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Abstract—A fundamental problem that confronts peer-to-peer Previous work on consistent hashing assumes that each node

applications is the efficient location of the node that stores a s aware of most of the other nodes in the system, an approach
desired data item. This paper present€hord, a distributed lookup that does not scale well to large numbers of nodes. In con-

protocol that addresses this problem. Chord provides support for u S .

just one operation: given a key, it maps the key onto a node. Data trast, each Chord node needs routlng mformapon.ab.out only
location can be easily implemented on top of Chord by associating & few other nodes. Because the routing table is distributed, a
a key with each data item, and storing the key/data pair at the Chord node communicates with other nodes in order to perform
node to which the key maps. Chord adapts efficiently as nodes join a |ookup. In the steady state, in a&frnode system, each node
and leave the system, and can answer queries even if the systemy, aintains information about onty(log V) other nodes, and re-

is continuously changing. Results from theoretical analysis and . )

simulations show that Chord is scalable: Communication cost and solyes fall Iqokups _V'Q_(k)g N) messages to ot_h_er nodes. Chord
the state maintained by each node scale logarithmically with the Maintains its routing information as nodes join and leave the

number of Chord nodes. system.
Index Terms—DPistributed scalable algorithms, lookup protocols, A Chord _n_Ode requ'res information aboG¥log V) other
peer-to-peer networks. nodes forefficientrouting, but performance degrades gracefully

when that information is out of date. This isimportantin practice
because nodes will join and leave arbitrarily, and consistency of
evenO(log N) state may be hard to maintain. Only one piece of
EER-TO-PEER systems and applications are distributétformation per node need be correct in order for Chord to guar-
systems without any centralized control or hierarchical ogntee correct (though possibly slow) routing of queries; Chord
ganization, in which each node runs software with equivalehas a simple algorithm for maintaining this information in a dy-
functionality. A review of the features of recent peer-to-pedramic environment.
applications yields a long list: redundant storage, permanenceThe contributions of this paper are the Chord algorithm, the
selection of nearby servers, anonymity, search, authenticatiprof of its correctness, and simulation results demonstrating
and hierarchical naming. Despite this rich set of features, tHee strength of the algorithm. We also report some initial results
core operation in most peer-to-peer systems is efficient location how the Chord routing protocol can be extended to take into
of data items. The contribution of this paper is a scalable praccount the physical network topology. Readers interested in an
tocol for lookup in a dynamic peer-to-peer system with frequeapplication of Chord and how Chord behaves on a small Internet
node arrivals and departures. testbed are referred to Dabek al. [9]. The results reported
The Chord protocolsupports just one operation: given a keytherein are consistent with the simulation results presented in
it maps the key onto a node. Depending on the application usitigs paper.
Chord, that node might be responsible for storing a value assoThe rest of this paper is structured as follows. Section |
ciated with the key. Chord uses consistent hashing [12] to assigmpares Chord to related work. Section Ill presents the
keys to Chord nodes. Consistent hashing tends to balance I@ys$tem model that motivates the Chord protocol. Section IV
since each node receives roughly the same number of keys, prebents the Chord protocol and proves several of its properties.
requires relatively little movement of keys when nodes join arfsection V presents simulations supporting our claims about
leave the system. Chord’s performance. Finally, we summarize our contributions
in Section VILI.
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DNS provides a lookup service, with host names as keysCAN uses ai-dimensional Cartesian coordinate space (for
and IP addresses (and other host information) as values. Chsodthe fixedd) to implement a distributed hash table that maps
could provide the same service by hashing each host nameegys onto values [22]. Each node maintaingl) state, and the
a key [7]. Chord-based DNS would require no special servetspkup cost isO(dN'/4). Thus, in contrast to Chord, the state
while ordinary DNS relies on a set of special root servermaintained by a CAN node does not depend on the network size
DNS requires manual management of the routing informatia¥i, but the lookup costincreases faster thanV. If d = log N,

(NS records) that allows clients to navigate the name serv@AN lookup times and storage needs match Chord’s. However,
hierarchy; Chord automatically maintains the correctness GAN is not designed to vary as N (and thusJlog N) varies,

the analogous routing information. DNS only works well wheso this match will only occur for the “right’vV corresponding to
host names are structured to reflect administrative boundarige fixedd. CAN requires an additional maintenance protocol to
Chord imposes no naming structure. DNS is specialized periodically remap the identifier space onto nodes. Chord also
the task of finding named hosts or services, while Chord chas the advantage that its correctness is robust in the face of
also be used to find data objects that are not tied to particugaartially incorrect routing information.

machines. Chord’s routing procedure may be thought of as a one-dimen-

The Freenet peer-to-peer storage system [5], [6], like Choslonal analogue of the Grid location system (GLS) [15]. GLS
is decentralized and symmetric and automatically adapts whreties on real-world geographic location information to route its
hosts leave and join. Freenet does not assign responsibility doreries; Chord maps its nodes to an artificial one-dimensional
documents to specific servers; instead, its lookups take the fospace within which routing is carried out by an algorithm sim-
of searches for cached copies. This allows Freenet to providiaa to Grid's.
degree of anonymity, but prevents it from guaranteeing retrievalNapster [18] and Gnutella [11] provide a lookup operation
of existing documents or from providing low bounds on retrievab find data in a distributed set of peers. They search based on
costs. Chord does not provide anonymity, but its lookup oparser-supplied keywords, while Chord looks up data with unique
ation runs in predictable time and always results in successidentifiers. Use of keyword search presents difficulties in both
definitive failure. systems. Napster uses a central index, resulting in a single point

The Ohaha system uses a consistent hashing-like algoritbffailure. Gnutella floods each query over the whole system, so
that maps documents to nodes, and Freenet-style query rouitsgzommunication and processing costs are high in large sys-
[20]. As a result, it shares some of the weaknesses of Freenemns.

Archival Intermemory uses an off-line computed tree to map Chord has been used as a basis for a number of subsequent
logical addresses to machines that store the data [4]. research projects. Th€hord File Systen{CFS) stores files

The Globe system [2] has a wide-area location service &amd metadata in a peer-to-peer system, using Chord to locate
map object identifiers to the locations of moving objects. Glolstorage blocks [9]. New analysis techniques have shown that
arranges the Internet as a hierarchy of geographical, topol@fiord’'s stabilization algorithms (with minor modifications)
ical, or administrative domains, effectively constructing a statinaintain good lookup performance despite continuous failure
world-wide search tree, much like DNS. Information about asnd joining of nodes [16]. Chord has been evaluated as a tool to
object is stored in a particular leaf domain, and pointer cachesrve DNS [7] and to maintain a distributed public key database
provide search shortcuts [25]. The Globe system handles high secure name resolution [1].
load on the logical root by partitioning objects among multiple
physical root servers using hash-like techniques. Chord per-
forms this hash function well enough that it can achieve scal-
ability without also involving any hierarchy, though Chord does Chord simplifies the design of peer-to-peer systems and ap-
not exploit network locality as well as Globe. plications based on it by addressing these difficult problems.

The distributed data location protocol developed by Plaxton ¢ Load balance:Chord acts as a distributed hash function,
et al. [21] is perhaps the closest algorithm to the Chord pro-  spreading keys evenly over the nodes; this provides a de-
tocol. The Tapestry lookup protocol [26], used in OceanStore gree of natural load balance.

[13], is a variant of the Plaxton algorithm. Like Chord, it guar- ¢ Decentralization: Chord is fully distributed; no node is
antees that queries make no more than a logarithmic number more important than any other. This improves robustness
of hops and that keys are well balanced. The Plaxton protocol’'s and makes Chord appropriate for loosely organized
main advantage over Chord is that it ensures, subject to assump- peer-to-peer applications.

tions about network topology, that queries never travel furtherin ¢ Scalability: The cost of a Chord lookup grows as the log
network distance than the node where the key is stored. Chord, of the number of nodes, so even very large systems are
on the other hand, is substantially less complicated and handles feasible. No parameter tuning is required to achieve this
concurrent node joins and failures well. Pastry [23] is a prefix-  scaling.

based lookup protocol that has properties similar to Chord. Like ¢ Availability: Chord automatically adjusts its internal ta-
Tapestry, Pastry takes into account network topology to reduce bles to reflect newly joined nodes as well as node failures,
the routing latency. However, Pastry achieves this atthe costof a ensuring that, barring major failures in the underlying net-
more elaborated join protocol which initializes the routing table ~ work, the node responsible for a key can always be found.
of the new node by using the information from nodes along the This is true even if the system is in a continuous state of
path traversed by the join message. change.

Ill. SYSTEM MODEL
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» Flexible naming: Chord places no constraints on the

structure of the keys it looks up; the Chord keyspace is @ |File System ! ! :

flat. This gives applications a large amount of flexibility ! T E

in how they map their own names to Chord keys. 5 Block Store | ; Block Store |<- ! Block Store | |

The Chord software takes the form of a library to be linked b Lo !
with the applications that use it. The application interacts with | Pt { ! ! !
Chord in two main ways. First, the Chord library provides a | | Chord == Chord |=r——= Chord | |
lookup(key) function that yields the IP address of the node re- ! Lo Do :
sponsible for the key. Second, the Chord software on eachnode ! Client | | Server ! | Server

notifies the application of changes in the set of keys thatthe node *--------------  ==------------ oeeoomoooooos
is responsible for. This allows the application software to, f%g_ 1
example, move corresponding values to their new homes when
a new node joins.

The application using Chord is responsible for providing arf{}€-System metadata. The next layer implements a general-pur-
desired authentication, caching, replication, and user-friendt¢Se distributed hash table that multiple applications use to in-
naming of data. Chord’s flat keyspace eases the implementatR§it and retrieve data blocks identified with unique keys. The

of these features. For example, an application could authentic@gfributed hash table takes care of storing, caching, and replica-
data by storing it under a Chord key derived from a cryptd'—on of blocks. The distributed hash table uses Chord to identify

graphic hash of the data. Similarly, an application could repFih.e node responsible for storing a block, and then communicates
cate data by storing it under two distinct Chord keys derivelfith the block storage server on that node to read or write the
k

Structure of an example Chord-based distributed storage system.

from the data’s application-level identifier. block.
The following are examples of applications for which Chord
can provide a good foundation. V. CHORD PROTOCOL

» Cooperative mirroring, in which multiple providers of — This section describes the Chord protocol, which specifies
cont.e.nt coope.rate to store and serve each others’ data. {8& to find the locations of keys, how new nodes join the
participants might, for example, be a set of software develystem, and how to recover from the failure (or planned
opment projects, each of which makes periodic releas@gparture) of existing nodes. In this paper, we assume that
Spreading the total load evenly over all participants’ hosgymmunication in the underlying network is both symmetric
lowers the total cost of the system, since each participa(ﬁt A can route taB, thenB can route tad), and transitive (if

need provide capacity only for the average load, not fof can route ta3 andB can route ta”, thenA can route ta’).
that participant’s peak load. Dabek al. describe a real-

ization of this idea that uses Chord to map data blocks onAo
servers; the application interacts with Chord to achieve
load balance, data replication, and latency-based server séAt its heart, Chord provides fast distributed computation of
lection [9]. a hash function, mapping keys to nodes responsible for them.
« Time-shared storagefor nodes with intermittent connec- Chord assigns keys to nodes withnsistent hashinfg 2], [14],
tivity. If someone wishes their data to be always availabl#hich has several desirable properties. With high probability,
but their server is On|y occasiona”y available, they Caﬁ*ﬂe hash function balances load (aII nodes receive roughly the
offer to store others’ data while they are connected, in réame number of keys). Also with high probability, when’éthn
turn for having their data stored elsewhere when they af@de joins (or leaves) the network, only @i1/N) fraction of
disconnected. The data’s name can serve as a key to idé1§ keys are moved to a different location—this is clearly the
tify the (live) Chord node responsible for storing the dat&linimum necessary to maintain a balanced load.
item at any given time. Many of the same issues arise asChord improves the scalability of consistent hashing by
in the cooperative mirroring application, though the focugvoiding the requirement that every node knows about every
here is on availability rather than load balance. other node. A Chord node needs only a small amount of
Distributed indexesto support Gnutella- or Napster-like “routing” information about other nodes. Because this infor-
keyword search. A key in this application could be derivefation is distributed, a node resolves the hash function by
from the desired keywords, while values could be lists gommunicating with other nodes. In &node network, each
machines offering documents with those keywords.  hode maintains information about onfy(log N) other nodes,
Large-scale combinatorial search such as code and alookup require®(log N) messages.
breaking. In this case, keys are candidate solutions to
the problem (such as cryptographic keys); Chord mas Consistent Hashing

these kgys to the machines responsible for testing themI'he consistent hash function assigns each node and key an
as solutions. m-bit identifier using SHA-1 [10] as a base hash function. A

We have built several peer-to-peer applications using Chorthde’s identifier is chosen by hashing the node’s IP address,
The structure of a typical application is shown in Fig. 1. Thevhile a key identifier is produced by hashing the key. We will
highest layer implements application-specific functions such ase the term “key” to refer to both the original key and its image

Overview
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iy with its own identifier. In the remainder of this paper, we will
analyze all bounds in terms of woger virtual node Thus, if
each real node runsvirtual nodes, all bounds should be mul-

tiplied by v.

K54 The phrase “with high probability” bears some discussion. A
N51 N1 simple interpretation is that the nodes and keys are randomly
chosen, which is plausible in a nonadversarial model of the
N48 world. The probability distribution is then over random choices
of keys and nodes, and says that such a random choice is un-
N2 likely to produce an unbalanced distribution. A similar model

is applied to analyze standard hashing. Standard hash functions
distribute data well when the set of keys being hashed is random.
When keys are not random, such a result cannot be guaran-
teed—indeed, for any hash function, there exists some key set
K30 that is terribly distributed by the hash function (e.g., the set of
keys that all map to a single hash bucket). In practice, such po-
Fig. 2. Identifier circle (ring) consisting of ten nodes storing five keys. tential bad sets are considered unlikely to arise. Techniques have
also been developed [3] to introduce randomness in the hash
under the hash function, as the meaning will be clear from cofunction; given any set of keys, we can choose a hash function
text. Similarly, the term “node” will refer to both the node andit random so that the keys are well distributed with high proba-
its identifier under the hash function. The identifier length bility over the choice of hash functioA.similar technique can
must be large enough to make the probability of two nodes be applied to consistent hashing; thus, the “high probability”
keys hashing to the same identifier negligible. claim in the theorem above. Rather than select a random hash
Consistent hashing assigns keys to nodes as follows. Idefitinction, we make use of the SHA-1 hash which is expected to
fiers are ordered on aidentifier circle modulo2™. Key k is have good distributional properties.
assigned to the first node whose identifier is equal to or follows Of course, once the random hash function has been chosen,
(the identifier of)k in the identifier space. This node is callechn adversary can select a badly distributed set of keys for that
thesuccessor nodef key k, denoted byuccessor(k). Ifiden-  hash function. In our application, an adversary can generate a
tifiers are represented as a circle of numbers from®'te- 1, large set of keys and insert into the Chord ring only those keys
thensuccessor(k) is the first node clockwise frorh. In the re-  that map to a particular node, thus, creating a badly distributed
mainder of this paper, we will also refer to the identifier circlset of keys. As with standard hashing, however, we expect that a
as theChord ring. nonadversarial set of keys can be analyzed as if it were random.
Fig. 2 shows a Chord ring witln = 6. The Chord ring has Using this assumption, we state many of our results below as
ten nodes and stores five keys. The successor of identifier 10hgyh probability” results.
node 14, so key 10 would be located at node 14. Similarly, keys
24 and 30 would be located at node 32, key 38 at node 38, &ad Simple Key Location
key 54 at node 56. This section describes a simple but slow Chord lookup al-
Consistent hashing is designed to let nodes enter and leg¥githm. Succeeding sections will describe how to extend the
the network with minimal disruption. To maintain the COﬂSiSterHasiC a|gorithm to increase efﬁciency, and how to maintain the
hashing mapping when a nodgoins the network, certain keys correctness of Chord’s routing information.
previously assigned ta’s successor now become assigned to | ookups could be implemented on a Chord ring with little
n. When node: leaves the network, all of its assigned keys arger-node state. Each node needs only to know how to contact
reassigned ta’s successor. No other changes in assignment g current successor node on the identifier circle. Queries for a
keys to nodes need occur. In the example above, if a node wgfgen identifier could be passed around the circle via these suc-
to join with identifier 26, it would capture the key with identifiercessor pointers until they encounter a pair of nodes that straddle
24 from the node with identifier 32. the desired identifier; the second in the pair is the node the query
The following results are proven in the papers that introduceghps to.
consistent hashing [12], [14]. Fig. 3(a) shows the pseudocode that implements simple key
Theorem IV.1: For any set ofV nodes and( keys, with high  |ookup. Remote calls and variable references are preceded by
probability, the following is true. the remote node identifier, while local variable references and
1) Each node is responsible for at mést+ ¢) K /N keys.  procedure calls omit the local node. Thusfoo(-) denotes a
2) When an N + 1)th node joins or leaves the network, theemote procedure call of proceddo® on noden, while ».bar,
responsibility forO( K /N') keys changes hands (and onlywithout parentheses, is an RPC to fetch a varibhlgrom node
to or from the joining or leaving node). n. The notation(a, b] denotes the segment of the Chord ring
When consistent hashing is implemented as described abaMatained by moving clockwise from (but not includinguntil
the theorem proves a bound o= O(log N). The consistent reaching (and including).
hashing paper shows thatan be reduced to an arbitrarily small Fig. 3(b) shows an example in which node 8 performs a
constant by having each node iflog V) virtual nodeseach lookup for key 54. Node 8 invokegind_successor for key

N38

N32
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N1

lookup(K54)
// ask node n to find the successor of id

n.find_successor(id) N56;
if (id € (n, successor])
return successor; N51

else

// forward the query around the circle

N14
N48

return successor find_successor(id);

N21

(@)
N32

(®)

Fig. 3. (a) Simple (but slow) pseudocode to find the successor node of an idemntifiRemote procedure calls and variable lookups are preceded by the remote
node. (b) Path taken by a query from node 8 for key 54, using the pseudocode in Fig. 3(a).

N1

Finger table lookup(54)

N8

N8 +1 [N14
N8 +2 [N14 N5
N8 +4 |[N14
N8 + 8 |N21
N8 +16 |N32
N8 +32|N42

N51

N14

N48

N42 N21

N32

(@ (b)
Fig. 4. (a) Finger table entries for node 8. (b) Path of a query for key 54 starting at node 8, using the algorithm in Fig. 5.
54 which eventually returns the successor of that key, node 56. TABLE |

The query visits every node on the circle between nodes 8 and DEFINITION OF VARIABLES FOR NODE n, USING m-BIT IDENTIFIERS
56. The result returns along the reverse of the path followed by

the query. Notation Definition
. fingerlk) first node on circle that succeeds (n +
D. Scalable Key Location 2%-1) mod 2™, 1< k < m
The lookup scheme presented in Section IV-C uses anumber ~ - the next node on the identifier circle;

of messages linear in the number of nodes. To accelerate
lookups, Chord maintains additional routing information. This - — -
additional information is not essential for correctness, which is __Predecessor | the previous node on the identifier circle
achieved as long as each node knows its correct successor.

As before, letn be the number of bits in the key/node idenfirst finger ofn is the immediate successorobn the circle; for
tifiers. Each node» maintains a routing table with up te en- convenience we often refer to the first finger as $hecessor
tries (we will see that, in fact, onl§ (log n) are distinct), called  The example in Fig. 4(a) shows the finger table of node 8.
the finger table The ith entry in the table at node contains The first finger of node 8 points to node 14, as node 14 is the
the identity of thefirst nodes that succeeds by at leasRi~! first node that succeed8 +2°) mod 26 = 9. Similarly, the last
on the identifier circle, i.e.s = successor(n + 2:~1), where finger of node 8 points to node 42, as node 42 is the first node
1 <4 < m (and all arithmetic is modul®™). We call nodes the  that succeed& + 2°) mod 26 = 40.
ithfinger of noden, and denote it by.. finger[i] (see Table 1).  This scheme has two important characteristics. First, each
A finger table entry includes both the Chord identifier and theode stores information about only a small humber of other
IP address (and port number) of the relevant node. Note that ttmeles, and knows more about nodes closely following it on the

finger[1].node
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// ask node n to find the successor of id them is at mos2?~'. This meansf is closer top than ton, or
n.find_successor(id) equivalently, that the distance froifito p is at most half the
if (id € (n, successor]) distance fromm to p.
return successor, If the distance between the node handling the query and the
else predecessap halves in each step, and is at mast initially,

‘ . then withinm steps the distance will be one, meaning we have
n' = closest_preceding_node(id);

arrived atp.
return n' find_successor(id); In fact, as discussed above, we assume that node and key
identifiers are random. In this case, the number of forwardings
// search the local table for the highest predecessor of id necessary will b€ (log V) with high probability. After2 log N
n.closest_preceding_node(id) forwardings, the distance between the current query node and

the keyk will be reduced to at most™/N2. The probability
that any other node is in this interval is at magiV, which is
negligible. Thus, the next forwarding step will find the desired

for i = m downto 1
if (finger[i] € (n,id))

return finger{i]; node. u
return n; In Section V, where we report our experimental results,
we will observe (and justify) that the average lookup time is
Fig. 5. Scalable key lookup using the finger table. (1/2)log N.

Although the finger table contains room farentries, in fact,

identifier circle than about nodes farther away. Second, a nod((amslyo(log W) fingers need be stored. As we arguedin the ahove

. : : . roof, no node is likely to be within distan@"/N? of any
finger table generally does not contain enough information g !
. . ; other node. Thus, th&h finger of the node, for any < m —
directly determine the successor of an arbitrary kefor ex- ) L : .
- ) 2log N, will be equal to the node’s immediate successor with
ample, node 8 in Fig. 4(a) cannot determine the successon of robability and need not be stored separatel
key 34 by itself, as this successor (node 38) does not appear w P y P Y-

node 8's finger table.

Fig. 5 shows the pseudocode of thad_successor opera- E- Dynamic Operations and Failures
tion, extended to use finger tables:dffalls betweem and its In practice, Chord needs to deal with nodes joining the

successorfind_successor is finished and node returns its system and with nodes that fail or leave voluntarily. This
successor. Otherwise, searches its finger table for the nodeection describes how Chord handles these situations.

n' whose ID most immediately precedes and then invokes 1) Node Joins and Stabilizationin order to ensure that
find_successor atn'. The reason behind this choice @fis |ookups execute correctly as the set of participating nodes
that the closer’ is toid, the more it will know about the iden- changes, Chord must ensure that each node’s successor pointer
tifier circle in the region ofid. is up to date. It does this using a “stabilization” protocol that

As an example, consider the Chord circle in Fig. 4(b), arshch node runs periodically in the background and which
suppose node 8 wants to find the successor of key 54. Since tipelates Chord’s finger tables and successor pointers.
largest finger of node 8 that precedes 54 is node 42, node 8 willFig. 6 shows the pseudocode for joins and stabilization. When
ask node 42 to resolve the query. In turn, node 42 will determineden first starts, it callsu.join(n’), wheren' is any known
the largestfinger in its finger table that precedes 54, i.e., node &hord node, on.create(+) to create a new Chord network. The
Finally, node 51 will discover that its own successor, node 5§in(-) function asks»’ to find the immediate successor of
succeeds key 54, and thus, will return node 56 to node 8. By itself, join(-) does not make the rest of the network aware

Since each node has finger entries at power of two intervaisn,.
around the identifier circle, each node can forward a query atEvery node runsstabilize(-) periodically to learn about
least halfway along the remaining distance between the nagigvly joined nodes. Each time node runs stabilize(-),
and the target identifier. From this intuition follows a theoremit asks its successor for the successor’'s predecessand

Theorem IV.2: With high probability, the number of nodesdecides whethes should ben’s successor instead. This would
that must be contacted to find a successor ilvanode network be the case if nodg recently joined the system. In addition,
is O(log N). stabilize(-) notifies noden’s successor of’s existence, giving

Proof: Suppose that node wishes to resolve a query forthe successor the chance to change its predecessorTte
the successor df. Letp be the node that immediately precedesuccessor does this only if it knows of no closer predecessor
k. We analyze the number of query steps to regach thanmn.

Recall that ifn # p, thenn forward its query to the closest Each node periodically call§iz_fingers to make sure
predecessor df in its finger table. Consider thesuch that node its finger table entries are correct; this is how new nodes
p is in the intervalln + 2i=1 n + 2%). Since this interval is initialize their finger tables, and it is how existing nodes
not empty (it containg), noden will contact itsith finger, the incorporate new nodes into their finger tables. Each node
first nodef in this interval. The distance (number of identifiersplso runscheck _predecessor periodically, to clear the node’s
betweenn and f is at leas2?~!. But f andp are both in the predecessor pointer if.predecessor has failed; this allows it
interval[n + 2°=1 n + 2%), which means the distance betweeto accept a new predecessomioti fy.



STOICAet al: CHORD: SCALABLE PEER-TO-PEER LOOKUP PROTOCOL

// create a new Chord ring.
n.create()
predecessor = nil,

successor = n,

// join a Chord ring containing node n'.
n.join(n')
predecessor = nil,

successor = n' find_successor(n);

// called periodically. verifies n’s immediate
// successor, and tells the successor about n.
n.stabilize()
T = successor.predecessor;
if (z € (n, successor))
successor = ;

successor.notify(n);

// 0! thinks it might be our predecessor.
n.notify(n')
if (predecessor is nil or n' € (predecessor,n))

predecessor = n';

// called periodically. refreshes finger table entries.
// next stores the index of the next finger to fix.
nfix fingers()
next = next + 1;
if (next > m)
next = 1;

finger[next] = find_successor(n + 2™e%~1);

// called periodically. checks whether predecessor has failed.
n.check_predecessor() ‘
if (predecessor has failed)

predecessor = nil;

Fig. 6. Pseudocode for stabilization.
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Fig. 7. Example illustrating the join operation. Node 26 joins the system
between nodes 21 and 32. The arcs represent the successor relationship.
(a) Initial state: node 21 points to node 32. (b) Node 26 finds its successor (i.e.,
node 32) and points to it. (c) Node 26 copies all keys less than 26 from node
32. (d) The stabilize procedure updates the successor of node 21 to node 26.

nodes that are not yet reflected in other nodes’ finger tables
may causefind_successor(-) to initially undershoot, but the
loop in the lookup algorithm will nevertheless follow successor
(finger[1]) pointers through the newly joined nodes until the
correct predecessor is reached. Eventuafty_fingers(-)

will adjust finger table entries, eliminating the need for these
linear scans.

The following result, proved in [24], shows that the inconsis-
tent state caused by concurrent joins is transient.

Theorem IV.3: If any sequence of join operations is executed
interleaved with stabilizations, then at some time after the last
join the successor pointers will form a cycle on all the nodes in
the network.

In other words, after some time each node is able to reach any
other node in the network by following successor pointers.

As a simple example, suppose nadgins the system, and  Our stabilization scheme is guaranteed to add nodes to a

its ID lies between nodes, andn;. Inits call tojoin(-), n ac-
quiresn, as its successor. Nodg, when notified by:, acquires
n as its predecessor. Whep next runsstabilize(-), it asksn,

for its predecessor (which is now); n, then acquires as its
successor. Finally, notifiesn, andn acquiresn, as its pre-

Chord ring in a way that preserves reachability of existing
nodes, even in the face of concurrent joins and lost and
reordered messages. This stabilization protocol by itself will
not correct a Chord system that has split into multiple disjoint
cycles, or a single cycle that loops multiple times around the

decessor. At this point, all predecessor and successor pointdetifier space. These pathological cases cannot be produced
are correct. At each step in the process,is reachable from by any sequence of ordinary node joins. If produced, these
n,, USING successor pointers; this means that lookups concurresges can be detected and repaired by periodic sampling of the
with the join are not disrupted. Fig. 7 illustrates the join proceing topology [24].

dure, whem’s ID is 26, and the IDs of; andn,, are 21 and
32, respectively.

2) Impact of Node Joins on Lookupsiere, we consider the
impact of node joins on lookups. We first consider correctness.

As soon as the successor pointers are correct, callslt@ining nodes affect some region of the Chord ring, a lookup
find_successor(-) will reflect the new node. Newly joined that occurs before stabilization has finished can exhibit one
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of three behaviors. The common case is that all the fingda node’s immediate successor does not respond, the node can
table entries involved in the lookup are reasonably curremstibstitute the second entry in its successor listrAlliccessors
and the lookup finds the correct successofiflog N) steps. would have to simultaneously fail in order to disrupt the Chord
The second case is where successor pointers are correct,rimgf, an event that can be made very improbable with modest
fingers are inaccurate. This yields correct lookups, but theglues ofr. Assuming each node fails independently with prob-
may be slower. In the final case, the nodes in the affected regaluility p, the probability that alt successors fail simultaneously
have incorrect successor pointers, or keys may not yet hasenly p”. Increasing- makes the system more robust.

migrated to newly joined nodes, and the lookup may fail. The y5n4jing the successor list requires minor changes in the

higher layer software using Chord will notice that the des"%’seudocode in Figs. 5 and 6. A modified version of stebi-
data was not found, and has the option of retrying the 100kype procedure in Fig. 6 maintains the successor list. Successor
after a pause. This pause can be short, since stabilization fifg§ are stabilized as follows. Nodereconciles its list with its

successor pointers quickly. o successos by copyings’s successor list, removing its last entry,
Now let us consider performance. Once stabilization hagq nrepending to it. If noden notices that its successor has

completed, the new nodes will have no effect beyond increasipgey it replaces it with the first live entry in its successor list
the NV in the O(log V) Iooku’p't|me. If stabilization has not yet 5y yeconciles its successor list with its new successor. At that
completed, existing nodes’ finger table entries may not refleGhins ,, can direct ordinary lookups for keys for which the failed

the new nodes. The ability of finger entries to carry queries loRg,je was the successor to the new successor. As time passes,
distances around the identifier ring does not depend on exacily. r;,,,.,s andstabilizewill correct finger table entries and

which nodes the entries point.to; the distance halving argu,m%'&tccessor list entries pointing to the failed node.

depends only on ID-space distance. Thus, the fact that finger - ) ]

table entries may not reflect new nodes does not significantly” modified version of thelosest_preceding_nogeocedure
affect lookup speed. The main way in which newly joined Flg.SSearche§ notonlytheflngertablg but also 'Fhe successor
nodes can influence lookup speed is if the new nodes’ IDs af¥ for the most immediate predecessor:df In addition, the
between the target's predecessor and the target. In that disgudocode needs to be enhanced to handle node failures. If
the lookup will have to be forwarded through the intervening N0de fails during thgind_successor procedure, the lookup
nodes, one at a time. But unless a tremendous number of nodeeds, after a timeout, by trying the next best predecessor
joins the system, the number of nodes between two old nod¥80ng the ngdes in the flnger.table and the successor list.

is likely to be very small, so the impact on lookup is negligible. The following results quantify the robustness of the Chord

Formally, we can state the following result. We call a ChorBrotocol, by showing that neither the success nor the perfor-
ring stableif all its successor and finger pointers are correct. Mance of Chord lookupsis likely to be affected even by massive
Theorem IV.4: If we take a stable network withV nodes simultaneous failures. Both theorems assume that the successor

with correct finger pointers, and another set of upMaodes /ISt has lengthr = Q(log N). ,
joins the network, and all successor pointers (but perhaps not N€orem IV.5:1f we use a successor list of length

all finger pointers) are correct, then lookups will still takd = $logXN) in a network that is initially stable, and
O(log N) time with high probability. then every node fails with probability 1/2, then with high prob-

Proof: The original set of fingers will, if0(log N) time ability find_successor returns the closest living successor to

bring the query to the old predecessor of the correct node. WiIE AUery .key. , ,
high probability, at mos(log N') new nodes will land between  Proof: Before any nodes fail, each node was aware of its
any two old nodes. So onkg(log N') new nodes will need to immediate successors. The probability that all of these succes-

be traversed along successor pointers to get from the old preef¥S fail is(1/2)", so with high probability every node is aware
cessor to the new predecessor. pf its |_mme_d|ate living successor. As was argugd in Se_ctlon I,
More generally, as long as the time it takes to adjust fingers'idne invariant that every node is aware of its immediate suc-
less than the time it takes the network to double in size, lookup&SSOr holds, then all queries are routed properly, since every
will continue to takeO (log N') hops. We can achieve such aghode except the |mme.d|at_e p_redecessor of the query has at least
justment by repeatedly carrying out lookups to update our fiff"€ better node to which it will forward the query. =
gers. It follows that lookups perform well as Iongﬁéogf N) Theorem I_\/.6: I_n a netwo_rl_< that is initially stable, if every
rounds of stabilization happen between @hyiode joins. node therj fails with pro.babmty 1/2, then the expected time to
3) Failure and Replication:The correctness of the Chord€Xecutefind successor is O(log N). , _
protocol relies on the fact that each node knows its successor. P0Of: Due to space limitations, we omit the proof of this
However, this invariant can be compromised if nodes fail. F&#SUlt; which can be found in [24]. =
example, in Fig. 4, if nodes 14, 21, and 32 fail simultaneously, Under some circumstances, the preceding theorems may
node 8 will not know that node 38 is now its successor, sineg@ply to malicious node failures as well as accidental failures.
it has no finger pointing to 38. An incorrect successor will leadn adversary may be able to make some set of nodes fail, but
to incorrect lookups. Consider a query for key 30 initiated blgave no control over the choice of the set. For example, the
node 8. Node 8 will return node 42, the first node it knows aboativersary may be able to affect only the nodes in a particular
from its finger table, instead of the correct successor, node 3geographical region, or all the nodes that use a particular access
To increase robustness, each Chord node maintamsca link, or all the nodes that have a certain IP address prefix. As
cessor listof sizer, containing the node’s first successors. was discussed above, because Chord node IDs are generated
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by hashing IP addresses, the IDs of these failed nodes will Imeaddition to the optimizations described on Section IV-E4, the
effectively random, just as in the failure case analyzed abovesimulator implements one other optimization. When the prede-
The successor list mechanism also helps higher layer saféssor of a node changesy notifies its old predecessprabout
ware replicate data. A typical application using Chord miglihe new predecessef. This allowsp to set its successor i@
store replicas of the data associated with a key atithedes without waiting for the next stabilization round.
succeeding the key. The fact that a Chord node keeps track oThe delay of each packet is exponentially distributed with
its r successors means that it can inform the higher layer saftean of 50 ms. If a nodecannot contact another nodéwithin
ware when successors come and go, and thus, when the softvs@@ms,» concludes that’ has left or failed. If»” is an entry in
should propagate data to new replicas. n's successor list or finger table, this entry is removed. Other-
4) Voluntary Node DeparturesSince Chord is robust in the wisen informs the node from which it learnt abowtthatn’ is
face of failures, a node voluntarily leaving the system could lgone. When a node on the path of a lookup fails, the node that
treated as a node failure. However, two enhancements can initiated the lookup tries to make progress using the next closest
prove Chord performance when nodes leave voluntarily. Firfipger preceding the target key.
a noden that is about to leave may transfer its keys to its suc- A lookup is considered to have succeeded if it reaches the
cessor before it departs. Secomdimay notify its predecessor current successor of the desired key. This is slightly optimistic:
p and successarbefore leaving. In turn, nodewill removen  In a real system, there might be periods of time in which the
from its successor list, and add the last node'ssuccessor list real successor of a key has not yet acquired the data associated
toits own list. Similarly, node will replace its predecessor with with the key from the previous successor. However, this method
n's predecessor. Here we assume thaénds its predecessor toallows us to focus on Chord’s ability to perform lookups, rather
s, and the last node in its successor lispto than on the higher layer software’s ability to maintain consis-
tency of its own data.

F. More Realistic Analysis
) . o _ B. Load Balance
Our analysis above gives some insight into the behavior of

the Chord system, but is inadequate in practice. The theoremgNe first consider the ability of consistent hashing to allocate

proven above assume that the Chord ring starts in a stable SKgys to nqdes eve_nly._ In a network with nodes and_( keys,
and then experiences joins or failures. In practice, a Chord ri would like the distribution of keys to nodes to be tight around

will never be in a stable state; instead, joins and departures : i .

occur continuously, interleaved with the stabilization algorithm. We consider a network consisting o_f41_@odes, and vary_the
The ring will not have time to stabilize before new changeQt@! number of keys from 1oto 10" in increments of 10
happen. The Chord algorithms can be analyzed in this md:rgr each number of keys, we run 20 expt_arlments with different
general setting. Other work [16] shows that if the stabilizatiorr?n(_jom number generat.or seeds, cou.ntmg thg number of keys
protocol is run at a certain rate (dependent on the rate at whﬁ?'gned to eagh node in each expgnment. Fig. 8(a) plots the
nodes join and fail) then the Chord ring remains continuously [A€2n @nd the first and 99th percentiles of the number of keys

an “almost stable” state in which lookups are fast and correcPe’ node. The number of keys per node exhibits large variations
that increase linearly with the number of keys. For example, in

all cases some nodes store no keys. To clarify this, Fig. 8(b)
V. SIMULATION RESULTS plots the probability density function (PDF) of the number of

In this section, we evaluate the Chord protocol by simuIatioEeys per node when there are0” keys stored in the network.

The packet-level simulator uses the lookup algorithm in Fig. 5, X
extended with the successor lists described in Section IV-E3 457, or 9.1x the mean value. For comparison, the 99th per-

and the stabilization algorithm in Fig. 6. centile is 4.6< the mean val_ug. . . e
One reason for these variations is that node identifiers do not

uniformly cover the entire identifier space. From the perspective
of a single node, the amount of the ring it “owns” is determined
The Chord protocol can be implemented initemativeorre- by the distance to its immediate predecessor. The distance to
cursivestyle. In the iterative style, a node resolving a lookupach of the othen — 1 nodes is uniformly distributed over the
initiates all communication: It asks a series of nodes for inforange|0, |, and we are interested in the minimum of these dis-
mation from their finger tables, each time moving closer on thance. Itis a standard fact that the distribution of this minimum is
Chord ring to the desired successor. In the recursive style, egightly approximated by an exponential distribution with mean
intermediate node forwards a request to the next node untilft /N. Thus, for example, the owned region exceeds twice the
reaches the successor. The simulator implements the Chord jareerage value (df™ /N) with probability e —2.
tocol in an iterative style. Chord makes the number of keys per node more uniform by
During each stabilization step, a node updates its immediagsociating keys with virtual nodes, and mapping multiple vir-
successor and one other entry in its successor list or finger taltlel nodes (with unrelated identifiers) to each real node. This
Thus, if a node’s successor list and finger table contain a totalmbvides a more uniform coverage of the identifier space. For
k unique entries, each entry is refreshed once ekestabiliza- example, if we allocatebg N randomly chosen virtual nodes to
tion rounds. Unless otherwise specified, the size of the successach real node, with high probability each of tNebins will
list is one, that is, a node knows only its immediate successoontainO(log N) virtual nodes [17].

he maximum number of nodes stored by any node in this case

A. Protocol Simulator
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of virtual nodes mapped to a real node. The network hasréal nodes and
stores 10 keys.

0.02
on the same real node is with high probability@fl /) frac-
tion of the total, which is the same on average as in the absence
1 ofvirtual nodes. Since the number of queries handled by a node
is roughly proportional to the total identifier space covered by
that node, the worst case number of queries handled by a node
does not change. Third, while the routing state maintained
by a node is nowO(log” N), this value is still reasonable in
1 practice; forN = 106, log® N is only 400. Finally, while the
number of control messages initiated by a node increases by a
factor ofO(log V), the asymptotic number of control messages
0 3 1w 1 200 aeeTwe “ae ae ms =0 received from other nodes is not affected. To see why is this,
Number of keys per node note that in the absence of virtual nodes, with “reasonable”
(b) probability a real node is responsible fox(log N/N) of the
Fig. 8. (a) Mean, first, and 99th percentiles of the number of keys stored pelentifier space. Since there are(N log N) fingers in the
node ina 16 node network. (b) PDF of the number of keys per node. The tot@lntire system, the number of fingers that point to a real node is
number of keys is 5 10°. O(log® N). In contrast, if each real node mapsg N virtual
. . . . ) . hodes, with high probability each real node is responsible for
To ver|fyth|$ hypothesis, we perform an experimentin Whlc%(l/N) of the identifier space. Since there a#N log> N)
we allocater virtual nodes to each real node. In this case, ke¥ﬁ19ers in the entire system, with high probability the number

are associated with virtual nodes instead of real nodes. We CBPTingers that point to the virtual nodes mapped on the same
sider again a network with *0eal nodes and fokeys. Fig. 9 real node is stilO(log N)

shows the first and 99th percentiles fo= 1, 2, 5, 10, and20,
respectively. As expected, the 99th percentile decreases, WlélePath Length

the first percentile increases with the number of virtual nodes,
In particular, the 99th percentile decreases fromdtg 1.6x ~ Chord’s performance depends in part on the number of nodes
the mean value, while the first percentile increases from 0 32t mustbe visited to resolve a query. From Theorem IV.2, with
0.5x the mean value. Thus, adding virtual nodes as an indird#gh probability, this number i§(log NV), whereN is the total
tion layer can significantly improve load balance. The tradegfumber of nodes in the network. _ _
is that each real node now needimes as much space to store 10 understand Chord’s routing performance in practice, we
the finger tables for its virtual nodes. simulated a network witt = 2* nodes, storing 1082* keys

We make several observations with respect to the coip-all. We variedk from 3 to 14 and conducted a separate ex-
plexity incurred by this scheme. First, the asymptotiee”me”t for each value. Each node in an experiment picked a
value of the query path length, which now becomd@ndom set of keys to query from the system, and we measured
O(log(N logN)) = O(logN), is not affected. Second, €ach query’s path length.

the total identifier space covered by the virtual nodempped  Fig. 10(2) plots the mean and the first and 99th percentiles
of path length as a function df. As expected, the mean path

1The identifier space covered by a virtual node represents the interval betw¢§ﬂgth increases Iogarithmically with the number of nodes. as
the node’s identifier and the identifier of its predecessor. The identifier spage . . . ’
covered by a real node is the sum of the identifier spaces covered by its virtﬁg the first and 99th percentiles. Fig. 10(b) plots the PDF of the

nodes. path length for a network with'2 nodes(k = 12).
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TABLE I
PATH LENGTH AND NUMBER OF TIMEOUTS EXPERIENCED BY ALOOKUP AS
FUNCTION OF THE FRACTION OF NODES THAT FAIL SIMULTANEOUSLY. THE
FIRST AND 99TH PERCENTILES ARE INPARENTHESES INITIALLY , THE
NETWORK HAS 1000 NoDES

1st and 99th percentiles +o—

Fraction of Mean path length Mean num. of timeouts
failed nodes | (1st, 99th percentiles) | (1st, 99th percentiles)
0 3.84(2,5) 0.0 (0,0)

0.1 4.03(2,6) 0.60 (0, 2)

0.2 4.22(2,6) 1.17 (0, 3)

0.3 4.44 (2, 6) 2.02 (0, 5)

04 4.69 (2,7) 3.23 (0, 8)

0.5 5.09 (3, 8) 5.10(0,11)

Path length
(=]
L

o . . . .
‘oh?umber of nodlegoo 10000 100000
(a) lookups. We consider a network witi = 1000 nodes, where
0.25 ; . . : . each node maintains a successor list of 8ize20 = 2log, N
(see Section IV-E3 for a discussion on the size of the successor
list). Once the network becomes stable, each node is made to fail
1  with probability p. After the failures occur, we perform 10 000
random lookups. For each lookup, we record the number of
timeouts experienced by the lookup, the number of nodes con-
tacted during the lookup (including attempts to contact failed
nodes), and whether the lookup found the key’s true current suc-
cessor. A timeout occurs when a node tries to contact a failed
node. The number of timeouts experienced by a lookup is equal
to the number of failed nodes encountered by the lookup op-
1  eration. To focus the evaluation on Chord’s performance im-
mediately after failures, before it has a chance to correct its ta-
bles, these experiments stop stabilization just before the failures
8 10 12 occur and do not remove the fingers pointing to failed nodes
from the finger tables. Thus, the failed nodes are detected only
(b) when they fail to respond during the lookup protocol.
Table Il shows the mean and the first and the 99th percentiles
Fig. 10. * (a) Path 'e”?gth as a function of network size. (b) PDF of the pag the path length for the first 10 000 lookups after the failure
length in the case of a2 node network. occurs as a function gf, the fraction of failed nodes. As ex-
pected, the path length and the number of timeouts increases as
Fig. 10(a) shows that the path length is abOf2) log, N.  the fraction of nodes that fail increases.
The value of the constant term (1/2) can be understood as fol-g interpret these results better, nextwe present the mean path
lows. Consider a node making a query for a randomly chosgihgth of a lookup when each node has a successor list of size
key. Represent the distance in identifier space between node @ngy an argument similar to the one used in Section V-C, a
key in binary. The most significant (saih) bit of this distance gccessor list of sizeeliminates the lastt /2) log,, r hops from
can be corrected to 0 by following the nodéth finger. If the he lookup path on average. The mean path length of a lookup
next significant bit of the distance is 1, it too needs to be cofucomes the(l/2) log, N — (1/2) log, 7+ 1. The last term (1)
rected by following afinger, butifitis 0, then rio- 1th finger  accounts for accessing the predecessor of the queried key once
is followed—instead, we move on the the 2th bit. In general, s predecessor is found in the successor list of the previous
the number of fingers we need to follow will be the number g{gde. Forv = 1000 andr = 20, the mean path length is 3.82,
ones in the binary representation of the distance from nodegich is very close to the value of 3.84 shown in Table II for
query. Since the node identifiers are randomly distributed, we_ (.
expect half of the bits to be ones. As discussed in Theorem IV.2 et ;- denote the progress made in the identifier space toward
after thelog - most significant bits have been fixed, in expecy target key during a particular lookup iteration, when there are
tation there is only one node remaining between the current s fajlures in the system. Next, assume that each node fails in-
sition and the key. Thus, the average path length will be abqygpendently with probability. As discussed in Section IV-E3,

02

PDF

0.1

0.05

6
Path length

(1/2)logy N. during each lookup iteration every node selects the laapst
_ i finger (from its finger table) that precedes the target key. Thus,
D. Simultaneous Node Failures the progress made during the same lookup iteration in the iden-

In this experiment, we evaluate the impact of a massive failutiéer space isc with probability (1 — p), roughlyz /2 with prob-
on Chord’s performance and on its ability to perform correeability p + (1 — p), roughly(z/2)? with probabilityp? x (1 — p),
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TABLE Il
PATH LENGTH AND NUMBER OF TIMEOUTS EXPERIENCED BY A LOOKUP AS FUNCTION OF NODE JOIN AND LEAVE RATES. FIRST AND 99TH
PERCENTILES ARE INPARENTHESES THE NETWORK HAS ROUGHLY 1000 NoDES

Node join/leave rate Mean path length Mean num. of timeouts Lookup failures
(per second/per stab. period) | (1st, 99th percentiles) (1st, 99th percentiles) | (per 10,000 lookups)
0.05/1.5 390(1,9) 0.05 (0, 2) 0
0.10/3 3.83(1,9) 0.11 (0, 2) 0
0.15/4.5 3.84(1,9) 0.16 (0, 2) 2
0.20/6 3.81(1,9) 0.23 (0, 3) 5
0.25/7.5 3.83(,9) 0.30 (0, 3) 6
030/9 391(1,9) 0.34 (0,4) 8
0.35/10.5 3.94(1, 10) 0.42(0,4) 16
0.40/12 4.06 (1, 10) 0.46 (0, 5) 15

and so on. The expected progress made toward the target key iBable Il shows the means and the first and 90th percentiles
theny 22 (z/2")(1 —p)p' = 2(1 —p)/(1 —p/2). As aresult, of the path length and the number of timeouts experienced by
the mean path length becomes approximatéi2) log, N — the lookup operation as a function of the r&et which nodes
(1/2)logyr + 1, whered = 1.7 = log, ((1 —p/2)/1 —p). joinand leave. Arat® = 0.05 corresponds to one node joining
As an example, the mean path length foe 0.5 is 5.76. One and leaving every 20 s on average. For comparison, recall that
reason for which the predicted value is larger than the mezach node invokes the stabilize protocol once every 30 s. Thus,
sured value in Table Il is because the series used to evalimte R ranges from a rate of one join and leave per 1.5 stabilization
finite in practice. This leads us to underestimating the value périods to a rate of twelve joins and twelve leaves per one sta-
d, whichin turn leads us to overestimating the mean path lengtilization period.

Now, let us turn our attention to the number of timeouts. Let As discussed in Section V-D, the mean path length in steady
m be the mean number of nodes contacted during a lookup gate is aboutl /2) log, N —(1/2) log, r+1. Again, sinceV =
eration. The expected number of timeouts experienced during)0o andr = 20, the mean path length is 3.82. As shown in
a lookup operation isn * p, and the mean path lengthlis=  Table Ill, the measured path length is very close to this value and
m*(1—p). Given the mean path length in Table I, the expectegbes not change dramatically Asncreases. This is because the
number of timeouts is 0.45 fgr= 0.1, 1.06 forp = 0.2, 1.90 number of timeouts experienced by a lookup is relatively small,
for p = 0.3, 3.13 forp = 0.4, and 5.06 forp = 0.5. These and thus, it has minimal effect on the path length. On the other
values match well the measured number of timeouts shownhiand, the number of timeouts increases withTo understand
Table II. this result, consider the following informal argument.

Finally, we note that in our simulations all lookups were suc- Let us consider a particular finger pointefrom noden and
cessfully resolved, which supports the robustness claim of Theraluate the fraction of lookup traversailsthat fingerthat en-

orem IV.5. counter a timeout (by symmetry, this will be the same for all fin-
) o gers). From the perspective of that finger, history is made up of
E. Lookups During Stabilization an interleaving of three types of events: 1) stabilizations of that

In this experiment, we evaluate the performance and acdinger; 2) departures of the node pointed at by the finger; and
racy of Chord lookups when nodes are continuously joining ad) lookups that traverse the finger. A lookup causes a timeout
leaving. The leave procedure uses the departure optimizatidnthe finger points at a departed node. This occurs precisely
outlined in Section IV-E4. Key lookups are generated accordimghen the event immediately preceding the lookup was a depar-
to a Poisson process at a rate of one per second. Joins and vdiure—if the preceding event was a stabilization, then the node
tary leaves are modeled by a Poisson process with a mean arriwtently pointed at is alive; similarly, if the previous event was
rate of R. Each node runs the stabilization routine at intervaslookup, therthat lookup timed out an caused eviction of that
that are uniformly distributed in the interval [15, 45] secondsiead finger pointer. So we need merely determine the fraction
recall that only the successor and one finger table entry are sthlookup events in the history that are immediately preceded
bilized for each call, so the expected interval between succéy-a departure event.
sive stabilizations of a given finger table entry is much longer To simplify the analysis we assume that, like joins and leaves,
than the average stabilization period of 30 seconds. The netwsthbilization is run according to a Poisson process. Our history
starts with 1,000 nodes, and each node maintains again a ssithen an interleaving of three Poisson processes. The fingered
cessor list of size = 20 = 2log, N. Note that even though node departs as a Poisson process atiRate R/N. Stabiliza-
there are no failures, timeouts may still occur during the lookujon of that finger occurs (and detects such a departure) afrate
operation; a node that tries to contact a finger that has just lafteach stabilization round, a node stabilizes either a node in its
will time out. finger table or a node in its successor list (there3deg N such
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nodes in our case). Since the stabilization operation reduces tmase the node identifiers are randomly distributed, and there-
lookup operation (see Fig. 6), each stabilization operation wihre nodes close in the identifier space can be far away in the un-
usel fingers on the average, whekés the mean lookup path derlying network. In previous work [8], we attempted to reduce
length? As result, the rate at which a finger is touched by thimokup latency with a simple extension of the Chord protocol
stabilization operation i§ = (1/30) = [/(3log N') where 1/30 that exploits only the information already in a node’s finger
is the average rate at which each node invokes stabilizatitable. The idea was to choose the next-hop finger based on both
Finally, lookups using that finger are also a Poisson procegsogress in identifier space and latency in the underlying net-
Recall that lookups are generated (globally) as a Poisson proogssk, trying to maximize the former while minimizing the latter.
with rate of one lookup per second. Each such lookup Ufses While this protocol extension is simple to implement and does
gers on average, while there d¥dog N fingersintotal. Thus, a notrequire any additional state, its performance is difficult to an-
particular finger is used with probabilify (N log N), meaning alyze [8]. In this section, we present an alternate protocol exten-
that the finger gets used according to a Poisson process at si&, which provides better performance at the cost of slightly
L =1/(NlogN). increasing the Chord state and message complexity. We em-
We have three interleaved Poisson processes (the lookups jlasize that we are actively exploring techniques to minimize
partures, and stabilizations). Such a union of Poisson procedse&up latency, and we expect further improvements in the fu-
is itself a Poisson process with rate equal to the sum of thee.
three underlying rates. Each time an “event” occurs in this unionThe main idea of our scheme is to maintain a set of alter-
process, it is assigned to one of the three underlying processate nodes for each finger (that is, nodes with similar identi-
with probability proportional to those processes rates. In othiéers that are roughly equivalent for routing purposes), and then
words, the history seen by a node looks like a random sequencete the queries by selecting the closest node among the al-
in which each event is a departure with probability ternate nodes according to some network proximity metric. In
particular, every node associates with each of its fingérs,

I :L list of s immediate successors ¢f In addition, we modify the
R+ S+ 1L find_successdunction in Fig. 5 accordingly: Instead of simply
_ % returning the largest fingey,, that precedes the queried ID, the
e m + m function returns the closest node (in terms of networking dis-
R tance) among and itss successors. For simplicity, we choose

:R T BN T s = r, wherer is the length of the successor list; one could
9logN " log N reduce the storage requirements for the routing table by main-

In particular, the event immediately preceding any lookujgining, for each finger’, only the closest node amongf’s
is a departure with this probability. This is the probability SUccessors. To updaie a node can simply ask for its suc-
that the lookup encounters the timeout. Finally, the expecté@SSOr list, and then ping each node in the list. The node can
number of timeouts experienced by a lookup operation jpdaten e|therp§r|od|ca_\lly, or when it det_ects t_hahas failed.
I«p. = R/((R/I) + (N/(90log N)) + (1/log(N))). As Qbserve tha.t th|s. hel_mstlc can bg appledy in the recur-
examples, the expected number of timeouts is 0.041 Ve (not the iterative) implementation of lookup, as the original
R = 0.05, and 0.31 forR = 0.4. These values are reasonabl)ﬂuerying node will have no distance measurements to the fin-
close to the measured values shown in Table II. gers of each node on the path.

The last column in Table 1ll shows the number of lookup To illustrate the efficacy of this heuristic, we consider a Chord
failures per 10 000 lookups. The reason for these lookup failur@éstem with 2° nodes and two network topologies.
is state inconsistency. In particular, despite the fact that eache Three-dimensional (3-D) spaceThe network distance is

node maintains a successor lisdbg, N nodes, it is possible modeled as the geometric distance in a 3-D space. This
that for short periods of time a node may point to an incorrect model is motivated by recent research [19] showing that
successor. Suppose at tim@oden knows both its first and its the network latency between two nodes in the Internet can
second successa, andss. Assume that just after timea new be modeled (with good accuracy) as the geometric dis-
nodes joins the network betweesy ands,, and thats; leaves tance in ai-dimensional Euclidean space, where: 3.
beforen had the chance to discover Oncen learns thats,  Transit stub: A transit-stub topology with 5000 nodes,
has left,n will replace it with s,, the closest successoknows where link latencies are 50 ms for intra-transit domain
about. As aresult, for any keyl € (n, s), n will return nodess links, 20 ms for transit-stub links, and 1 ms for intra-stub
instead ofs. However, the next time invokes stabilization for domain links. Chord nodes are randomly assigned to stub
s2, n Will learn its correct successer nodes. This network topology aims to reflect the hierar-
chical organization of today’s Internet.
F. Improving Routing Latency We use thdookup stretctas the main metric to evaluate our

While Chord ensures that the average path length is oflguristic. The lookup stretch is defined as the ratio between 1)
ated to the time the result is returned to the initiator and 2) the
2Actually, since2 log NV of the nodes belong to the successor list, the meq@ltency ofan optimal Iookup using the underlying network. The

path length of the stabilization operation is smaller than the the mean path lengt| . N L
of the lookup operation (assuming the requested keys are randomly distribu% ter is computed as the roundtrip time between the initiator and

This explains in part the underestimation bias in our computation. the server responsible for the queried ID.



30 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003

TABLE IV
STRETCH OFLOOKUP LATENCY FOR A CHORD SYSTEM WITH 2'¢ NODESWHEN THE LOOKUP ISPERFORMEDBOTH IN THE I TERATIVE AND RECURSIVE STYLE.
Two NETWORK MODELS ARE CONSIDERED A 3-D EUCLIDEAN SPACE AND A TRANSIT-STUB NETWORK

Number of Stretch (10th, 90th percentiles)
fingers’ successors Iterative Recursive

(s) 3-d space Transit stub 3-d space Transit stub
7.8(4.4,19.8) | 7.2(4.4,36.0) | 45(2.5,11.5) | 4.1(2.7,24.0)

2 7.2(3.8,18.0) | 7.1 (4.2,33.6) | 3.5(2.0,8.7) | 3.6(2.3,17.0)
6.1 (3.1,15.3) | 6.4(3.2,30.6) | 2.7(1.6,6.4) | 2.8(1.8,12.7)

8 47(2.4,11.8) | 49(1.9,19.0) | 2.1(14,47) | 2.0(14,89)

16 34(1.9,84) | 22(1.7,74) 1.7(1.2,3.5) | 1.5(1.3,4.0)

Table IV shows the median, the tenth, and the 99th percentitistances that are all powers of 2, Chord could easily be changed
of the lookup stretch over 10 000 lookups for both the iteratite place its fingers at distances that are all integer powers of
and the recursive styles. The results suggest that our heuristic is (1/d). Under such a scheme, a single routing hop could
quite effective. The stretch decreases significantlyiasreases decrease the distance to a querylfdl + d) of the original
from one to 16. distance, meaning thatg,  , N hops would suffice. However,

As expected, these results also demonstrate that recursivgnumber of fingers needed would increasie#aV/(log(1 +
lookups execute faster than iterative lookups. Without any/d)) = O(dlog N).
latency optimization, the recursive lookup style is expected to
be approximately twice as fast as the iterative style: an iterative VII. CONCLUSION

lookup incurs a roundtrip latency per hop, while a recursive o o )
lookup incurs a one-way latency. Many distributed peer-to-peer applications need to determine

Note that in a 3-D Euclidean space, the expected distar}8€ node that stores a data item. The Chord protocol solves this
from a node to the closest node from a set-fl random nodes challenging problem in decentralized manner. It offers a pow-
is proportional ta(s + 1)*/3. Since the number of Chord hopserful primitive: given a key, it determines the node responsible
does not change asincreases, we expect the lookup latency tir storing the key’s value, and does so efficiently. In the steady
be also proportional tos+1)/3. This observation is consistentstate, in anv-node network, each node maintains routing infor-
with the results presented in Table IV. For instance sfer 16, mation for onlyO(log V) other nodes, and resolves all lookups
we have 17/ = 2.57, which is close to the observed reductiorvia O(log N) messages to other nodes.

of the median value of the lookup stretch frem:= 1 to s = 16. Attractive features of Chord include its simplicity, provable
correctness, and provable performance even in the face of
VI. FUTURE WORK concurrent node arrivals and departures. It continues to func-

. - . , .. tion correctly, albeit at degraded performance, when a node’s
Work remains to be done in improving Chord’s resilience o . . .
. - . information is only partially correct. Our theoretical analysis
against network partitions and adversarial nodes as well as its, . . : .
efficiency and simulation results confirm that Chord scales well with the

Chord can detect and heal partitions whose nodes knowno%mber of nodes, recovers from large numbers of simultaneous

each other. One way to obtain this knowledge is for every noagde faﬂyres and joins, and answers most lookups correctly
to know of the same small set of initial nodes. Another approagﬁen during recovery.
: We believe that Chord will be a valuable component for

might be for nodes to maintain long-term memory ofarandomeer_to_ eer large-scale distributed applications such as co-
set of nodes they have encountered in the past; if a partitiBn P 9 PP

. . . ; erative file sharing, time-shared available storage systems,
forms, the random sets in one partition are likely to include’” . - . .

. istributed indices for document and service discovery, and
nodes from the other partition.

A malicious or buggy set of Chord participants could presel%rge sce_lle distributed computing platfqrms. Our initial expe
. . . . lence with Chord has been very promising. We have already
an incorrect view of the Chord ring. Assuming that the data". S ) . .
o . . . ilt several peer-to-peer applications using Chord, including
Chord is being used to locate is cryptographlcallyauthentlcatea ‘cooperative file sharing application [9]. The software is
this is a threat to availability of data rather than to authenticit)c(l.v P 9 app '

One way to check global consistency is for each ned®
periodically ask other nodes to do a Chord lookup:foif the
lookup does not yield node, this could be an indication for " rk o A hord

P ; : : 1] S. Ajmani, D. Clarke, C.-H. Moh, and S. Richman, “ConChord: Coop-
victims t_hat they are not seeing a globally consistent view of the erative SDSI certificate storage and name resolutionPrioc. 1st Int.
Chord ring. Workshop Peer-to-Peer SystenGambridge, MA, Mar. 2002.

Even(l/Q) 10g2 N messages per |Ookup may be too many for [2] A. Bakker, E. Amade, G. Ballintijn, I. Kuz, P. Verkaik, W. |. van der,
licati f Chord iallv if h tb M. van Steen, and A. Tanenbaum, “The globe distribution network,” in

some appiications ot Lhord, especially It éach messageé must b€ - poc 2000 USENIX Annu. Conf. (FREENIX TracBan Diego, CA,
sent to a random Internet host. Instead of placing its fingers at  June 2000, pp. 141-152.

ailable ahttp://pdos.lcs.mit.edu/chord/.
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