d(Y,Z) = c(Y,Z) + \min_w\{D^d(Z,w)\}
\]
\[
= 2 + 1 = 3
\]
Distance Vector Example

Time

Link Cost Changes

When a node detects a local link cost change:
The nodes updates its distance table
If the least cost path changes, the node notifies its neighbors

How long does convergence take?

"Good news travels fast"
Link Cost Changes

- Good news travels fast, but...
- “Bad news” travels slow
 - The “count to infinity” problem

Routing Loop!
Does it Terminate?

Link State Routing Approach

- Each node:
 - Floods the latest state (cost) of each attached link to all other nodes in the network
 - Ensures that flooding is reliable
 - Computes shortest-cost paths to every other node
 - Using Dijkstra’s algorithm

- Can suffer from route oscillations if cost is a function of load
CAN THESE BE APPLIED TO WIRELESS AD-HOC NETWORKS?

Wireless Networks: What’s Different?

- Varying channel quality and dynamic conditions
 - Separation (and merging) of networks
 - Asymmetric links
 - Shortest hop may be worst choice
 - Redundant links – routes need to converge quickly

![Diagram showing network topology with varying links at two different times, t₁ and t₂.]
Wireless Networks: What’s Different?

- Varying channel quality and dynamic conditions
 - Separation (and merging) of networks
 - Asymmetric links
 - Shortest hop often worst choice
 - Routes need to converge quickly

- Scarce transmission capacity
 - Overhead conspicuous; No frequent periodic updates

- Low compute power
 - No extensive route computations

- Low energy
 - Low control message overhead
 - Low control message frequency (to realize sleep mode)

- And if that’s not bad enough, add node mobility…

Routing in Wireless Mobile Networks

- Imagine hundreds of hosts moving
 - Routing algorithm needs to cope with varying wireless channel and node mobility
 - Routes may break, and reconnect later
Metrics for Routing?

- **Minimal:**
 - Number of nodes
 - Loss rate
 - Delay
 - Congestion
 - Interference
 - Overhead
 - …

- **Maximal:**
 - Stability of the logical network
 - Battery run-time
 - Time of connectivity
 - …

HOW TO DO ROUTING IN AD-HOC NETWORKS?
Routing Protocols

- **Proactive protocols**
 - Determine routes independent of traffic pattern
 - e.g., traditional link-state and distance-vector routing

- **Reactive protocols**
 - Maintain routes only if needed

- **Hybrid protocols**
 - Maintain routes to nearby nodes
 - Discover routes for far away nodes

Trade-Off

- **Latency of route discovery**
 - Proactive protocols may have lower latency
 - Reactive protocols higher because a route discovery from X to Y will be initiated only when X attempts to send to Y

- **Overhead of route discovery/maintenance**
 - Reactive protocols may have lower overhead since routes are determined only if needed
 - Proactive protocols do continuous route updating / maintenance

- **Which approach achieves a better trade-off depends on the traffic and mobility patterns**
THE CONCEPT OF FLOODING

How well does it work in a wireless network?

Data Delivery Using Flooding

- Sender S broadcasts data packet P to all its neighbors
- Each node receiving P forwards P to its neighbors
 - Sequence numbers used to avoid the possibility of forwarding the same packet more than once
- Packet P reaches destination D provided that D is reachable from sender S
- Node D does not forward the packet

What can go wrong?
Flooding Example

Broadcast transmission

- Represents a node that receives packet P for the first time
- Represents transmission of packet P

Flooding Example

- Node H receives packet P from two neighbors: potential for collision
Flooding Example

- Node C receives packet P from G and H, but does not forward it again, because node C has already forwarded packet P once.

Flooding Example

- Nodes J and K both broadcast packet P to node D.
- Since nodes J and K are hidden from each other, their transmissions may collide.

\Rightarrow Packet P may not be delivered to node D at all, despite the use of flooding.
Flooding Example

- Node D does not forward packet P, because node D is the intended destination of packet P

Flooding Example

- Flooding may deliver packets to too many nodes (in the worst case, all nodes reachable from sender)

- Flooding completed
- Nodes unreachable from S do not receive packet P (e.g., node Z)
- Nodes for which all paths from S go through the destination D also do not receive packet P (example: node N)
Flooding for Data Delivery

- **Advantages:**
 - Simplicity
 - May be more efficient if infrequent communication
 - Route setup / maintenance not worth it
 - Especially, when changing topology / mobility
 - Potentially higher robustness to path failure
 - Because of multi-path redundancy

- **Disadvantages:**
 - Potentially, very high overhead
 - Packets delivered to too many nodes who don't need them
 - Potentially lower reliability of data delivery
 - Reliable broadcast is difficult
 - Hidden terminal because no channel reservation

Flooding as a Building Block

- Many protocols perform (potentially limited) flooding of control packets, instead of data packets
 - The control packets are used to discover routes
 - Discovered routes are subsequently used to send data packet(s)

- Overhead of control packet flooding is amortized over data packets transmitted between consecutive control packet floods